Distribution of Extended-Spectrum β-Lactamase Genes and Antimicrobial Susceptibility among Residents in Geriatric Long-Term Care Facilities in Japan
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Strains
4.2. Identification of ESBL-PE Strains (Polymerase Chain Reaction Amplification)
4.3. Susceptibility Testing for ESBL-PE Strains
4.4. Analysis of the Relationship between Genetic Characteristics and Antimicrobial Susceptibility in ESBL-PE Strains
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Richards, C.L., Jr. Infection control in long-term care facilities. J. Am. Med. Dir. Assoc. 2007, 8 (Suppl. S3), S18–S25. [Google Scholar] [CrossRef]
- Jump, R.L.P.; Crnich, C.J.; Mody, L.; Bradley, S.F.; Nicolle, L.E.; Yoshikawa, T.T. Infectious diseases in older adults of long-term care facilities: Update on approach to diagnosis and management. J. Am. Geriatr. Soc. 2018, 66, 789–803. [Google Scholar] [CrossRef]
- Sloane, P.D.; Zimmerman, S.; Nace, D.A. Progress and challenges in the management of nursing home infections. J. Am. Med. Dir. Assoc. 2020, 21, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumyati, G.; Stone, N.D.; Nace, D.A.; Crnich, C.J.; Jump, R.L.P. Challenges and strategies for prevention of multidrug-resistant organism transmission in nursing homes. Curr. Infect. Dis. Rep. 2017, 19, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas-Chanoine, M.H.; Jarlier, V. Extended-spectrum β-lactamases in long-term-care facilities. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomo, R.A. Multiple antibiotic-resistant bacteria in long-term-care facilities: An emerging problem in the practice of infectious diseases. Clin. Infect. Dis. 2000, 31, 1414–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jallad, M.A.; Naoufal, R.; Irani, J.; Azar, E. Extended spectrum beta-lactamase carriage state among elderly nursing home residents in Beirut. Sci. World J. 2015, 2015, 987580. [Google Scholar] [CrossRef] [Green Version]
- Luvsansharav, U.O.; Hirai, I.; Niki, M.; Nakata, A.; Yoshinaga, A.; Yamamoto, A.; Matsuura, N.; Kawakami, F. Fecal carriage of CTX-M β-lactamase-producing Enterobacteriaceae in nursing homes in the Kinki region of Japan. Infect. Drug Resist. 2013, 6, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinnell, J.A.; Miller, L.G.; Singh, R.D.; Gussin, G.; Kleinman, K.; Mendez, J.; Laurner, B.; Catuna, T.D.; Heim, L.; Saavedra, R.; et al. High prevalence of multidrug-resistant organism colonization in 28 nursing homes: An “Iceberg effect”. J. Am. Med. Dir. Assoc. 2020, 21, 1937–1943.e2. [Google Scholar] [CrossRef]
- Colmenarejo, C.; Hernández-García, M.; Muñoz-Rodríguez, J.R.; Huertas, N.; Navarro, F.J.; Mateo, A.B.; Pellejero, E.M.; Illescas, S.; Vidal, M.D.; Del Campo, R. Prevalence and risks factors associated with ESBL-producing faecal carriage in a single long-term-care facility in Spain: Emergence of CTX-M-24- and CTX-M-27-producing Escherichia coli ST131-H30R. J. Antimicrob. Chemother. 2020, 75, 2480–2484. [Google Scholar] [CrossRef]
- Rohde, A.M.; Zweigner, J.; Wiese-Posselt, M.; Schwab, F.; Behnke, M.; Kola, A.; Schröder, W.; Peter, S.; Tacconelli, E.; Wille, T.; et al. Prevalence of third-generation cephalosporin-resistant Enterobacteriaceae colonization on hospital admission and ESBL genotype-specific risk factors: A cross-sectional study in six German university hospitals. J. Antimicrob. Chemother. 2020, 75, 1631–1638. [Google Scholar] [CrossRef]
- Kawamura, K.; Hayashi, K.; Matsuo, N.; Kitaoka, K.; Kimura, K.; Wachino, J.I.; Kondo, T.; Iinuma, Y.; Murakami, N.; Fujimoto, S.; et al. Prevalence of CTX-M-type extended-spectrum β-lactamase-producing Escherichia coli B2-O25-ST131 H30R among residents in nonacute care facilities in Japan. Microb. Drug Resist. 2018, 24, 1513–1520. [Google Scholar] [CrossRef]
