Prevalence and Antimicrobial Resistance of Paeniclostridium sordellii in Hospital Settings
Abstract
:1. Introduction
2. Results
2.1. Environmental Samples
2.2. Antibiotic Susceptibility Test
2.3. Testing of Sporicidal Activity
2.3.1. Under Clean Conditions
2.3.2. Under Dirty Conditions
2.4. Toxin Enzyme Immunoassays (EIA) and PCR Reaction in P. sordellii Isolates
3. Discussion
4. Materials and Methods
4.1. Samples Collection
4.2. Culture and Bacterial Identification
4.3. Antibacterial Susceptibility Testing
4.4. Spore Preparation and Chosen Biocides
4.5. Testing of Sporicidal Activity
4.6. Enzyme Immunoassays and PCR for the Detection of P. sordellii Toxins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orrell, K.E.; Melnyk, R.A. Large Clostridial Toxins: Mechanisms and Roles in Disease. Microbiol. Mol. Biol. Rev. 2021, 85, e00064. [Google Scholar] [CrossRef]
- Popoff, M.R.; Bouvet, P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013, 75, 63–89. [Google Scholar] [CrossRef]
- Galvin, S.; Dolan, A.; Cahill, O.; Daniels, S.; Humphreys, H. Microbial monitoring of the hospital environment: Why and how? J. Hosp. Infect. 2012, 82, 143–151. [Google Scholar] [CrossRef]
- Jyothsna, T.S.S.; Tushar, L.; Sasikala, C.; Ramana, C.V. Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int. J. Syst. Evol. Microbiol. 2016, 66, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Vidor, C.; Awad, M.; Lyras, D. Antibiotic resistance, virulence factors and genetics of Clostridium sordellii. Res. Microbiol. 2015, 166, 368–374. [Google Scholar] [CrossRef]
- Cohen, A.L.; Bhatnagar, J.; Reagan, S.; Zane, S.B.; D’Angeli, M.A.; Fischer, M.; Killgore, G.; Kwan-Gett, T.S.; Blossom, D.B.; Shieh, W.J.; et al. Toxic shock associated with Clostridium sordellii and Clostridium perfringens after medical and spontaneous abortion. Obstet. Gynecol. 2007, 110, 1027–1033. [Google Scholar] [CrossRef]
- Elkbuli, A.; Diaz, B.; Ehrhardt, J.D.; Hai, S.; Kaufman, S.; McKenney, M.; Boneva, D. Survival from Clostridium toxic shock syndrome: Case report and review of the literature. Int. J. Surg. Case Rep. 2018, 50, 64–67. [Google Scholar] [CrossRef]
- Rabi, R.; Turnbull, L.; Whitchurch, C.B.; Awad, M.; Lyras, D. Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. mSphere 2017, 2, e00343. [Google Scholar] [CrossRef] [Green Version]
- Aldape, M.J.; Bryant, A.E.; Stevens, D.L. Clostridium sordellii Infection: Epidemiology, Clinical Findings, and Current Perspectives on Diagnosis and Treatment. Clin. Infect. Dis. 2006, 43, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Scaria, J.; Suzuki, H.; Ptak, C.P.; Chen, J.W.; Zhu, Y.; Guo, X.K.; Chang, Y.F. Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference. BMC Genom. 2015, 16, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, A.R.S.; Girinathan, B.P.; Zapotocny, R.; Govind, R. Identification and characterization of Clostridium sordellii toxin gene regulator. J. Bacteriol. 2013, 195, 4246–4254. [Google Scholar] [CrossRef]
