Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Material
2.2. Molecular Identification
2.3. Preparation of Samples
2.4. Untargeted LC-MS/MS-Based Metabolomics and Statistical Analysis
2.5. HPLC-DAD-MS Determination of Phenolic Compounds
2.6. Scavenging Effects
2.7. Antimicrobial Effects
3. Results and Discussion
3.1. Mushroom Identification
3.2. Untargeted LC-MS/MS-Based Metabolomics
3.3. Phenolic Composition of The Extracts
3.4. Antimicrobial Activity
3.5. Antiradical Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Sharma, A.; Tripathi, A. Biological activities of Pleurotus spp. polysaccharides: A review. J. Food Biochem. 2021, 45, e13748. [Google Scholar] [CrossRef]
- Angelini, P.; Pellegrino, R.M.; Tirillini, B.; Flores, G.A.; Alabed, H.B.; Ianni, F.; Blasi, F.; Cossignani, L.; Venanzoni, R.; Orlando, G. Metabolomic profiling and biological activities of Pleurotus columbinus Quél. Cultivated on different agri-food byproducts. Antibiotics 2021, 10, 1245. [Google Scholar] [CrossRef]
- Ianni, F.; Blasi, F.; Angelini, P.; Simone, S.C.D.; Angeles Flores, G.; Cossignani, L.; Venanzoni, R. Extraction optimization by experimental design of bioactives from Pleurotus ostreatus and evaluation of antioxidant and antimicrobial activities. Processes 2021, 9, 743. [Google Scholar] [CrossRef]
- Ng, S.H.; Mohd Zain, M.S.; Zakaria, F.; Wan Ishak, W.R.; Wan Ahmad, W.A.N. Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed Res. Int. 2015, 2015, 214918. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Z.; Liu, H.; Wang, D.; Wang, J.; Deng, Z.; Li, T.; He, Y.; Yang, Y.; Zhong, S. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int. J. Biol. Macromol. 2020, 165, 2934–2946. [Google Scholar] [CrossRef]
- Morris, H.; Marcos, J.; Llauradó, G.; Fontaine, R.; Tamayo, V.; García, N.; Bermúdez, R. Immunomodulating effects of hot-water extract from Pleurotus ostreatus mycelium on cyclophosphamide treated mice. Micol. Apl. Int. 2003, 15, 7–13. [Google Scholar]
- Barbosa, J.R.; dos Santos Freitas, M.M.; da Silva Martins, L.H.; de Carvalho Junior, R.N. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr. Polym. 2020, 229, 115550. [Google Scholar] [CrossRef]
- Barbosa, J.R.; Freitas, M.M.S.; Oliveira, L.C.; Martins, L.H.S.; Almada-Vilhena, A.O.; Oliveira, R.M.; Pieczarka, J.C.; Davi do Socorro, B.; Junior, R.N.C. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chem. 2020, 330, 127173. [Google Scholar] [CrossRef]
- Pellegrino, R.M.; Blasi, F.; Angelini, P.; Ianni, F.; Alabed, H.B.; Emiliani, C.; Venanzoni, R.; Cossignani, L. LC/MS Q-TOF Metabolomic Investigation of Amino Acids and Dipeptides in Pleurotus ostreatus Grown on Different Substrates. J. Agric. Food Chem. 2022, 70, 10371–10382. [Google Scholar] [CrossRef]
- Fernandes, Â.; Barros, L.; Martins, A.; Herbert, P.; Ferreira, I.C. Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chem. 2015, 169, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Baysal, E.; Peker, H.; Yalinkiliç, M.K.; Temiz, A. Cultivation of oyster mushroom on waste paper with some added supplementary materials. Bioresour. Technol. 2003, 89, 95–97. [Google Scholar] [CrossRef]
- Gregori, A.; Švagelj, M.; Pohleven, J. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol. Biotechnol. 2007, 45, 238–249. [Google Scholar]