- March, A.; Aschbacher, R.; Sleghel, F.; Soelva, G.; Kaczor, M.; Migliavacca, R.; Piazza, A.; Mattioni Marchetti, V.; Pagani, L.; Scalzo, K.; et al. Colonization of residents and staff of an Italian long-term care facility and an adjacent acute care hospital geriatric unit by multidrug-resistant bacteria. New Microbiol. 2017, 40, 258–263. [Google Scholar] [CrossRef]
- Giufrè, M.; Ricchizzi, E.; Accogli, M.; Barbanti, F.; Monaco, M.; Pimentel de Araujo, F.; Farina, C.; Fazii, P.; Mattei, R.; Sarti, M.; et al. Colonization by multidrug-resistant organisms in long-term care facilities in Italy: A point-prevalence study. Clin. Microbiol. Infect. 2017, 23, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogardt, M.; Proba, P.; Mischler, D.; Cuny, C.; Kempf, V.A.; Heudorf, U. Current prevalence of multidrug-resistant organisms in long-term care facilities in the Rhine-main district, Germany, 2013. Eurosurveillance 2015, 20, 21171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelson, G.; Hait, V.; Ben-Israel, J.; Gronich, D.; Granot, E.; Raz, R. Prevalence and risk factors of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in an Israeli long-term care facility. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 17–22. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- Capitano, B.; Nicolau, D.P. Evolving epidemiology and cost of resistance to antimicrobial agents in long-term care facilities. J. Am. Med. Dir. Assoc. 2003, 4, S90–S99. [Google Scholar] [CrossRef]
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended spectrum beta-lactamases: Definition, classification and epidemiology. Curr. Issues Mol. Biol. 2014, 17, 11–21. [Google Scholar]
- Osawa, K.; Shigemura, K.; Shimizu, R.; Kato, A.; Kusuki, M.; Jikimoto, T.; Nakamura, T.; Yoshida, H.; Arakawa, S.; Fujisawa, M.; et al. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli in a university teaching hospital. Microb. Drug Resist. 2015, 21, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Komatsu, M.; Sueyoshi, N.; Maeda, M.; Uchida, T.; Yonezawa, H.; Inagaki, K.; Omi, A.; Matsumoto, H.; Murotani, M.; et al. Community spread of extended-spectrum β-lactamase-producing bacteria detected in social insurance hospitals throughout Japan. J. Infect. Chemother. 2016, 22, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, Y.; Kasahara, K.; Inoue, T.; Lee, S.T.; Muratani, T.; Yano, H.; Kirita, T.; Mikasa, K. Molecular epidemiology and clinical features of extended-spectrum beta-lactamase- or carbapenemase-producing Escherichia coli bacteremia in Japan. PLoS ONE 2018, 13, e0202276. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Pitout, J.D.D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Tamma, P.D.; Rodriguez-Baňo, J. The use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections. Clin. Infect. Dis. 2017, 64, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Paauw, P.; Le Hall, M.A.; Verhoef, J.; Fluit, A.C. Evolution in quantum leaps: Multiple combinatorial transfers of HPI and other genetic modules in enterobacteriaceae. PLoS ONE 2010, 5, e8662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, M.; Reik, R.A.; Jacobs, S.D.; Medina, M.; Meyer, M.P.; McGowan, J.E.; Tenover, F.C. High rate of mobilization for blaCTX-ms. Emerg. Infect. Dis. 2008, 14, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Opal, S.M.; Pop-Vicas, A. Molecular mechanisms of antibiotic resistance in bacteria. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Medeiros, A.A. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis. 1997, 24, S19–S45. [Google Scholar] [CrossRef] [Green Version]
- Luvsansharav, U.O.; Hirai, I.; Niki, M.; Nakata, A.; Yoshinaga, A.; Moriyama, T. Prevalence of fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae among healthy adult people in Japan. J. Infect. Chemother. 2011, 17, 722–725. [Google Scholar] [CrossRef]
