A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Randomised Controlled Trials
2.2.1. Quality Assessment
2.2.2. Study Characteristics and Results
2.3. Non-Randomised Studies
2.3.1. Quality Assessment
2.3.2. Study Characteristics and Outcomes
2.4. Clinical Case Studies
2.4.1. Quality Assessment
2.4.2. Study Characteristics and Outcomes
3. Discussion
Limitations
4. Materials and Methods
4.1. Definitions
4.2. Inclusion and Exclusion Criteria
4.3. Selection and Data Extraction
4.4. Data Collection
4.5. Quality Assessment
4.6. Data Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; The Welcome Trust: London, UK, 2016; 80p, Available online: https://wellcomecollection.org/works/thvwsuba (accessed on 6 September 2022).
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef] [PubMed]
- Watson, I.; Potter, J.; Yatscoff, R.; Fraser, A.; Himberg, J.; Wenk, M. Editorial. Ther. Drug Monit. 1997, 19, 125. [Google Scholar] [CrossRef]
- Abdul–Aziz, M.H.; Brady, K.; Cotta, M.O.; Roberts, J.A. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther. Drug Monit. 2022, 44, 19–31. [Google Scholar] [CrossRef]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef]
- Roberts, J.A.; Norris, R.; Paterson, D.L.; Martin, J.H. Therapeutic drug monitoring of antimicrobials. Br. J. Clin. Pharmacol. 2012, 73, 27–36. [Google Scholar] [CrossRef]
- Moore, R.D.; Lietman, P.S.; Smith, C.R. Clinical response to aminoglycoside therapy: Importance of the ratio of peak concentration to minimal inhibitory concentration. J. Infect Dis. 1987, 155, 93–99. [Google Scholar] [CrossRef]
- Zelenitsky, S.A.; Harding, G.K.; Sun, S.; Ubhi, K.; Ariano, R.E. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: An antibiotic pharmacodynamic analysis. J. Antimicrob. Chemother. 2003, 52, 668–674. [Google Scholar] [CrossRef]
- Kashuba, A.D.; Nafziger, A.N.; Drusano, G.L.; Bertino, J.S., Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob. Agents Chemother. 1999, 43, 623–629. [Google Scholar] [CrossRef]
- Mouton, J.W.; Jacobs, N.; Tiddens, H.; Horrevorts, A.M. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn. Microbiol. Infect. Dis. 2005, 52, 123–127. [Google Scholar] [CrossRef]
- Smith, P.F.; Ballow, C.H.; Booker, B.M.; Forrest, A.; Schentag, J.J. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin. Ther. 2001, 23, 1231–1244. [Google Scholar] [CrossRef]
- Moise, P.A.; Forrest, A.; Bhavnani, S.M.; Birmingham, M.C.; Schentag, J.J. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus. Am. J. Health Syst. Pharm. 2000, 57 (Suppl. 2), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Moise-Broder, P.A.; Forrest, A.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet. 2004, 43, 925–942. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Watanabe, E.; Kanazawa, N.; Fukamizu, T.; Shigemi, A.; Yokoyama, Y.; Ikawa, K.; Morikawa, N.; Takeda, Y. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin. Pharmacol. 2016, 8, 15–18. [Google Scholar] [CrossRef]
- The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data From the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin. Infect. Dis. 2021, 72, 1369–1378. [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current β-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- McKinnon, P.S.; Paladino, J.A.; Schentag, J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents 2008, 31, 345–351. [Google Scholar] [CrossRef]