- Landínez-Torres, A.Y.; Fagua, C.P.; López, A.C.S.; Oyola, Y.A.D.; Girometta, C.E. Pruning Wastes from Fruit Trees as a Substrate for Pleurotus ostreatus. Acta Mycol. 2021, 56, 568. [Google Scholar] [CrossRef]
- Royse, D.; Rhodes, T.; Ohga, S.; Sanchez, J. Yield, mushroom size and time to production of Pleurotus cornucopiae (oyster mushroom) grown on switch grass substrate spawned and supplemented at various rates. Bioresour. Technol. 2004, 91, 85–91. [Google Scholar] [CrossRef]
- Stamets, P. Growing Gourmet and Medicinal Mushrooms; Ten Speed Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Koutrotsios, G.; Kalogeropoulos, N.; Kaliora, A.C.; Zervakis, G.I. Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J. Agric. Food Chem. 2018, 66, 5971–5983. [Google Scholar] [CrossRef]
- Zervakis, G.I.; Koutrotsios, G.; Katsaris, P. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: An assessment of selected cultivation and quality parameters. BioMed Res. Int. 2013, 2013, 546830. [Google Scholar] [CrossRef] [Green Version]
- Ritota, M.; Manzi, P. Pleurotus spp. cultivation on different agri-food by-products: Example of biotechnological application. Sustainability 2019, 11, 5049. [Google Scholar] [CrossRef] [Green Version]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [Green Version]
- Freitas, A.C.; Antunes, M.B.; Rodrigues, D.; Sousa, S.; Amorim, M.; Barroso, M.F.; Carvalho, A.; Ferrador, S.M.; Gomes, A.M. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus and Pleurotus salmoneo-stramineus and its impact on biological properties of extracts thereof. Int. J. Food Sci. Technol. 2018, 53, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Kulshreshtha, S.; Mathur, N.; Bhatnagar, P.; Kulshreshtha, S. Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Ind. Crop. Prod. 2013, 41, 340–346. [Google Scholar] [CrossRef]
- Liang, Z.-C.; Wu, C.-Y.; Shieh, Z.-L.; Cheng, S.-L. Utilization of grass plants for cultivation of Pleurotus citrinopileatus. Int. Biodeterior. Biodegrad. 2009, 63, 509–514. [Google Scholar] [CrossRef]
- Ren, D.; Jiao, Y.; Yang, X.; Yuan, L.; Guo, J.; Zhao, Y. Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chem. Biol. Interact. 2015, 237, 166–174. [Google Scholar] [CrossRef]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef]
- Bilal, S.; Mushtaq, A.; Moinuddin, K. Effect of different grains and alternate substrates on oyster mushroom (Pleurotus ostreatus) production. Afr. J. Microbiol. Res. 2014, 8, 1474–1479. [Google Scholar] [CrossRef] [Green Version]
- Hoa, H.T.; Wang, C.-L. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 14–23. [Google Scholar] [CrossRef] [Green Version]
- VanderMolen, K.M.; Raja, H.A.; El-Elimat, T.; Oberlies, N.H. Evaluation of culture media for the production of secondary metabolites in a natural products screening program. Amb Express 2013, 3, 71. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, J.W.; Heo, Y.; Moon, B. Effect of Pleurotus eryngii mushroom β-glucan on quality characteristics of common wheat pasta. J. Food Sci. 2016, 81, C835–C840. [Google Scholar] [CrossRef]
- Bas, C.; Kuyper, T.W.; Noordeloos, M.; Vellinga, E. Flora Agaricina Neerlandica—Critical Monographs on the Families of Agarics and Boleti Occurring in the Netherlands; AA Balkema: Rotterdam, The Netherlands, 1990; Volume 2. [Google Scholar]
