Determinants of Response at 2 Months of Treatment in a Cohort of Pakistani Patients with Pulmonary Tuberculosis
Abstract
:1. Introduction
2. Results
2.1. Diagnostic Sputum AFB Levels Are Significantly Different between Early and Late Responders
2.2. Diagnostic AFB Levels Are Independent Predictors of Early Response
3. Discussion
4. Methodology
4.1. Study Design, Subjects, and Inclusion Criteria
4.2. Collection of Socio-Demographic and Anthropometric Data and Blood Samples
4.3. Laboratory Analysis
4.4. Follow Up
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Bendre, A.D.; Peters, P.J.; Kumar, J. Tuberculosis: Past, present and future of the treatment and drug discovery research. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100037. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhao, Y. Global Control of Tuberculosis: Current Status and Future Prospects. Zoonoses 2022, 2, 9. [Google Scholar] [CrossRef]
- Cohen, A.; Mathiasen, V.D.; Schön, T.; Wejse, C. The global prevalence of latent tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2019, 54, 1900655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Control: Surveillance, Planning, Financing; WHO report 2005; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013, 12, 388–404. [Google Scholar] [CrossRef]
- Tiberi, S.; Lampejo, T.; Zumla, A. Multi-drug Resistant Tuberculosis Management. In Tuberculosis in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2021; pp. 279–294. [Google Scholar]
- Tiberi, S.; Utjesanovic, N.; Galvin, J.; Centis, R.; D’Ambrosio, L.; Boom, M.V.D.; Zumla, A.; Migliori, G. Drug resistant TB–latest developments in epidemiology, diagnostics and management. Int. J. Infect. Dis. 2022, in press. [Google Scholar] [CrossRef]
- World Health Organization; Stop TB Initiative. Treatment of Tuberculosis: Guidelines; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Hayashi, Y.; Paterson, D.L. Strategies for reduction in duration of antibiotic use in hospitalized patients. Clin. Infect. Dis. 2011, 52, 1232–1240. [Google Scholar] [CrossRef]
- Saukkonen, J.J.; Powell, K.; Jereb, J.A. Monitoring for tuberculosis drug hepatotoxicity: Moving from opinion to evidence. Am. J. Respir. Crit. Care Med. 2012, 185, 598–599. [Google Scholar] [CrossRef]
- Volmink, J.; Garner, P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst. Rev. 2007, 1–26. [Google Scholar] [CrossRef]
- Horne, D.J.; Royce, S.E.; Gooze, L.; Narita, M.; Hopewell, P.C.; Nahid, P.; Steingart, K.R. Sputum monitoring during tuberculosis treatment for predicting outcome: Systematic review and meta-analysis. Lancet Infect. Dis. 2010, 10, 387–394. [Google Scholar] [CrossRef]
- Gupta, K.B.; Gupta, R.; Atreja, A.; Verma, M.; Vishvkarma, S. Tuberculosis and nutrition. Lung India 2009, 26, 9. [Google Scholar] [CrossRef]
- Kant, S.; Gupta, H.; Ahluwalia, S. Significance of nutrition in pulmonary tuberculosis. Crit. Rev. Food Sci. Nutr. 2015, 55, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Goletti, D.; Arlehamn, C.S.L.; Scriba, T.J.; Anthony, R.; Cirillo, D.M.; Alonzi, T.; Denkinger, C.M.; Cobelens, F. Can we predict tuberculosis cure? What tools are available? Eur. Respir. J. 2018, 52, 1801089. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, N.; du Bruyn, E.; Morris, T.; Wilkinson, R.J. Assessment of treatment response in tuberculosis. Expert Rev. Respir. Med. 2016, 10, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Dartois, V. The path of anti-tuberculosis drugs: From blood to lesions to mycobacterial cells. Nat. Rev. Microbiol. 2014, 12, 159–167. [Google Scholar] [CrossRef]
