First Finding of a Methicillin-Resistant Staphylococcus aureus (MRSA) t304/ST6 from Bovine Clinical Mastitis
Abstract
:1. Introduction
2. Results
2.1. Resistance Profiling
2.2. Genotypic Characterization of Cefoxitin-Resistant S. aureus Isolate
3. Discussion
4. Materials and Methods
4.1. Isolate Identification and Antimicrobial Susceptibility Testing
4.2. Whole-Genome Sequencing and Bioinformatic Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monistero, V.; Graber, H.U.; Pollera, C.; Cremonesi, P.; Castiglioni, B.; Bottini, E.; Marquez-Ceballos, A.; Rojas-Lasso, L.; Kroemker, V.; Wente, N.; et al. Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes. Toxins 2018, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Saini, V.; McClure, J.T.; Léger, D.; Dufour, S.; Sheldon, A.G.; Scholl, D.T.; Barkema, H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Relationship between antimicrobial drug usage and antimicrobial susceptibility of gram-positive mastitis pathogens. J. Dairy Sci. 2007, 90, 262–273. [Google Scholar] [CrossRef]
- DANMAP 2020. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. 4.3.2 Antimicrobial Consumption in Cattle. Available online: https://www.danmap.org/reports/2020 (accessed on 14 June 2022).
- Fødevarestyrelsen. Antibiotikabehandling af Yverbetændelse Hos Kvæg. Available online: https://www.foedevarestyrelsen.dk/Leksikon/Sider/Antibiotikabehandling_af_yverbetaendelse_hos_kvaeg.aspx (accessed on 9 September 2022).
- DANMAP 2018. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark.4.3.2 Antimicrobial Consumption in Cattle. Available online: https://www.danmap.org/reports/2018 (accessed on 13 September 2022).
- European Medicines Agency (EMA); European Food Safety Authority (EFSA). EMA and EFSA Joint Scientific Opinion on Measures to Reduce the Need to Use Antimicrobial Agents in Animal Husbandry in the European Union, and the Resulting Impacts on Food Safety (RONAFA). EFSA J. 2017, 15, e04666. [Google Scholar]
- DANMAP 2019. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Textbox 6.3. Antimicrobial Resistance in Mastitis Isolates from Dairy Cows. Available online: https://www.danmap.org/reports/2019 (accessed on 14 June 2022).
- European Committee on Antimicrobial Susceptibility Testing, EUCAST: Epidemiological Cut-Off Values (ECOFFs), Antimicrobial Wild Type Distributions of Microorganism. Available online: https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=init (accessed on 18 August 2022).
- Habib, D.S.; Mitra, P. Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from dairy ruminants: Differences in the distribution of clonal types between cattle and small ruminants. Arch. Microbiol. 2020, 202, 115–125. [Google Scholar] [CrossRef]
- Bartels, M.D.; Worning, P.; Andersen, L.P.; Bes, M.; Enger, H.; Ås, C.G.; Hansen, T.A.; Holzknecht, B.J.; Larssen, K.W.; Laurent, F.; et al. Repeated introduction and spread of the MRSA clone t304/ST6 in northern Europe. Clin. Microbiol. Infect. 2021, 27, 284.e1–284.e5. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Al-Lawati, A.-H.; Al-Muharmi, Z.; Thukral, S.S. Genotyping of methicillin-resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman reveals the dominance of Panton-Valentine leucocidin -negative ST/IV/t304 clone. New Microbe New Infect. 2014, 2, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Andersen, L.P.; Johansen, N.H.; Hertel, S. Prolonged Outbreak of Methicillin-Resistant Staphylocccus aureus in a Neonate Intensive Care Unit Caused by the Staff. ECM 2019, 15, 95–102. [Google Scholar]
- DANMAP 2017. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. 8.7 Staphylococcus aureus. Available online: https://www.danmap.org/reports/2017 (accessed on 11 August 2022).
- Fødevarestyrelsen. Rapport om husdyr-MRSA Overvågningen af Produktionsdyr i. 2021. Available online: https://www.foedevarestyrelsen.dk/SiteCollectionDocuments/Dyresundhed/Dyresygdomme/Rapport%20resultater%20af%20Husdyr-MRSA%20overv%C3%A5gningen%202021.pdf (accessed on 18 August 2022).
- Statens Serum Institut. Methicillin Resistente Staphylococcus Aureus (MRSA). Available online: https://www.ssi.dk/sygdomme-beredskab-og-forskning/sygdomsleksikon/m/methicillin-resistente-staphylococcus-aureus (accessed on 9 September 2022).