- Chong, Y.; Yakushiji, H.; Ito, Y.; Kamimura, T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 83–87. [Google Scholar] [CrossRef]
- Shibata, N.; Kurokawa, H.; Doi, Y.; Yagi, T.; Yamane, K.; Wachino, J.I.; Suzuki, S.; Kimura, K.; Ishikawa, S.; Kato, H.; et al. PCR classification of CTX-M-type β-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. Antimicrob. Agents Chemother. 2006, 50, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, Y.; Shimoda, S.; Yakushiji, H.; Ito, Y.; Miyamoto, T.; Kamimura, T.; Shimono, N.; Akashi, K. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: A long-term study in Japan. J. Med. Microbiol. 2013, 62 Pt 7, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Shibata, N.; Yamane, K.; Wachino, J.I.; Ito, K.; Arakawa, Y. Change in the prevalence of extended-spectrum-β-lactamase-producing Escherichia coli in Japan by clonal spread. J. Antimicrob. Chemother. 2009, 63, 72–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Giamarellou, H. Carbapenem-sparing strategies for ESBL producers: When and how. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S521–S528. [Google Scholar] [CrossRef] [Green Version]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 17, e159–e163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob. Agents Chemother. 2015, 59, 5107–5113. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, T.; Iwata, K.; Kobayashi, S.; Nakamura, T.; Ohji, G. Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC Infect. Dis. 2016, 16, 427. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Tanaka, M.; Takakura, S.; Ichiyama, S. In vitro activities and detection performances of cefmetazole and flomoxef for extended-spectrum β-lactamase and plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2016, 84, 322–327. [Google Scholar] [CrossRef]
- Yang, C.C.; Li, S.H.; Chuang, F.R.; Chen, C.H.; Lee, C.H.; Chen, J.B.; Wu, C.H.; Lee, C.T. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect. Dis. 2012, 12, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Su, L.H.; Chen, F.J.; Tang, Y.F.; Li, C.C.; Chien, C.C.; Liu, J.W. Comparative effectiveness of flomoxef versus carbapenems in the treatment of bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int. J. Antimicrob. Agents 2015, 46, 610–615. [Google Scholar] [CrossRef]
- Popovic, M.; Steinort, D.; Pillai, S.; Joukhadar, C. Fosfomycin: An old, new friend? Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Babiker, A.; Clarke, L.; Doi, Y.; Shields, R.K. Fosfomycin for treatment of multidrug-resistant pathogens causing urinary tract infection: A real-world perspective and review of the literature. Diagn. Microbiol. Infect. Dis. 2019, 95, 114856. [Google Scholar] [CrossRef]
- Rosso-Fernández, C.; Sojo-Dorado, J.; Barriga, A.; Lavín-Alconero, L.; Palacios, Z.; López-Hernández, I.; Merino, V.; Camean, M.; Pascual, A.; Rodriguez-Bano, J.; et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): Study protocol for an investigator-driven randomised controlled trial. BMJ Open 2015, 5, e007363. [Google Scholar] [CrossRef] [PubMed]
- Popejoy, M.W.; Paterson, D.L.; Cloutier, D.; Huntington, J.A.; Miller, B.; Bliss, C.A.; Steenbergen, J.N.; Hershberger, E.; Umeh, O.; Kaye, K.S. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: A pooled analysis of Phase 3 clinical trials. J. Antimicrob. Chemother. 2017, 72, 268–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, E.S.; Khairy, R.M.M.; Abdelrahim, S.S. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob. Resist. Infect. Control 2020, 9, 198. [Google Scholar] [CrossRef]