- Monack, D.M.; Mueller, A.; Falkow, S. Persistent bacterial infections: The interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2004, 2, 747–765. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bajeli, S.; Kaushal, D.; Radotra, B.D.; Kumar, A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 1606. [Google Scholar] [CrossRef]
- Houben, E.N.; Nguyen, L.; Pieters, J. Interaction of pathogenic mycobacteria with the host immune system. Curr. Opin. Microbiol. 2006, 9, 76–85. [Google Scholar] [CrossRef]
- Sackton, T.B. Comparative genomics and transcriptomics of host–pathogen interactions in insects: Evolutionary insights and future directions. Curr. Opin. Insect Sci. 2019, 31, 106–113. [Google Scholar] [CrossRef]
- Raman, K.; Bhat, A.G.; Chandra, N. A systems perspective of host–pathogen interactions: Predicting disease outcome in tuberculosis. Mol. BioSyst. 2010, 6, 516–530. [Google Scholar] [CrossRef]
- Espitia, C.; Rodríguez, E.; Ramón-Luing, L.; Echeverría-Valencia, G.; Vallecillo, A.J. Host-pathogen interactions in tuberculosis. Understanding Tuberculosis. In Analyzing the Origen of Mycobacterium Tuberculosis Pathogenicity, 1st ed.; InTech: Rijeka, Croatia, 2012; pp. 43–76. [Google Scholar]
- Singh, V.; Chibale, K. Strategies to combat multi-drug resistance in tuberculosis. Acc. Chem. Res. 2021, 54, 2361–2376. [Google Scholar] [CrossRef]
- Kant, S.; Maurya, A.K.; Kushwaha, R.A.S.; Nag, V.L.; Prasad, R. Multi-drug resistant tuberculosis: An iatrogenic problem. Biosci. Trends 2010, 4, 48–55. [Google Scholar] [PubMed]
- Gillespie, S.H.; Crook, A.M.; McHugh, T.D.; Mendel, C.M.; Meredith, S.K.; Murray, S.R.; Pappas, F.; Phillips, P.P.J.; Nunn, A.J. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 2014, 371, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Merle, C.S.; Fielding, K.; Sow, O.B.; Gninafon, M.; Lo, M.B.; Mthiyane, T.; Odhiambo, J.; Amukoye, E.; Bah, B.; Kassa, F.; et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 2014, 371, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Jawahar, M.S.; Banurekha, V.V.; Paramasivan, C.N.; Rahman, F.; Ramachandran, R.; Venkatesan, P.; Balasubramanian, R.; Selvakumar, N.; Ponnuraja, C.; Iliayas, A.S.; et al. Randomized clinical trial of thrice-weekly 4-month moxifloxacin or gatifloxacin containing regimens in the treatment of new sputum positive pulmonary tuberculosis patients. PLoS ONE 2013, 8, e67030. [Google Scholar] [CrossRef] [PubMed]
- Jindani, A.; Harrison, T.S.; Nunn, A.J.; Phillips, P.P.J.; Churchyard, G.J.; Charalambous, S.; Hatherill, M.; Geldenhuys, H.; McIlleron, H.M.; Zvada, S.P.; et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 2014, 371, 1599–1608. [Google Scholar] [CrossRef]
- National Guidelines for the Control of Tuberculosis in Pakistan; Ministry of National Health Services, Regulation & Coordination, Government of Pakistan: Islamabad, Pakistan, 2019. Available online: http://ntp.gov.pk/ntp-old/uploads/National_Guidelines_for_TB_Revised_2019.pdf (accessed on 5 May 2020).