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock. mBio 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vale, F.F.; Lehours, P.; Yamaoka, Y. Editorial: The Role of Mobile Genetic Elements in Bacterial Evolution and Their Adaptability. Front. Microbiol. 2022, 13, 849667. [Google Scholar] [CrossRef]
- Spoor, L.E.; McAdam, P.R.; Weinert, L.A.; Rambaut, A.; Hasman, H.; Aarestrup, F.M.; Kearns, A.M.; Larsen, A.R.; Skov, R.L.; Fitzgerald, R. Livestock Origin for a Human Pandemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus. mBio 2013, 4, e00356-13. [Google Scholar] [CrossRef] [Green Version]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; Mendes, T.A.d.O.; Fitzgeral, J.R.; Ribon, A.d.O.B. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Ronco, T.; Klaas, I.C.; Stegger, M.; Svennesen, L.; Astrup, L.B.; Farre, M.; Pedersen, K. Genomic investigation of Danish Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis. Vet. Microbiol. 2018, 215, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Yoong, P.; Torres, V.J. The effects of Staphylococcus aureus leukotoxins on the host: Cell lysis and beyond. Curr. Opin. 2013, 16, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; et al. Community-acquired methicillin-resistant staphylococcus aureus carrying panton-valentine leukocidin genes: Worldwide emergence. Emerg Infect Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef]
- van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; van Kessel, K.P.M.; van Strijp, J.A.G. The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on β-Hemolysin-Converting Bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Unnerstad, H.E.; Mieziewska, K.; Börjesson, S.; Hedbäck, H.; Strand, K.; Hallgren, T.; Landin, H.; Skarin, J.; Bengtsson, B. Suspected transmission and subsequent spread of MRSA from farmer to dairy cows. Vet. Microbiol. 2018, 225, 114–119. [Google Scholar] [CrossRef]
- World Health Organization. One Health. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 18 August 2022).
- Nonnemann, B.; Lyhs, U.; Svennesen, L.; Kristensen, K.A.; Klaas, I.C.; Pedersen, K. Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. Int. J. Dairy Sci. 2019, 102, 2515–2524. [Google Scholar] [CrossRef]
- Bulletin of the International Dairy Federation 448/2011. Suggested Interpretation of Mastitis Terminology (Revision of Bulletin of IDF N° 338/1999). List of Terms and Interpretations. Available online: https://shop.fil-idf.org/products/suggested-interpretation-of-mastitis-terminology-revision-of-bulletin-of-idf-n-3381999 (accessed on 12 September 2022).
- Chehabi, C.N.; Nonnemann, B.; Astrup, L.B.; Farre, M.; Pedersen, K. In vitro Antimicrobial Resistance of Causative Agents to Clinical Mastitis in Danish Dairy Cows. Foodborne Pathog. Dis. 2019, 16, 562–572. [Google Scholar] [CrossRef]
- Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.; Korobeynikov, A.; Lapidus, A.; Prjibelsky, A.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling Single-Cell Genomes and Mini-Metagenomes from Chimeric MDA Products. J. Comput. Biol. 2013, 20, 714–737. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.; Cosentino, S.; Rasmussen, S.; Rundsten, C.; Hasman, H.; Marvig, R.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.; Aarestrup, F.; et al. Multilocus Sequence Typing of Total Genome Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Center for Genomic Epidemiology. SCCmecFinder 1.2. Available online: https://cge.food.dtu.dk/services/SCCmecFinder-1.2/(dtu.dk) (accessed on 30 May 2022).
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. PlasmidFinder and pMLST: In silico detection and typing of plasmids. Antimicrob 2014, 58, 3895–3903. [Google Scholar]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Abricate, Github. Available online: https://github.com/tseemann/abricate (accessed on 30 May 2022).
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Voldby Larsen, M. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Micobiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef] [PubMed]
Agent | Test Range (µg/mL) | MIC Value (µg/mL) | (t)ECOFF (µg/mL) |
---|---|---|---|
Cefoxitin (FOX) | 0.5–32 | 16 | 4 |
Chloramphenicol (CHL) | 2–64 | 8 | 16 |
Ciprofloxacin (CIP) | 0.125–8 | 0.25 | 1 |
Erythromycin (ERY) | 0.25–16 | 0.5 | 1 |
Florfenicol (FFN) | 1–64 | 8 | (8) |
Gentamicin (GEN) | 0.25–16 | ≤0.25 | 2 |
Penicillin (PEN) | 0.06–16 | >16 | 0.125 * |
Spectinomycin (SPE) | 16–256 | 64 | (128) |
Streptomycin (STR) | 4–64 | 8 | 16 |
Sulphamethoxazole (SMX) | 32–512 | 64 | (128) |
Tetracycline (TET) | 0.5–32 | 1 | 1 |
Tiamulin (TIA) | 0.25–32 | 1 | (2) |
Trimethoprim (TMP) | 0.5–32 | 2 | 2 |
TMP + SMX (STX) | 0.25–16 | ≤0.25 | (0.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kløve, D.C.; Jensen, V.F.; Astrup, L.B. First Finding of a Methicillin-Resistant Staphylococcus aureus (MRSA) t304/ST6 from Bovine Clinical Mastitis. Antibiotics 2022, 11, 1393. https://doi.org/10.3390/antibiotics11101393
Kløve DC, Jensen VF, Astrup LB. First Finding of a Methicillin-Resistant Staphylococcus aureus (MRSA) t304/ST6 from Bovine Clinical Mastitis. Antibiotics. 2022; 11(10):1393. https://doi.org/10.3390/antibiotics11101393
Chicago/Turabian StyleKløve, Desiree Corvera, Vibeke Frøkjær Jensen, and Lærke Boye Astrup. 2022. "First Finding of a Methicillin-Resistant Staphylococcus aureus (MRSA) t304/ST6 from Bovine Clinical Mastitis" Antibiotics 11, no. 10: 1393. https://doi.org/10.3390/antibiotics11101393
APA StyleKløve, D. C., Jensen, V. F., & Astrup, L. B. (2022). First Finding of a Methicillin-Resistant Staphylococcus aureus (MRSA) t304/ST6 from Bovine Clinical Mastitis. Antibiotics, 11(10), 1393. https://doi.org/10.3390/antibiotics11101393