- Crandon, J.L.; Luyt, C.E.; Aubry, A.; Chastre, J.; Nicolau, D.P. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: Associations with clinical outcome and recurrence. J. Antimicrob. Chemother. 2016, 71, 2534–2537. [Google Scholar] [CrossRef]
- Li, C.; Du, X.; Kuti, J.L.; Nicolau, D.P. Clinical Pharmacodynamics of Meropenem in Patients with Lower Respiratory Tract Infections. Antimicrob. Agents Chemother. 2007, 51, 1725–1730. [Google Scholar] [CrossRef]
- Rhodes, N.J.; Kuti, J.L.; Nicolau, D.P.; Van Wart, S.; Nicasio, A.M.; Liu, J.; Lee, B.J.; Neely, M.N.; Scheetz, M.H. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob. Agents Chemother. 2015, 60, 1401–1410. [Google Scholar] [CrossRef] [Green Version]
- Aitken, S.L.; Altshuler, J.; Guervil, D.J.; Hirsch, E.B.; Ostrosky-Zeichner, L.L.; Ericsson, C.D.; Tam, V.H. Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int. J. Antimicrob. Agents 2015, 45, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; McKinnon, P.S.; Akins, R.L.; Rybak, M.J.; Drusano, G.L. Pharmacodynamics of cefepime in patients with Gram-negative infections. J. Antimicrob. Chemother. 2002, 50, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Taccone, F.; Villois, P.; Scheetz, M.H.; Rhodes, N.J.; Briscoe, S.; McWhinney, B.; Nunez-Nunez, M.; Ungerer, J.; Lipman, J.; et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J. Antimicrob. Chemother. 2020, 75, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Ariano, R.E.; Nyhlén, A.; Donnelly, J.P.; Sitar, D.S.; Harding, G.K.; Zelenitsky, S.A. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann. Pharmacother. 2005, 39, 32–38. [Google Scholar] [CrossRef]
- Luxton, T.; King, N.; Wälti, C.; Jeuken, L.; Sandoe, J. A systematic review of the effect of therapeutic drug monitoring on patient health outcomes during treatment with penicillins. J. Antimicrob. Chemother. 2022, 77, 1532–1541. [Google Scholar] [CrossRef]
- Lechtig-Wasserman, S.; Liebisch-Rey, H.; Diaz-Pinilla, N.; Blanco, J.; Fuentes-Barreiro, Y.-V.; Bustos, R.-H. Carbapenem Therapeutic Drug Monitoring in Critically Ill Adult Patients and Clinical Outcomes: A Systematic Review with Meta-Analysis. Antibiotics 2021, 10, 177. [Google Scholar] [CrossRef]
- Pai Mangalore, R.; Ashok, A.; Lee, S.J.; Romero, L.; Peel, T.N.; Udy, A.A.; Peleg, A.Y. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Meletis, G. Carbapenem resistance overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef]
- Medicines Selection, IP and Affordability; WHO Headquarters (HQ). 2021 AWaRe Classification; World Health Organization: Geneva, Geneva, 2021. [Google Scholar]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.; Dunachie, S.; Farzana, R.; et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect. Dis. 2021, 21, 1677–1688. [Google Scholar] [CrossRef]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef]
- Sime, F.B.; Roberts, M.S.; Peake, S.L.; Lipman, J.; Roberts, J.A. Does Beta-lactam Pharmacokinetic Variability in Critically Ill Patients Justify Therapeutic Drug Monitoring? A Systematic Review. Ann. Intensive Care 2012, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Boidin, C.; Moshiri, P.; Dahyot-Fizelier, C.; Goutelle, S.; Lefeuvre, S. Pharmacokinetic variability of beta-lactams in critically ill patients: A narrative review. Anaesth Crit. Care Pain Med. 2020, 39, 87–109. [Google Scholar] [CrossRef] [PubMed]
- Goncalves-Pereira, J.; Povoa, P. Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of beta-lactams. Crit. Care 2011, 15, R206. [Google Scholar] [CrossRef] [PubMed]