Variable | Median | Q1, Q3 | |
---|---|---|---|
Age (years) | 26.0 | (20, 50) | |
Height (cm) | 158.5 | (152, 167.2) | |
Weight (kg) | 50.0 | (41, 57) | |
BMI | 19.39 | (16.8, 22.4) | |
Formal education (years) | 0 | (0, 5) | |
Monthly household income (PKR) | 25,000 | (10,000, 20,000) | |
Monthly income (PKR) spent on food | 15,000 | (10,000, 20,000) | |
Variable | No. | % Age | |
Sex | Male | 132 | (44.4%) |
Female | 165 | (55.6%) | |
History of smoking | Yes | 20 | (89.6%) |
No | 258 | (6.9%) | |
Ex-smoker | 10 | (3.5%) | |
Comorbidities | Yes | 44 | (15.4%) |
No | 241 | (84.5%) | |
Country of birth | Pakistan | 287 | (96.6%) |
Afghanistan | 10 | (3.4%) | |
First language | Chitrali | 1 | (0.3%) |
Hindko | 14 | (4.7%) | |
Pashtu | 282 | (94.9%) | |
Religion | Hinduism | 1 | (0.3%) |
Islam | 296 | (99.7%) | |
Homeownership status | Madrassah | 1 | (0.3%) |
Own home | 231 | (77.8%) | |
Rented | 65 | (21.9%) | |
Separate bathroom | Yes | 284 | (4.4%) |
No | 13 | (95.6%) | |
Separate kitchen | Yes | 246 | (82.8%) |
No | 51 | (17.2%) | |
Type of fuel for cooking | Electricity | 2 | (0.7%) |
Firewood | 83 | (28.6%) | |
Natural gas | 185 | (63.8%) | |
Combined | 29 | (6.9%) | |
AFB burden at diagnosis | Scanty | 79 | (26.6%) |
+1 | 126 | (42.4%) | |
+2 | 45 | (15.2%) | |
+3 | 47 | (15.8%) | |
Characteristic | Mean | Std. Deviation | |
Hemoglobin (g/dL) | 12.1 | (2.40) | |
RBC counts (10⁶/µL) | 4.58 | (0.96) | |
Mean corpuscular volume (fL) | 76.35 | (10.92) | |
Mean corpuscular hemoglobin (pg) | 26.05 | (4.8) | |
Mean corpuscular hemoglobin concentration (g/dL) | 34.2 | (2.35) | |
Platelet counts (10³/µL) | 380.5 | (214.75) | |
White cell counts (10³/µL) | 9.70 | (4.20) | |
Hematocrit (%) | 35.5 | (6.56) | |
Serum ferritin (ng/mL) | 293.45 | (384.38) | |
CRP levels | 29.05 | (50.13) | |
Serum vitamin B12 levels | 383.20 | (455.75) | |
Serum folate levels | 6.6 | (9.48) | |
Total iron0binding capacity | 240 | (92.76) | |
Serum transferrin | 131 | (52.75) | |
Serum iron | 47.47 | (28.99) |
Characteristic | Early Responders (n = 223) (Mean ± SD) | Late Responders (n = 65) (Mean ± SD) | p-Value | |
---|---|---|---|---|
Age (years) | 34.2 ± 17.9 | 37.3 ± 19.6 | 0.234 | |
Height (cm) | 159.3 ± 12.3 | 157.4 ± 11.9 | 0.282 | |
Weight (kg) | 50.6 ± 10.8 | 47.9 ± 12.2 | 0.087 | |
BMI | 20 ± 4.1 | 19.3 ± 4.2 | 0.20 | |
Hemoglobin (g/dL) | 12.1 ± 1.7 | 11.9 ± 1.8 | 0.415 | |