- Ghosh, B.; Mukherjee, M. Emergence of co-production of plasmid-mediated AmpC beta-lactamase and ESBL in cefoxitin-resistant uropathogenic Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1449–1454. [Google Scholar] [CrossRef]
- Oliveira, C.; Amador, P.; Prudêncio, C.; Tomaz, C.T.; Tavares-ratado, P.; Fernandes, R. ESBL and AmpC β-lactamases in clinical strains of Escherichia coli from Serra da Estrela, Portugal. Medicina 2019, 55, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Bunt, G.; Liakopoulos, A.; Mevius, D.J.; Geurts, Y.; Fluit, A.C.; Bonten, M.J.M.; Mughini-Gras, L.; van Pelt, W. ESBL/AmpC-producing Enterobacteriaceae in households with children of preschool age: Prevalence, risk factors and co-carriage. J. Antimicrob. Chemother. 2017, 72, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasahara, T.; Ae, R.; Yoshimura, A.; Kosami, K.; Sasaki, K.; Kimura, Y.; Akine, D.; Ogawa, M.; Hamabata, K.; Hatakeyama, S.; et al. Association between length of residence and prevalence of MRSA colonization among residents in geriatric long-term care facilities. BMC Geriatr. 2020, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Ae, R.; Sasahara, T.; Yoshimura, A.; Kosami, K.; Hatakeyama, S.; Sasaki, K.; Kimura, Y.; Akine, D.; Ogawa, M.; Hamabata, K.; et al. Prolonged carriage of ESBL-producing enterobacterales and potential cross-transmission among residents in geriatric long-term care facilities. Sci. Rep. 2021, 11, 21607. [Google Scholar] [CrossRef] [PubMed]
- Ae, R.; Kojo, T.; Kotani, K.; Okayama, M.; Kuwabara, M.; Makino, N.; Aoyama, Y.; Sano, T.; Nakamura, Y. Differences in caregiver daily impression by sex, education and career length. Geriatr. Gerontol. Int. 2017, 17, 410–415. [Google Scholar] [CrossRef]
- Ae, R.; Kojo, T.; Okayama, M.; Tsuboi, S.; Makino, N.; Kotani, K.; Aoyama, Y.; Nakamura, Y. Caregiver daily impression could reflect illness latency and severity in frail elderly residents in long-term care facilities: A pilot study. Geriatr. Gerontol. Int. 2016, 16, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing M-100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Zayda, M.G.; Masuda, Y.; Hammad, A.M.; Ken-ichi, H.; Elbagory, A.M.; Miyamoto, T. Molecular characterisation of methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus isolated from bovine subclinical mastitis and Egyptian raw milk cheese. Int. Dairy J. 2020, 104, 104646. [Google Scholar] [CrossRef]
- Ulfa, M.; Azuma, M.; Sato, M.; Shimohata, T.; Fukushima, S.; Kido, J.; Nakamoto, M.; Uebanso, T.; Mawatari, K.; Emoto, T.; et al. Inactivation of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli by UVA-LED irradiation system. J. Med. Investig. 2020, 67, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, H.; Cheng, J.; Xu, Z.; Xu, Y.; Cao, B.; Kong, H.; Ni, Y.; Yu, Y.; Sun, Z.; et al. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China. Int. J. Antimicrob. Agents 2015, 45, 485–490. [Google Scholar] [CrossRef]
- Santanirand, P.; Kojima, S.; Yamaguchi, T.; Wongnak, K.; Thokaew, S.; Chiaranaicharoen, S. Antimicrobial activity of flomoxef against enterobacteriaceae including extended spectrum beta-lactamases-producing strains isolated at Ramathibodi hospital: A 1000-bed tertiary care hospital in Bangkok, Thailand. J. Infect. Dis. Ther. 2018, 6, 378. [Google Scholar] [CrossRef]
- Toleman, M.A.; Walsh, T.R. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol. Rev. 2011, 35, 912–935. [Google Scholar] [CrossRef] [Green Version]
- Hernán, M.A. Causal analyses of existing databases: No power calculations required. J. Clin. Epidemiol. 2021. In Press. [Google Scholar] [CrossRef] [PubMed]
Gene Types | Total (n = 181) | Facility A (n = 21) | Facility B (n = 44) | Facility C (n = 38) | Facility D (n = 78) | p-Value † |
---|---|---|---|---|---|---|
blaTEM | 32 (17.7%) | 1 (4.8%) | 8 (18.2%) | 6 (15.8%) | 17 (21.8%) | 0.27 |