- Hartman, S.J.F.; Bruggemann, R.J.; Orriens, L.; Dia, N.; Schreuder, M.F.; de Wildt, S.N. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin. Pharmacokinet. 2020, 59, 173–205. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.; Dieppe, P.; Macintyre, S.; Michie, S.; Nazareth, I.; Petticrew, M. Developing and Evaluating Complex Interventions; MRC—Medical Research Council: Swindon, UK, 2019. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Fournier, A.; Eggimann, P.; Pantet, O.; Pagani, J.L.; Dupuis-Lozeron, E.; Pannatier, A.; Sadeghipour, F.; Voirol, P.; Que, Y.A. Impact of real-time therapeutic drug monitoring on the prescription of antibiotics in burn patients requiring admission to the intensive care unit. Antimicrob. Agents Chemother. 2018, 62, e01818-17. [Google Scholar] [CrossRef]
- De Waele, J.J.; Carrette, S.; Carlier, M.; Stove, V.; Boelens, J.; Claeys, G.; Leroux-Roels, I.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: A randomised controlled trial. Intensive Care Med. 2014, 40, 380–387. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cies, J.F.; Moore, W.S.; Enache, A.; Chopra, A. β-lactam therapeutic drug management in the PICU. Crit. Care Med. 2018, 46, 272–279. [Google Scholar] [CrossRef]
- Machado, A.S.; Oliveira, M.S.; Sanches, C.; Silva Junior, C.V.D.; Gomez, D.S.; Gemperli, R.; Santos, S.; Levin, A.S. Clinical Outcome and Antimicrobial Therapeutic Drug Monitoring for the Treatment of Infections in Acute Burn Patients. Clin. Ther. 2017, 39, 1649–1657.e3. [Google Scholar] [CrossRef]
- Economou, C.J.P.; Wong, G.; McWhinney, B.; Ungerer, J.P.J.; Lipman, J.; Roberts, J.A. Impact of beta-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents 2017, 49, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Fournier, A.; Eggimann, P.; Pagani, J.L.; Revelly, J.P.; Decosterd, L.A.; Marchetti, O.; Pannatier, A.; Voirol, P.; Que, Y.A. Impact of the introduction of real-time therapeutic drug monitoring on empirical doses of carbapenems in critically ill burn patients. Burns 2015, 41, 956–968. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Cotta, M.O.; Little, P.J.; McWhinney, B.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. Is high-dose beta-lactam therapy associated with excessive drug toxicity in critically ill patients? Minerva Anestesiol. 2016, 82, 957–965. [Google Scholar] [PubMed]
- Pea, F.; Della Siega, P.; Cojutti, P.; Sartor, A.; Crapis, M.; Scarparo, C.; Bassetti, M. Might real-time pharmacokinetic/pharmacodynamic optimisation of high-dose continuous-infusion meropenem improve clinical cure in infections caused by KPC-producing Klebsiella pneumoniae? Int. J. Antimicrob. Agents 2017, 49, 255–258. [Google Scholar] [CrossRef]
- Cojutti, P.; Maximova, N.; Pea, F. Pharmacokinetics and pharmacodynamics of continuous-infusion meropenem in pediatric hematopoietic stem cell transplant patients. Antimicrob. Agents Chemother. 2015, 59, 5535–5541. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Lazzarotto, D.; Candoni, A.; Dubbini, M.V.; Zannier, M.E.; Fanin, R.; Pea, F. Real-time TDM-based optimization of continuous-infusion meropenem for improving treatment outcome of febrile neutropenia in oncohaematological patients: Results from a prospective, monocentric, interventional study. J. Antimicrob. Chemother. 2020, 75, 3029–3037. [Google Scholar] [CrossRef]