RBC counts (10⁶/µL) | 4.7 ± 0.8 | 4.8 ± 0.9 | 0.215 | |
MCV(fL) | 77.2 ± 11.6 | 74.5 ± 9.5 | 0.028 | |
MCH (pg) | 26.3 ± 4.3 | 29.7 ± 3.5 | 0.174 | |
MCHC (g/dL) | 33.9 ± 3 | 33.6 ± 1.9 | 0.412 | |
Platelet counts (10³/µL) | 385.7 ± 148 | 424.5 ± 156 | 0.063 | |
White cell counts (10³/µL) | 9.9 ± 3.7 | 10.9 ± 4.3 | 0.047 | |
Hematocrit (%) | 35.6 ± 5.2 | 35.3 ± 5.3 | 0.651 | |
Serum ferritin (ng/mL) | 402.3 ± 377.2 | 430.3 ± 397.7 | 0.60 | |
C-reactive protein | 43.1 ± 56.4 | 44.6 ± 65.6 | 0.858 | |
Serum vitamin B12 | 562.0 ± 541.9 | 570.4 ± 584.1 | 0.917 | |
Serum folate | 8.5 ± 6.2 | 8.5 ± 6.5 | 0.988 | |
Total iron-binding capacity | 251.6 ± 70.5 | 241.7 ± 60.7 | 0.30 | |
Serum transferrin | 135.0 ± 45.1 | 133.3 ± 44.3 | 0.788 | |
Serum iron | 47.7 ± 22.4 | 46.7 ± 21.8 | 0.751 | |
Characteristic | Frequency (%) | Frequency (%) | p-Value | |
Sex | Male | 105 (79.5%) | 27 (20.5%) | 0.486 |
Female | 125 (75.8%) | 40 (24.2%) | ||
History of smoking | Yes | 200 (77.5%) | 58 (22.5%) | 0.269 |
No | 13 (65%) | 7 (3.5%) | ||
Ex-smoker | 9 (90%) | 1 (10%) | ||
Comorbidities | Yes | 189 (78.4%) | 52 (21.6%) | 0.449 |
No | 31 (70.5%) | 13 (29.5%) | ||
Country of Birth | Pakistan | 221 (77%) | 66 (23%) | 0.466 |
Afghanistan | 09 (90%) | 01 (10%) | ||
First language | Chitrali | 1 (100%) | 0 (0%) | 0.745 |
Hindko | 10 (71.4%) | 4 (28.6%) | ||
Pashtu | 219 (77.7%) | 63 (22.3%) | ||
Religion | Hinduism | 1 (100%) | 0 (0%) | 0.589 |
Islam | 229 (77.4%) | 67 (22.6%) | ||
Homeownership status | Madrassah | 1 (100%) | 0 (0%) | 0.840 |
Own home | 178 (77.1%) | 53 (22.9%) | ||
Rented | 51 (78.5%) | 14 (21.5%) | ||
Separate bathroom | Yes | 218 (76.8%) | 66 (23.2%) | 0.190 |
No | 12 (92.3%) | 1 (7.7%) | ||
Separate kitchen | Yes | 191 (94.1%) | 12 (5.9%) | 0.855 |
No | 39 (41.5%) | 55 (58.5%) | ||
Type of fuel for cooking | Electricity | 2 (100%) | 0 (0%) | 0.397 |
Firewood | 65 (78.3%) | 18 (21.7%) | ||
Natural gas | 139 (75.1%) | 46 (24.9%) | ||
Combined | 18 (90%) | 02 (10%) | ||
Sputum AFB | Scanty | 78 (98.7%) | 1 (1.3%) | 0.00 |
1+ | 120 (95.2%) | 6 (4.8%) | ||
2+ | 25 (55.6%) | 20 (44.4%) | ||
3+ | 7 (14.9%) | 40 (85.1%) |
Parameter | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | 0.9 (0.9–1.01) | 0.215 | 0.9 (0.9–1.0) | 0.473 |
Sex | ||||
Female | REF | REF | ||
Male | 1.2 (0.7–2.2) | 0.438 | 1.2 (0.4–3.2) | 0.222 |
Smoking Hx | ||||
Non-smoker | REF | REF | ||
Yes (including ex-smoker) | 0.8 (0.3–1.8) | 0.571 | 0.7 (0.2–2.8) | 0.505 |