- Guilbault, C.; Labbé, A.C.; Poirier, L.; Busque, L.; Béliveau, C.; Laverdière, M. Development and evaluation of a PCR method for detection of the Clostridium difficile toxin B gene in stool specimens. J. Clin. Microbiol. 2002, 40, 2288–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Senn, T.; Opp, J.S.; Young, V.B.; Thiele, T.; Srinivas, G.; Huang, S.K.; Aronoff, D.M. Lethal toxin is a critical determinant of rapid mortality in rodent models of Clostridium sordellii endometritis. Anaerobe 2010, 16, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, A.; Yee, L. The clinical spectrum of Clostridium sordellii bacteraemia: Two case reports and a review of the literature. J. Clin. Pathol. 2000, 53, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Valour, F.; Boisset, S.; Lebras, L.; Martha, B.; Boibieux, A.; Perpoint, T.; Chidiac, C.; Ferry, T.; Peyramond, D. Clostridium sordellii brain abscess diagnosed by 16S rRNA gene sequencing. J. Clin. Microbiol. 2010, 48, 3443–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walk, S.T.; Jain, R.; Trivedi, I.; Grossman, S.; Newton, D.W.; Thelen, T.; Hao, Y.; Songer, J.G.; Carter, G.P.; Lyras, D.; et al. Non-toxigenic Clostridium sordellii: Clinical and microbiological features of a case of cholangitis-associated bacteremia. Anaerobe 2011, 17, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Yamamoto, K.; Tamura, Y.; Takahashi, T. Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema. Vet. Microbiol. 2001, 83, 61–69. [Google Scholar] [CrossRef]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Curr. Infect. Dis. Rep. 2018, 20, 1–11. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Itoh, N.; Sugiyama, T.; Kurai, H. Clinical features of Clostridium bacteremia in cancer patients: A case series review. J. Infect. Chemother. 2019, 26, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leggett, M.J.; Setlow, P.; Sattar, S.A.; Maillard, J.Y. Assessing the activity of microbicides against bacterial spores: Knowledge and pitfalls. J. Appl. Microbiol. 2016, 120, 1174–1180. [Google Scholar] [CrossRef] [Green Version]
- March, J.K.; Pratt, M.D.; Lowe, C.W.; Cohen, M.N.; Satterfield, B.A.; Schaalje, B.; O’Neill, K.L.; Robison, R.A. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. MicrobiologyOpen 2015, 4, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.P.; Adrion, A.C. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environ. Sci. Technol. 2019, 53, 4045–4062. [Google Scholar] [CrossRef]
- Humphreys, P.N. Testing standards for sporicides. J. Hosp. Infect. 2011, 77, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Fraise, A. Currently available sporicides for use in healthcare, and their limitations. J. Hosp. Infect. 2011, 77, 210–212. [Google Scholar] [CrossRef]
- Sasahara, T.; Ae, R.; Watanabe, M.; Kimura, Y.; Yonekawa, C.; Hayashi, S.; Morisawa, Y. Contamination of healthcare workers’ hands with bacterial spores. J. Infect. Chemother. 2016, 22, 521–525. [Google Scholar] [CrossRef]
- Ibnoulkhatib, A.; Lacroix, J.; Moine, A.; Archambaud, M.; Bonnet, E.; Laffosse, J.M. Post-traumatic bone and/or joint limb infections due to Clostridium spp. Orthop. Traumatol. Surg. Res. 2012, 98, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, J.; Deleon-Carnes, M.; Kellar, K.L.; Bandyopadhyay, K.; Antoniadou, Z.A.; Shieh, W.J.; Paddock, C.D.; Zaki, S.R. Rapid, simultaneous detection of Clostridium sordellii and Clostridium perfringens in archived tissues by a novel PCR-based microsphere assay: Diagnostic implications for pregnancy-associated toxic shock syndrome cases. Infect. Dis. Obstet. Gynecol. 2012, 2012, 972845. [Google Scholar] [CrossRef] [Green Version]