- Patel, B.M.; Paratz, J.; See, N.C.; Muller, M.J.; Rudd, M.; Paterson, D.; Briscoe, S.E.; Ungerer, J.; McWhinney, B.C.; Lipman, J.; et al. Therapeutic drug monitoring of beta-lactam antibiotics in burns patients—A one-year prospective study. Ther. Drug Monit. 2012, 34, 160–164. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; McWhinney, B.; Ally, M.; Ungerer, J.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: Direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018, 73, 3087–3094. [Google Scholar] [CrossRef]
- Roberts, J.A.; Ulldemolins, M.; Roberts, M.S.; McWhinney, B.; Ungerer, J.; Paterson, D.L.; Lipman, J. Therapeutic drug monitoring of beta-lactams in critically ill patients: Proof of concept. Int. J. Antimicrob. Agents 2010, 36, 332–339. [Google Scholar] [CrossRef]
- Bricheux, A.; Lenggenhager, L.; Hughes, S.; Karmime, A.; Lescuyer, P.; Huttner, A. Therapeutic drug monitoring of imipenem and the incidence of toxicity and failure in hospitalized patients: A retrospective cohort study. Clin. Microbiol. Infect. 2019, 25, 383.e1–383.e4. [Google Scholar] [CrossRef] [Green Version]
- Schoenenberger-Arnaiz, J.A.; Ahmad-Diaz, F.; Miralbes-Torner, M.; Aragones-Eroles, A.; Cano-Marron, M.; Palomar-Martinez, M. Usefulness of therapeutic drug monitoring of piperacillin and meropenem in routine clinical practice: A prospective cohort study in critically ill patients. Eur. J. Hosp. Pharm. 2019, 27, e30–e35. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaer, M.H.; Rubido, E.; Cherabuddi, K.; Venugopalan, V.; Klinker, K.; Peloquin, C. Early therapeutic monitoring of beta-lactams and associated therapy outcomes in critically ill patients. J. Antimicrob. Chemother. 2020, 75, 3644–3651. [Google Scholar] [CrossRef] [PubMed]
- Aldaz, A.; Idoate Grijalba, A.I.; Ortega, A.; Aquerreta, I.; Monedero, P. Effectiveness of Pharmacokinetic/Pharmacodynamic-Guided Meropenem Treatment in Critically Ill Patients: A Comparative Cohort Study. Ther. Drug Monit. 2021, 43, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Scharf, C.; Liebchen, U.; Paal, M.; Taubert, M.; Vogeser, M.; Irlbeck, M.; Zoller, M.; Schroeder, I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J. Intensive Care 2020, 8, 86. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- OHAT Risk of Bias Rating Tool for Human and Animal Studies; National Toxicology Program, Office of Health Assessment and Translation (OHAT): Research Triangle Park, NC, USA, 2015.
- Gunasekaran, K.; Amladi, A.; Mathew, S.; Miraclin, T.; Iyyadurai, R. A case of septicaemic melioidosis: Utility of therapeutic drug monitoring and high-dose meropenem in successful management. Indian J. Med. Microbiol. 2018, 36, 597–599. [Google Scholar] [CrossRef]
- Lonsdale, D.O.; Udy, A.A.; Roberts, J.A.; Lipman, J. Antibacterial therapeutic drug monitoring in cerebrospinal fluid: Difficulty in achieving adequate drug concentrations; Case report. J. Neurosurg. 2013, 118, 297–301. [Google Scholar] [CrossRef]
- Udy, A.A.; Putt, M.T.; Shanmugathasan, S.; Roberts, J.A.; Lipman, J. Augmented renal clearance in the Intensive Care Unit: An illustrative case series. Int. J. Antimicrob. Agents 2010, 35, 606–608. [Google Scholar] [CrossRef]
- Hayashi, Y.; Lipman, J.; Udy, A.A.; Ng, M.; McWhinney, B.; Ungerer, J.; Lust, K.; Roberts, J.A. beta-Lactam therapeutic drug monitoring in the critically ill: Optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int. J. Antimicrob. Agents 2013, 41, 162–166. [Google Scholar] [CrossRef]