Co-morbidities | ||||
No | REF | REF | ||
Yes | 0.6 (0.3–1.3) | 0.232 | 0.9 (0.2–3.7) | 0.906 |
BMI | ||||
Low | REF | REF | ||
Normal | 1.3 (0.7–2.4) | 0.362 | 1.7 (0.6–4.7) | 0.544 |
Overweight/obese | 0.8 (0.4–1.9) | 0.663 | 0.6 (0.2–2.2) | 0.696 |
Hemoglobin | 1.7 (0.9–1.3) | 0.413 | 1.0 (0.7–1.3) | 0.520 |
Platelet count | 0.9 (0.9–1.0) | 0.067 | 1.0 (0.9–1.0) | 0.614 |
WBC count | 0.9 (0.8–0.9) | 0.050 | 1.0 (0.8–1.1) | 0.544 |
Ferritin | 1.0 (0.9–1.0) | 0.598 | 1.0 (0.9–1.0) | 0.063 |
CRP | 1.0 (0.9–1.0) | 0.855 | 1.0 (0.9–1.0) | 0.338 |
Vitamin B12 | 1.0 (0.9–1.0) | 0.687 | 1.0 (0.9–1.0) | 0.626 |
Folate | 1.0 (0.9–1.0) | 0.131 | 1.0 (0.9–1.0) | 0.172 |
TIBC | 1.0 (0.9–1.1) | 0.299 | 1.0 (0.9–1.0) | 0.455 |
Transferrin | 1.0 (0.9–1.0) | 0.788 | 1.0 (0.9–1.0) | 0.748 |
Serum iron | 1.0 (0.9–1.0) | 0.750 | 1.0 (0.9–1.0) | 0.506 |
Sputum AFB at baseline | ||||
Scant | REF | REF | ||
1+ | 0.3 (0.3–2.2) | 0.212 | 0.3 (0.03–2.4) | 0.188 |
2+ | 0.02 (0.002–0.12) | <0.001 | 0.01 (0.001–0.1) | <0.001 |
3+ | 0.002 (0.0002–0.02) | <0.001 | 0.001 (0.0002–0.02) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.; Khan, A.; Shahzad, M.; Mokhtar, J.A.; Harakeh, S.; Kibria, Z.; Mehr, A.; Bano, B.; Ali, A.; Yousafzai, Y.M. Determinants of Response at 2 Months of Treatment in a Cohort of Pakistani Patients with Pulmonary Tuberculosis. Antibiotics 2022, 11, 1307. https://doi.org/10.3390/antibiotics11101307
Shah S, Khan A, Shahzad M, Mokhtar JA, Harakeh S, Kibria Z, Mehr A, Bano B, Ali A, Yousafzai YM. Determinants of Response at 2 Months of Treatment in a Cohort of Pakistani Patients with Pulmonary Tuberculosis. Antibiotics. 2022; 11(10):1307. https://doi.org/10.3390/antibiotics11101307
Chicago/Turabian StyleShah, Saeed, Asghar Khan, Muhammad Shahzad, Jawahir A. Mokhtar, Steve Harakeh, Zeeshan Kibria, Aneela Mehr, Bushra Bano, Asif Ali, and Yasar Mehmood Yousafzai. 2022. "Determinants of Response at 2 Months of Treatment in a Cohort of Pakistani Patients with Pulmonary Tuberculosis" Antibiotics 11, no. 10: 1307. https://doi.org/10.3390/antibiotics11101307
APA StyleShah, S., Khan, A., Shahzad, M., Mokhtar, J. A., Harakeh, S., Kibria, Z., Mehr, A., Bano, B., Ali, A., & Yousafzai, Y. M. (2022). Determinants of Response at 2 Months of Treatment in a Cohort of Pakistani Patients with Pulmonary Tuberculosis. Antibiotics, 11(10), 1307. https://doi.org/10.3390/antibiotics11101307