- Jencson, A.L.; Cadnum, J.L.; Wilson, B.M.; Donskey, C.J. Spores on wheels: Wheelchairs are a potential vector for dissemination ofpathogens in healthcare facilities. Am. J. Infect. Control 2019, 47, 459–461. [Google Scholar] [CrossRef]
- Kozma-Sipos, Z.; Szigeti, J.; Ásványi, B.; Varga, L. Heat resistance of Clostridium sordellii spores. Anaerobe 2010, 16, 226–228. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.A.; Shore, K.P.; Paviour, S.D.; Holland, D.; Morris, A.J. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999–2003. J. Antimicrob. Chemother. 2006, 57, 992–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazier, J.S.; Levett, P.N.; Stannard, A.J.; Phillips, K.D.; Willis, A.T. Antibiotic susceptibility of clinical isolates of clostridia. J. Antimicrob. Chemother. 1985, 15, 181–185. [Google Scholar] [CrossRef]
- Marchand-Austin, A.; Rawte, P.; Toye, B.; Jamieson, F.B.; Farrell, D.J.; Patel, S.N. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010–2011. Anaerobe 2014, 28, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, P.; Sautereau, J.; Le Coustumier, A.; Mory, F.; Bouchier, C.; Popoff, M.-R. Foot Infection by Clostridium sordellii: Case Report and Review of 15 Cases in France. J. Clin. Microbiol. 2015, 53, 1423–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.; Winikoff, B.; Charles, D.; Agnew, K.; Prentice, J.L.; Limbago, B.M.; Platais, I.; Louie, K.; Jones, H.E.; Shannon, C. Vaginal and Rectal Clostridium sordellii and Clostridium perfringens Presence Among Women in the United States. Obstet. Gynecol. 2016, 127, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voth, D.E.; Martinez, O.V.; Ballard, J.D. Variations in lethal toxin and cholesterol-dependent cytolysin production correspond to differences in cytotoxicity among strains of Clostridium sordellii. FEMS Microbiol. Lett. 2006, 259, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couchman, E.C.; Browne, H.P.; Dunn, M.; Lawley, T.D.; Songer, J.G.; Hall, V.; Petrovska, L.; Vidor, C.; Awad, M.; Lyras, D.; et al. Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genom. 2015, 16, 392. [Google Scholar] [CrossRef] [Green Version]
- Dyas, A.; Das, B.C. The activity of glutaraldehyde against Clostridium difficile. J. Hosp. Infect. 1985, 6, 41–45. [Google Scholar] [CrossRef]
- Hobson, D.W.; Seal, L.A. Evaluation of a novel, rapid-acting, sterilizing solution at room temperature. Am. J. Infect. Control 2000, 28, 370–375. [Google Scholar] [CrossRef]
- Wullt, M.; Odenholt, I.; Walder, M. Activity of Three Disinfectants and Acidified Nitrite Against Clostridium difficile Spores. Infect. Control Hosp. Epidemiol. 2003, 24, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, B.; Jordan, S.L. Toxicological, medical and industrial hygiene aspects of glutaraldehyde with particular reference to its biocidal use in cold sterilization procedures. J. Appl. Toxicol. 2001, 21, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.; Springthorpe, V.S.; Sattar, S.A. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: Relevance to environmental control. Am. J. Infect. Control 2005, 33, 320–325. [Google Scholar] [CrossRef]