- Singer, R. The Agaricales in Modern Taxonomy. In Koeltz Scientific Books; Koeltz: Koenigstein, Germany, 1986. [Google Scholar]
- Venturella, G.; Gargano, M.; Compagno, R. The genus Pleurotus in Italy. Flora Mediterr. 2015, 25, 143–155. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B.; List, F.B.C.A.; Bolchacova, E. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C. Evaluation of antioxidant, antimicrobial and tyrosinase inhibitory activities of extracts from Tricholosporum goniospermum, an edible wild mushroom. Antibiotics 2020, 9, 513. [Google Scholar] [CrossRef]
- Girometta, C.E.; Bernicchia, A.; Baiguera, R.M.; Bracco, F.; Buratti, S.; Cartabia, M.; Picco, A.M.; Savino, E. An italian research culture collection of wood decay fungi. Diversity 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Mostafa, M.E.-S.; Ibrahim, S.A.-E.; Samya, S.; Ahmed, Z. Production of vitamin B12 and folic acid from agricultural wastes using new bacterial isolates. Afr. J. Microbiol. Res. 2013, 7, 966–973. [Google Scholar]
- Chatatikun, M.; Supjaroen, P.; Promlat, P.; Chantarangkul, C.; Waranuntakul, S.; Nawarat, J.; Tangpong, J. Antioxidant and tyrosinase inhibitory properties of an aqueous extract of Garcinia atroviridis griff. ex. T. Anderson fruit pericarps. Pharmacogn. J. 2020, 12, 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Bottari, N.B.; Lopes, L.Q.S.; Pizzuti, K.; dos Santos Alves, C.F.; Corrêa, M.S.; Bolzan, L.P.; Zago, A.; de Almeida Vaucher, R.; Boligon, A.A.; Giongo, J.L. Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microb. Pathog. 2017, 104, 190–195. [Google Scholar] [CrossRef]
- Ferrante, C.; Chiavaroli, A.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Brunetti, L.; Petrucci, M.; Politi, M.; Menghini, L.; Leone, S. Phenolic content and antimicrobial and anti-inflammatory effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa extracts. Antibiotics 2020, 9, 783. [Google Scholar] [CrossRef]
- Covino, S.; D'Ellena, E.; Tirillini, B.; Angeles, G.; Arcangeli, A.; Bistocchi, G.; Venanzoni, R.; Angelini, P. Characterization of biological activities of methanol extract of Fuscoporia torulosa (Basidiomycetes) from Italy. Int. J. Med. Mushrooms 2019, 21, 1051–1063. [Google Scholar] [CrossRef]
- Doğan, H.H.; Duman, R.; Özkalp, B.; Aydin, S. Antimicrobial activities of some mushrooms in Turkey. Pharm. Biol. 2013, 51, 707–711. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Menghini, L.; Leporini, L.; Vecchiotti, G.; Locatelli, M.; Carradori, S.; Ferrante, C.; Zengin, G.; Recinella, L.; Chiavaroli, A.; Leone, S.; et al. Crocus sativus L. Stigmas and Byproducts: Qualitative Fingerprint, Antioxidant Potentials and Enzyme Inhibitory Activities. Food Res. Int. 2018, 109, 91–98. [Google Scholar] [CrossRef]
- Vélëz, H.; Glassbrook, N.J.; Daub, M.E. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 2007, 44, 258–268. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Species | Locality | Date |
---|---|---|---|
PC1 | Pleurotus columbinus Quél. | Cascata delle Marmore (TR) | Apr 2019 |
PE1 | Pleurotus eryngii var. thapsiae Venturella, Zervakis & Saitta | Madonie (Piano Zucchi) Palermo | Oct 2019 |