- Wu, Y.E.; Xu, H.Y.; Shi, H.Y.; van den Anker, J.; Chen, X.Y.; Zhao, W. Carbapenem-Resistant Enterobacteriaceae Bloodstream Infection Treated Successfully With High-Dose Meropenem in a Preterm Neonate. Front. Pharmacol. 2020, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Kamohara, H.; Katanoda, T.; Hashiguchi, Y.; Iwamura, K.; Nosaka, K.; Jono, H.; Saito, H. Continuous high-dose infusion of doripenem in a pneumonia patient infected by carbapenem-resistant Pseudomonas aeruginosa: A case report. J. Pharm. Health Care Sci. 2019, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Troger, U.; Drust, A.; Martens-Lobenhoffer, J.; Tanev, I.; Braun-Dullaeus, R.C.; Bode-Boger, S.M. Decreased meropenem levels in Intensive Care Unit patients with augmented renal clearance: Benefit of therapeutic drug monitoring. Int. J. Antimicrob. Agents 2012, 40, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Cotta, M.O.; Gowen, B.; Truloff, N.; Bursle, E.; McWhinney, B.; Ungerer, J.P.; Roberts, J.A.; Lipman, J. Even high-dose extended infusions may not yield desired concentrations of beta-lactams: The value of therapeutic drug monitoring. Infect. Dis. 2015, 47, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Barbarino, C.; De Monte, A.; Hope, W.; Pea, F. Higher than standard meropenem and linezolid dosages needed for appropriate treatment of an intracerebral hemorrhage patient with augmented renal clearance. Eur. J. Clin. Pharmacol. 2018, 74, 1091–1092. [Google Scholar] [CrossRef] [PubMed]
- Afaneh, C.I.; Ho, V.P.; McWhorter, P.; Nicolau, D.P.; Barie, P.S. Minor fluctuations in renal function may alter therapeutic drug concentrations substantially during high-dose, continuous-infusion beta-lactam therapy for multi-drug-resistant Gram-negative bacilli. Surg. Infect. 2012, 13, 415–417. [Google Scholar] [CrossRef]
- Taccone, F.S.; Cotton, F.; Roisin, S.; Vincent, J.L.; Jacobs, F. Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob. Agents Chemother. 2012, 56, 2129–2131. [Google Scholar] [CrossRef]
- Pea, F.; Cojutti, P.; Sbrojavacca, R.; Cadeo, B.; Cristini, F.; Bulfoni, A.; Furlanut, M. TDM-guided therapy with daptomycin and meropenem in a morbidly obese, critically ill patient. Ann. Pharmacother. 2011, 45, e37. [Google Scholar] [CrossRef]
- Stewart, A.; Graves, B.; Hajkowicz, K.; Ta, K.; Paterson, D.L. The Use of Therapeutic Drug Monitoring to Optimize Treatment of Carbapenem-Resistant Enterobacter Osteomyelitis. Microb. Drug Resist. -Mech. Epidemiol. Dis. 2015, 21, 631–635. [Google Scholar] [CrossRef]
- Cies, J.J.; Moore, W.S., 2nd; Conley, S.B.; Shea, P.; Enache, A.; Chopra, A. Therapeutic Drug Monitoring of Continuous Infusion Doripenem in a Pediatric Patient on Continuous Renal Replacement Therapy. J. Pediatr. Pharmacol. Ther. 2017, 22, 69–73. [Google Scholar] [CrossRef] [Green Version]
- De Keukeleire, S.; Borrey, D.; Decaluwe, W.; Reynders, M. Therapeutic Drug Monitoring of Meropenem in Neonate with Necrotizing Enterocolitis: A Challenge. Case Rep. Infect. Dis. 2016, 2016, 6207487. [Google Scholar] [CrossRef]
- Liebchen, U.; Paal, M.; Jung, J.; Schroeder, I.; Frey, L.; Zoller, M.; Scharf, C. Therapeutic drug monitoring-guided high dose meropenem therapy of a multidrug resistant Acinetobacter baumannii-A case report. Respir. Med. Case Rep. 2020, 29, 100966. [Google Scholar] [CrossRef]
- Goutelle, S.; Conrad, A.; Pouderoux, C.; Braun, E.; Laurent, F.; Gagnieu, M.-C.; Cohen, S.; Guitton, J.; Valour, F.; Ferry, T. Pharmacokinetic/Pharmacodynamic Dosage Individualization of Suppressive Beta-Lactam Therapy Administered by Subcutaneous Route in Patients With Prosthetic Joint Infection. Front. Med. 2021, 8, 583086. [Google Scholar] [CrossRef]