- Uwamahoro, M.C.; Massicotte, R.; Hurtubise, Y.; Gagné-Bourque, F.; Mafu, A.A.; Yahia, L. Evaluating the Sporicidal Activity of Disinfectants against Clostridium difficile and Bacillus amyloliquefaciens Spores by Using the Improved Methods Based on ASTM E2197-11. Front. Public Health 2018, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.G.; Barbosa, T.F.; Teixeira, F.L.; de Ferreira, E.O.; Duarte, R.S.; Domingues, R.M.C.P.; De Paula, G.R. Effect of hospital disinfectants on spores of clinical brazilian Clostridium difficile strains. Anaerobe 2013, 22, 121–122. [Google Scholar] [CrossRef]
- Massicotte, R.; Ginestet, P.; Yahia, L.; Pichette, G.; Mafu, A.A. Comparative study from a chemical perspective of two- and three-step disinfection techniques to control Clostridium difficile spores. Int. J. Infect. Control 2011, 7, 1–8. [Google Scholar] [CrossRef]
- Barbut, F.; Menuet, D.; Verachten, M.; Girou, E. Comparison of the Efficacy of a Hydrogen Peroxide Dry-Mist Disinfection System and Sodium Hypochlorite Solution for Eradication of Clostridium difficile Spores. Infect. Control Hosp. Epidemiol. 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggs, M.M.; Sethi, A.K.; Zabarsky, T.F.; Eckstein, E.C.; Jump, R.L.P.; Donskey, C.J. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 2007, 45, 992–998. [Google Scholar] [CrossRef]
- Deshpande, A.; Mana, T.S.C.; Cadnum, J.L.; Jencson, A.C.; Sitzlar, B.; Fertelli, D.; Hurless, K.; Sunkesula, V.C.K.; Donskey, C.J.; Kundrapu, S. Evaluation of a Sporicidal Peracetic Acid/Hydrogen Peroxide—Based Daily Disinfectant Cleaner. Infect. Control Hosp. Epidemiol. 2014, 35, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Block, C. The effect of Perasafe® and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces. J. Hosp. Infect. 2004, 57, 144–148. [Google Scholar] [CrossRef]
- Dawson, L.F.; Valiente, E.; Donahue, E.H.; Birchenough, G.; Wren, B.W. Hypervirulent Clostridium difficile pcr-ribotypes exhibit resistance to widely used disinfectants. PLoS ONE 2011, 6, e25754. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Malyshev, D.; Dahlberg, T.; Wiklund, K.; Andersson, P.O.; Henriksson, S. Mode of action of disinfection chemicals on the bacterial spore structure and their raman spectra. Anal. Chem. 2021, 93, 3146–3153. [Google Scholar] [CrossRef]
- Otterspoor, S.; Farrell, J. An evaluation of buffered peracetic acid as an alternative to chlorine and hydrogen peroxide based disinfectants. Infect. Dis. Health 2019, 24, 240–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, S.A.D.S.; Paula, O.F.P.D.; Silva, C.R.G.; Leão, M.V.P.; Santos, S.S.F.D. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process. Braz. Oral Res. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Huang, C.-H. Reactivity of Peracetic Acid with Organic Compounds: A Critical Review. ACS ES&T Water 2021, 1, 15–33. [Google Scholar] [CrossRef]
- Kenters, N.; Huijskens, E.G.W.; de Wit, S.C.J.; Sanders, I.G.J.M.; van Rosmalen, J.; Kuijper, E.J.; Voss, A. Effectiveness of various cleaning and disinfectant products on Clostridium difficile spores of PCR ribotypes 010, 014 and 027. Antimicrob. Resist. Infect. Control. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Speight, S.; Moy, A.; Macken, S.; Chitnis, R.; Hoffman, P.N.; Davies, A.; Bennett, A.; Walker, J.T. Evaluation of the sporicidal activity of different chemical disinfectants used in hospitals against Clostridium difficile. J. Hosp. Infect. 2011, 79, 18–22. [Google Scholar] [CrossRef]