PO1 | Pleurotus ostreatus (Jacq.) P. Kumm. | Cima di Tuoro (PG) | Sep 2017 |
PN | Pleurotus nebrodensis (Inzenga) Quél. | Monte Malletto (Etna, CT) | May 2021 |
PE2 | Pleurotus eryngii (DC.) Quél. | Etna Sciare S. Venera Maletto | Nov 2021 |
PE3 | Pleurotus eryngii var. ferulae (Lanzi) Sacc. | Isola Polvese (PG) | Jan 2017 |
PO2 | Pleurotus ostreatus (Jacq.) P. Kumm. | Castel Porziano (RM) | Nov 2018 |
PO3 | Pleurotus ostreatus (Jacq.) P. Kumm. | Castel Porziano (RM) | Nov 2018 |
PO4 | Pleurotus ostreatus (Jacq.) P. Kumm. | Rivotorto (PG) | Oct 2020 |
PE4 | Pleurotus eryngii var. elaeoselini Venturella, Zervakis & La Rocca | Vallone dei Sieli, Motta sant’Anastasia (Catania) | Nov 2017 |
PO5 | Pleurotus ostreatus (Jacq.) P. Kumm. | Monte Peglia (S. Venanzo, TR) | Nov 2017 |
PO6 | Pleurotus ostreatus (Jacq.) P. Kumm. | Monte Subasio (PG) | May 2017 |
Species | Sample ID | Base Pair | Correspondence with Genbank Seq. | % Identity | Accession no. |
---|---|---|---|---|---|
Pleurotus columbinus | PC1 | 621 | Pleurotus columbinus | 100 | MG282482.1 |
Pleurotus eryngii var. thapsiae | PE1 | 345 | Pleurotus eryngii | 99.42 | MH517527.1 |
Pleurotus ostreatus | PO1 | 568 | Pleurotus ostreatus | 100 | MT644908.1 |
Pleurotus nebrodensis | PN | 616 | Pleurotus nebrodensis | 99.51 | KF743821.1 |
Pleurotus eryngii var. ferulae | PE3 | 511 | Pleurotus eryngii var. ferulae | 99.42 | AB286153.1 |
Pleurotus ostreatus | PO2 | 641 | Pleurotus pulmonarius | 100 | MN239983.1 |
Pleurotus ostreatus | PO3 | 670 | Pleurotus ostreatus | 100 | GU186818.1 |
Pleurotus eryngii var. elaeoselini | PE4 | 636 | Pleurotus eryngii | 100 | OPE241308.1 |
Pleurotus ostreatus | PO5 | 613 | Pleurotus ostreatus | 99.19 | MT644908.1 |
Pleurotus ostreatus | PO6 | 612 | Pleurotus pulmonarius | 99.19 | MH810334.1 |
Time (Min.) | Composition A% (Water+Formic Acid 0.1%) | Flow (mL/min) |
---|---|---|
1 | 97 | 0.6 |
5 | 77 | 0.6 |
12 | 73 | 0.6 |
18 | 57 | 0.6 |
25 | 52 | 0.6 |
32 | 50 | 0.6 |
34 | 50 | 0.6 |
37 | 35 | 0.6 |
40 | 5 | 0.6 |
47 | 5 | 0.6 |
48 | 97 | 0.6 |
60 | 97 | 0.6 |
Peak Name | Retention Time | |
---|---|---|
1 | Gallic acid | 8.80 |
2 | 3-Hydroxytyrosol | 11.71 |
3 | Caftaric acid | 12.93 |
4 | Catechin | 14.80 |
5 | 4-Hydroxybenzoic acid | 16.20 |
6 | Loganic acid | 16.60 |
7 | Chlorogenic acid | 16.81 |
8 | Vanillic acid | 18.60 |
9 | Caffeic acid | 19.00 |
10 | Epicatechin | 19.41 |
11 | Syringic acid | 20.05 |
12 | p-Coumaric acid | 23.06 |
13 | t-Ferulic acid | 24.00 |
14 | Benzoic acid | 26.38 |
15 | Hyperoside | 26.92 |
16 | Rutin | 27.16 |
17 | Isoquercetin | 27.29 |
18 | Resveratrol | 27.70 |
19 | Rosmarinic acid | 28.53 |
20 | t-Cinnamic acid | 34.39 |
21 | Quercetin | 35.89 |
22 | Hesperetin | 39.38 |
23 | Kaempferol | 41.74 |
24 | Carvacrol | 44.69 |
25 | Thymol | 44.92 |
26 | Flavone | 45.60 |
27 | 3-Hydroxyflavone | 46.05 |
28 | Emodin | 47.70 |
ID Sample | PC1 | PE1 | PO1 | PN | PE2 | PE3 | PO2 | PO3 | PO4 | PE4 | PO5 | PO6 | KEGG Pathway Map |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolic Pathway * | |||||||||||||
Aminoacid metabolism | |||||||||||||
Valine, leucine, and isoleucine biosynthesis | + | - | - | - | + | + | + | - | - | + | + | - | map00290 |