- Legg, A.; Halford, M.; McCarthy, K. Plasma concentrations resulting from continuous infusion of meropenem in a community-based outpatient program: A case series. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2020, 77, 2074–2080. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Fornaro, G.; Gatti, M.; Rinaldi, M.; Gaibani, P.; Giannella, M.; Pea, F.; Viale, P. Successful Treatment of Bacteremia and Ventilator-Associated Pneumonia Caused by KPC/OXA-48-like Klebsiella pneumoniae Co-Producer with a Continuous Infusion of High-Dose Meropenem Plus Fosfomycin Guided by Real-Time Therapeutic Drug Monitoring. Infect. Dis. Rep. 2022, 14, 88–92. [Google Scholar] [CrossRef]
- ESICM LIVES 2019. Intensive Care Med. Exp. 2019, 7, 55. [CrossRef]
- Mouton, J.W.; Touzw, D.J.; Horrevorts, A.M.; Vinks, A.A. Comparative pharmacokinetics of the carbapenems: Clinical implications. Clin. Pharmacokinet. 2000, 39, 185–201. [Google Scholar] [CrossRef]
- Chimata, M.; Nagase, M.; Suzuki, Y.; Shimomura, M.; Kakuta, S. Pharmacokinetics of meropenem in patients with various degrees of renal function, including patients with end-stage renal disease. Antimicrob. Agents Chemother. 1993, 37, 229–233. [Google Scholar] [CrossRef]
- Valentine, J.C.; Thompson, S.G. Issues relating to confounding and meta-analysis when including non-randomized studies in systematic reviews on the effects of interventions. Res. Synth. Methods 2013, 4, 26–35. [Google Scholar] [CrossRef]
- Abdulla, A.; Ewoldt, T.M.J.; Hunfeld, N.G.M.; Muller, A.E.; Rietdijk, W.J.R.; Polinder, S.; van Gelder, T.; Endeman, H.; Koch, B.C.P. The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: The DOLPHIN trial protocol of a multi-centre randomised controlled trial. BMC Infect. Dis. 2020, 20, 57. [Google Scholar] [CrossRef]
Study | Bias in Randomisation Process | Bias in Deviations from Intended Interventions (Effect of Assignment to Intervention) | Bias in Deviations from Intended Interventions (Effect If Adhering to Intervention) | Bias Due to Missing Outcome Data | Bias Due to Measurement of Outcome | Bias in Selection of Reported Result | Overall Result |
---|---|---|---|---|---|---|---|
Fournier et al. 2018 [39] | Some Concerns | Low | High | Low | High | Some Concerns | High |
De Waele et al. 2014 [40] | Some Concerns | Low | High | Low | Low | Some Concerns | High |
Study | Bias Due to Confounding | Bias in Selection of Participants | Bias in Classification of Interventions | Bias Due to Deviations from Intended Interventions | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of the Reported Result | Overall Result |
---|---|---|---|---|---|---|---|---|
Cies et al. 2018 [43]. | Critical | Low | NA | Serious | Low | Low | Moderate | Critical |
Machado et al. 2017 [44]. | Serious | Low | Low | NI | Low | Low | Moderate | Serious |
Economou et al. 2017 [45]. | Critical | Low | NA | Serious | Low | Low | Moderate | Critical |
Fournier et al. 2015 [46]. | Critical | Low | Serious | Critical | Low | Low | Moderate | Critical |
McDonald et al. 2016 [47]. | Critical | Critical | NA | NI | Low | Serious | Moderate | Critical |
Pea et al. 2017 [48]. | Serious | Low | NA | Moderate | Low | Low | Moderate | Serious |
Cojutti et al. 2015 [49]. | Critical | Low | NA | Serious | Low | Low | Moderate | Critical |
Cojutti et al. 2018 [50]. | Serious | Low | NA | Serious | Low | Low | Moderate | Serious |