- Wesgate, R.; Rauwel, G.; Criquelion, J.; Maillard, J.Y. Impact of standard test protocols on sporicidal efficacy. J. Hosp. Infect. 2016, 93, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Ng Wong, Y.K.; Alhmidi, H.; Mana, T.S.C.; Cadnum, J.L.; Jencson, A.L.; Donskey, C.J. Impact of routine use of a spray formulation of bleach on Clostridium difficile spore contamination in non-C difficile infection rooms. Am. J. Infect. Control 2019, 47, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Kundrapu, S.; Sunkesula, V.; Jury, I.; Deshpande, A.; Donskey, C.J. A Randomized Trial of Soap and Water Hand Wash Versus Alcohol Hand Rub for Removal of Clostridium difficile Spores from Hands of Patients. Infect. Control Hosp. Epidemiol. 2014, 35, 204–206. [Google Scholar] [CrossRef]
- Barker, A.K.; Zellmer, C.; Tischendorf, J.; Duster, M.; Valentine, S.; Wright, M.O.; Safdar, N. On the hands of patients with Clostridium difficile: A study of spore prevalence and the effect of hand hygiene on C difficile removal. Am. J. Infect. Control 2017, 45, 1154–1156. [Google Scholar] [CrossRef]
- Nerandzic, M.M.; Rackaityte, E.; Jury, L.A.; Eckart, K.; Donskey, C.J. Novel Strategies for Enhanced Removal of Persistent Bacillus anthracis Surrogates and Clostridium difficile Spores from Skin. PLoS ONE 2013, 8, e68706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacson, D.; Haller, B.; Leslie, H.; Roemer, M.; Winston, L. Novel handwashes are superior to soap and water in removal of Clostridium difficile spores from the hands. Am. J. Infect. Control 2015, 43, 530–532. [Google Scholar] [CrossRef]
- Bakhtiary, F.; Sayevand, H.R.; Remely, M.; Hippe, B.; Indra, A.; Hosseini, H.; Haslberger, A.G. Identification of Clostridium spp. derived from a sheep and cattle slaughterhouse by matrix-assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequencing. J. Food Sci. Technol. 2018, 55, 3232–3240. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.; Springthorpe, V.S.; Sattar, S.A. Clospore: A liquid medium for producing high titers of semi-purified spores of Clostridium difficile. J. AOAC Int. 2011, 94, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Yoo, I.Y.; Song, D.J.; Huh, H.J.; Lee, N.Y. Simultaneous detection of Clostridioides difficile glutamate dehydrogenase and toxin A/B: Comparison of the C. DIFF QUIK CHEK COMPLETE and RIDASCREEN Assays. Ann. Lab. Med. 2019, 39, 214–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | N° of Isolates | AC | XL | TP | IP | ETP | CM | MZ | LZ | VA | TGC | RI | CL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC range (µg/mL) | 100 | 0.125–0.25 | 0.047–0.25 | 0.047–0.19 | 0.008–0.012 | 0.008–0.012 | 0.25–64 | 0.032–8 | 0.064–0.25 | 0.032–0.094 | 0.047–0.125 | 0.032–0.094 | 0.006–0.016 |
P. sordellii | 89 | S | S | S | S | S | S | S | S | S | S | S | S |
P. sordellii | 1 | S | S | S | S | S | R | S | S | S | S | S | S |
C. tertium | 2 | S | S | S | S | S | R | S | S | S | S | S | S |
C. tertium | 1 | S | S | S | S | S | S | S | S | S | S | S | S |
C. perfringens | 1 | S | S | S | S | S | S | S | S | S | S | S | S |
C. perfringens | 1 | S | S | S | S | S | R | R | S | S | S | S | S |
C. irregulare | 2 | S | S | S | S | S | S | S | S | S | S | S | S |
C. sporogenes | 2 | S | S | S | S | S | S | S | S | S | S | S | S |
C. botulinum | 1 | S | S | S | S | S | S | S | S | S | S | S | S |