blaSHV | 12 (6.6%) | 3 (14.3%) | 0 (0%) | 5 (13.2%) | 4 (5.1%) | 0.02 * |
blaCTX-M-1 group | 44 (24.3%) | 5 (23.8%) | 10 (22.7%) | 9 (23.7%) | 20 (25.6%) | 0.74 |
blaCTX-M-2 group | 4 (2.2%) | 0 (0%) | 2 (4.5%) | 1 (2.6%) | 1 (1.3%) | 0.71 |
blaCTX-M-8 group | 1 (0.6%) | 0 (0%) | 1 (2.3%) | 0 (0%) | 0 (0%) | 0.48 |
blaCTX-M-9 group | 88 (48.6%) | 12 (57.1%) | 23 (52.3%) | 17 (44.7%) | 36 (46.2%) | 0.44 |
Combination of Genes | Total n = 141 | Facility A n = 15 | Facility B n = 41 | Facility C n = 27 | Facility D n = 58 | p-Value † |
---|---|---|---|---|---|---|
blaCTX-M-9 group only | 72 (51.1%) | 9 (60%) | 21 (51.2%) | 14 (51.9%) | 28 (48.3%) | 0.88 |
blaCTX-M-1 group only | 21 (14.9%) | ― | 8 (19.5%) | 3 (11.1%) | 10 (17.2%) | 0.28 |
blaCTX-M-1 group + blaTEM | 12 (8.5%) | 1 (6.7%) | 1 (2.4%) | 2 (7.4%) | 8 (13.8%) | 0.25 |
blaCTX-M-9 group + blaTEM | 9 (6.4%) | ― | 1 (2.4%) | 1 (3.7%) | 7 (12.1%) | 0.23 |
blaTEM only | 6 (4.3%) | ― | 6 (14.6%) | ― | ― | <0.01 * |
blaCTX-M-1 group + blaCTX-M-9 group | 4 (2.8%) | 2 (13.3%) | 1 (2.4%) | 1 (3.7%) | ― | 0.05 |
blaCTX-M-1 group + blaSHV | 4 (2.8%) | 2 (13.3%) | ― | 1 (3.7%) | 1 (1.7%) | 0.06 |
blaCTX-M-2 group only | 4 (2.8%) | ― | 2 (4.9%) | 1 (3.7%) | 1 (1.7%) | 0.71 |
blaCTX-M-1 group + blaTEM + blaSHV | 3 (2.1%) | ― | ― | 2 (7.4%) | 1 (1.7%) | 0.18 |
blaCTX-M-9 group + blaSHV | 3 (2.1%) | 1 (6.7%) | ― | 1 (3.7%) | 1 (1.7%) | 0.43 |
blaTEM + blaSHV | 2 (1.4%) | ― | ― | 1 (3.7%) | 1 (1.7%) | 0.60 |
blaCTX-M-8 group only | 1 (0.7%) | ― | 1 (2.4%) | ― | ― | 0.48 |
Antimicrobial Agents | Total (n = 141) | Facility A (n = 15) | Facility B (n = 41) | Facility C (n = 27) | Facility D (n = 58) | p-Value † |
---|---|---|---|---|---|---|
CAZ | 65% (91) | 73% (11) | 63% (26) | 89% (24) | 51% (30) | <0.01 * |
CFPM | 61% (86) | 73% (11) | 61% (25) | 70% (19) | 53% (31) | 0.34 |
CMZ | 90% (127) | 100% (15) | 100% (41) | 100% (27) | 76% (44) | <0.01 * |
FMOX | 97% (137) | 100% (15) | 100% (41) | 100% (27) | 93% (33) | 0.12 |
TAZ/PIPC | 83% (117) | 73% (11) | 98% (40) | 85% (23) | 74% (43) | 0.02 * |
TAZ/CTLZ | 91% (128) | 80% (12) | 95% (39) | 93% (25) | 90% (52) | 0.36 |
GM | 86% (122) | 93% (14) | 70% (29) | 92% (25) | 93% (54) | <0.01 * |
LVFX | 3.5% (5) | 0% (0) | 2.4% (1) | 7.4% (2) | 3.5% (2) | 0.60 |
FOM | 91% (128) | 100% (15) | 98% (40) | 100% (27) | 79% (46) | <0.01 * |
Antimicrobial Agents | Single Gene (n = 104) | Multiple Genes * (n = 37) | p-Value † |
---|---|---|---|
CMZ | 88% (92) | 95% (35) | 0.28 |
FMOX | 97% (101) | 97% (36) | 0.95 |
CAZ | 63% (66) | 68% (25) | 0.65 |
CFPM | 60% (62) | 65% (24) | 0.57 |
TAZ/PIPC | 85% (88) | 78% (29) | 0.39 |
TAZ/CTLZ | 91% (95) | 89% (33) | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akine, D.; Sasahara, T.; Kiga, K.; Ae, R.; Kosami, K.; Yoshimura, A.; Kubota, Y.; Sasaki, K.; Kimura, Y.; Ogawa, M.; et al. Distribution of Extended-Spectrum β-Lactamase Genes and Antimicrobial Susceptibility among Residents in Geriatric Long-Term Care Facilities in Japan. Antibiotics 2022, 11, 36. https://doi.org/10.3390/antibiotics11010036
Akine D, Sasahara T, Kiga K, Ae R, Kosami K, Yoshimura A, Kubota Y, Sasaki K, Kimura Y, Ogawa M, et al. Distribution of Extended-Spectrum β-Lactamase Genes and Antimicrobial Susceptibility among Residents in Geriatric Long-Term Care Facilities in Japan. Antibiotics. 2022; 11(1):36. https://doi.org/10.3390/antibiotics11010036
Chicago/Turabian StyleAkine, Dai, Teppei Sasahara, Kotaro Kiga, Ryusuke Ae, Koki Kosami, Akio Yoshimura, Yoshinari Kubota, Kazumasa Sasaki, Yumiko Kimura, Masanori Ogawa, and et al. 2022. "Distribution of Extended-Spectrum β-Lactamase Genes and Antimicrobial Susceptibility among Residents in Geriatric Long-Term Care Facilities in Japan" Antibiotics 11, no. 1: 36. https://doi.org/10.3390/antibiotics11010036