Patel et al. 2012 [51]. | Critical | Low | NA | NI | Low | Serious | Moderate | Critical |
Wong et al. 2018 [52]. | Critical | Low | NA | Critical | Moderate | Serious | Moderate | Critical |
Roberts et al. 2010 [53]. | Critical | Low | NA | Serious | Low | Low | Moderate | Critical |
Bricheux et al. 2019 [54]. | Serious | Low | NA | Serious | Low | Low | Moderate | Serious |
Schoenenberger-Arnaiz et al. 2019 [55]. | Critical | Low | NA | Critical | Low | Low | Moderate | Critical |
Gatti et al. 2021 [56]. | Serious | Critical | NA | Low | Low | Low | Moderate | Critical |
Al-Shaer et al. 2020 [57]. | Serious | Critical | NA | Critical | Low | Low | Moderate | Critical |
Aldaz et al. 2021 [58]. | Moderate | Low | Low | Low | Serious | Low | Moderate | Serious |
Scharf et al. 2020 [59]. | Moderate | Critical | NA | Critical | Low | Low | Moderate | Critical |
Pharmacological Target | References |
---|---|
100% fT>4-10xMIC | [40] |
40% fT>4-6xMIC | [43] |
60% fT>MIC | [44] |
100% fT>1-10xMIC | [45,52] |
100% fT>MIC | [46,47,51,57,59] |
Css:MIC ≥ 1 | [48] |
Css:MIC ≥ 4 | [48] |
Css:MIC = 4–6 | [49] |
Css:MIC = 4–8 | [50] |
100% fT>4-5xMIC | [53,58] |
100% fT>4xMIC | [55,57,59] |
Specific carbapenem concentration | [39] |
At clinician’s discretion guided by TDM result | [54,56] |
Study | Population | Improved Target Attainment? | Bacterial Persistence | Mortality | In-Hospital Stay | Length of Stay on ICU | Acute Kidney Injury | Toxicity or Adverse Effects | Treatment Efficacy | AMR |
---|---|---|---|---|---|---|---|---|---|---|
Randomised controlled trials | ||||||||||
Fournier et al. 2018. [39] | Burns patients (n = 17) | Not significant | - | - | - | - | - | - | No significant difference | - |
De Waele et al. 2013. [40] | Non-renally impaired patients (n = 13) | Significant | No significant difference | No significant difference | - | - | - | - | No significant difference | - |
Non-randomised comparator studies | ||||||||||
Machado et al. 2017. [44] | Burns patients (n = 16) | Not specified | - | No significant difference | - | - | - | - | No significant difference | - |
Fournier et al., 2015 [46] | Critically ill burns patients (n = 109) | Variable success | - | No significant difference | TDM group significantly longer | - | - | - | No significant difference | - |
Aldaz et al., 2021. [58] | Critically ill patients (n = 154) | Not specified | No significant difference | No significant difference | TDM group significantly shorter | No significant difference | - | No significant difference | Significant normalisation of infection biomarkers | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luxton, T.N.; King, N.; Wälti, C.; Jeuken, L.J.C.; Sandoe, J.A.T. A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems. Antibiotics 2022, 11, 1311. https://doi.org/10.3390/antibiotics11101311
Luxton TN, King N, Wälti C, Jeuken LJC, Sandoe JAT. A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems. Antibiotics. 2022; 11(10):1311. https://doi.org/10.3390/antibiotics11101311
Chicago/Turabian StyleLuxton, Timothy N., Natalie King, Christoph Wälti, Lars J. C. Jeuken, and Jonathan A. T. Sandoe. 2022. "A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems" Antibiotics 11, no. 10: 1311. https://doi.org/10.3390/antibiotics11101311
APA StyleLuxton, T. N., King, N., Wälti, C., Jeuken, L. J. C., & Sandoe, J. A. T. (2022). A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems. Antibiotics, 11(10), 1311. https://doi.org/10.3390/antibiotics11101311