Tested Strains | Origins | Spore Concentration (mL−1) | Spore Germination Percentage (%) |
---|---|---|---|
C. perfringens | Hospital environment, surface (UHT) | 1.24 × 108 | 86.29% |
C. botulinum | Hospital environment, surface (UHT) | 1.14 × 108 | 90.35% |
C. sporogenes | Hospital environment, surface (UHT) | 3.20 × 107 | 93.75% |
C. tertium | Hospital environment, surface (UHT) | 2.67 × 108 | 93.26% |
P. sordellii | Hospital environment, surface (UHT) | 1.24 × 108 | 91.13% |
C. difficile | CSUR (P8093) | 1.32 × 108 | 90.15% |
P. sordellii | DSM 2141 | 1.19 × 108 | 92.44% |
B. subtilis | DSM 347 | 3.17 × 108 | 94.63% |
B. cereus | DSM 106266 | 2.97 × 108 | 93.60% |
Product | Disinfectant Forms | Active Ingredient | Concentration | Contact Time and Type of Application | Spectrum of Activity |
---|---|---|---|---|---|
D1 | Effervescent tablet | Sodium dichloroisocyanurate (81%), (N° CAS 2893-78-9), pH: 7.4 | 0.6% | 30 min Surface Disinfection | Fungicidal, virucidal, sporicidal, and bactericidal |
D2 | Spray | Didecyldimethylammonium chloride 3 mg/g (N° CAS 7173-51-5), pH: 6 ± 0.5 | Ready to use | 30 min Surface and medical device disinfection | Fungicidal, virucidal, and bactericidal |
D3 | Liquid concentrated solution | Hydrogen peroxide 255.9 mg/g (N° CAS 7722-84-1), Peracetic acid 48 mg/g (N° CAS 79-21-0), pH: 4 | 3% | 15 min Surface and instrument disinfection | Fungicidal, virucidal, sporicidal, and bactericidal |
D4 | Liquid concentrated solution | Isopropyl alcohol (N° CAS 67-63-0), pH: 7.4 | 90% | 20 min Instrument disinfection | Virucidal and bactericidal |
D5 | Liquid concentrated solution | Glutaraldehyde (N° CAS 111-30-8), pH: 5.2 | 2.5% | 30 min at 20 °C Instrument disinfection | Fungicidal, virucidal, sporicidal, and bactericidal |
D6 | Granules | Peracetic acid 750 ppm (N° CAS 79-21-0), Dimethylammonium chloride 0.012% (N° CAS: 85409-22-9), pH: 9.3 | 0.5% | 15 min Cleaning and disinfection of floors and surfaces | Fungicidal, virucidal, sporicidal, and bactericidal |
D7 | Liquid | Lauramphocarboxyglycinate, Sodium lauryl sulfate, Linoleamide DEA, benzyl alcohol, sodium benzoate, pH: 6.5 | Ready to use | 30 s Hand washing | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerrouki, H.; Rebiahi, S.-A.; Elhabiri, Y.; Fatmi, A.; Baron, S.A.; Pagnier, I.; Diene, S.M.; Rolain, J.-M. Prevalence and Antimicrobial Resistance of Paeniclostridium sordellii in Hospital Settings. Antibiotics 2022, 11, 38. https://doi.org/10.3390/antibiotics11010038
Zerrouki H, Rebiahi S-A, Elhabiri Y, Fatmi A, Baron SA, Pagnier I, Diene SM, Rolain J-M. Prevalence and Antimicrobial Resistance of Paeniclostridium sordellii in Hospital Settings. Antibiotics. 2022; 11(1):38. https://doi.org/10.3390/antibiotics11010038
Chicago/Turabian StyleZerrouki, Hanane, Sid-Ahmed Rebiahi, Yamina Elhabiri, Ahlam Fatmi, Sophie Alexandra Baron, Isabelle Pagnier, Seydina M. Diene, and Jean-Marc Rolain. 2022. "Prevalence and Antimicrobial Resistance of Paeniclostridium sordellii in Hospital Settings" Antibiotics 11, no. 1: 38. https://doi.org/10.3390/antibiotics11010038
APA StyleZerrouki, H., Rebiahi, S. -A., Elhabiri, Y., Fatmi, A., Baron, S. A., Pagnier, I., Diene, S. M., & Rolain, J. -M. (2022). Prevalence and Antimicrobial Resistance of Paeniclostridium sordellii in Hospital Settings. Antibiotics, 11(1), 38. https://doi.org/10.3390/antibiotics11010038