Glycine, serine, and threonine metabolism | + | - | - | - | + | - | - | - | + | + | - | - | map00260 |
Tyrosine metabolism | - | - | + | + | - | - | - | - | - | - | - | - | map00350 |
Tryptophan metabolism | - | - | - | + | + | + | - | + | - | + | - | + | map00380 |
Arginine biosynthesis | + | + | + | + | + | + | - | + | - | + | - | + | map00220 |
Valine, leucine and isoleucine degradation | - | - | - | - | + | + | + | + | - | + | + | - | map00280 |
Lysine biosynthesis | - | - | - | - | + | - | + | + | - | + | + | - | map00300 |
Phenylalanine metabolism | - | - | + | + | + | + | - | - | - | + | - | + | map00360 |
Thiamine metabolism | - | + | - | + | + | + | - | + | - | + | - | - | map00730 |
Histidine metabolism | - | - | - | + | + | + | - | - | + | + | - | + | map00340 |
Cysteine and methionine metabolism | + | + | - | - | + | + | - | + | - | + | - | + | map00270 |
Phenylalanine, tyrosine, and tryptophan biosynthesis | - | + | - | - | + | + | - | - | - | + | - | + | map00400 |
Arginine and proline metabolism | + | + | + | - | + | + | + | + | + | + | + | + | map00330 |
Glutathione metabolism | + | - | + | - | + | + | - | - | + | + | - | - | map00480 |
beta-Alanine metabolism | - | - | + | - | + | + | - | - | + | - | - | - | map00410 |
Lysine degradation | - | - | - | - | + | - | + | + | - | + | - | - | map00310 |
Alanine, aspartate and glutamate metabolism | + | - | - | - | - | + | - | + | + | + | - | + | map00250 |
Amino sugar and nucleotide sugar metabolism | |||||||||||||
Amino sugar and nucleotide sugar metabolism | - | + | - | - | + | - | - | - | - | + | - | - | map00520 |
Glycolysis or Gluconeogenesis | - | + | - | - | + | + | - | - | - | - | - | - | map00010 |
Pentose phosphate pathway | - | - | + | - | + | - | - | - | - | + | + | - | map00030 |
Fructose and mannose metabolism | - | - | - | - | + | + | - | - | - | - | - | - | map00051 |
Galactose metabolism | - | - | - | - | + | - | - | - | - | + | - | - | map00052 |
Pentose and glucuronate interconversions | - | - | - | - | + | - | - | - | - | - | - | - | map00040 |
N-Glycan biosynthesis | - | - | - | - | + | - | - | - | - | - | - | - | map00510 |
Starch and sucrose metabolism | - | - | - | - | + | - | - | - | - | + | - | - | map00500 |
Nucleotide metabolism | |||||||||||||
Purine metabolism | + | + | - | - | + | + | - | - | + | + | - | + | map00230 |
Pyrimidine metabolism | + | - | - | + | + | + | - | + | + | + | - | + | map00240 |
Aminoacyl-tRNA biosynthesis | + | - | - | + | + | + | - | - | + | + | - | + | map00970 |
Lipid metabolism | |||||||||||||
Inositol phosphate metabolism | - | - | - | - | + | - | - | - | - | - | - | map00562 | |
Phosphatidylinositol signaling system | - | - | - | - | + | - | - | - | - | - | - | - | map04070 |
Glycerophospholipid metabolism | - | - | - | - | + | + | - | - | - | + | - | - | map00564 |
Sphingolipid metabolism | - | - | - | - | + | + | - | - | - | + | - | - | map00600 |
Vitamin metabolism | |||||||||||||
Nicotinate and nicotinamide metabolism | - | - | + | - | + | - | - | - | + | + | - | - | map00760 |
Cyanoamino acid metabolism | - | - | - | - | - | - | - | - | - | + | - | - | map00460 |
Riboflavin metabolism | - | - | - | - | - | - | - | - | - | + | - | - | map00740 |
Vitamin B6 metabolism | - | - | - | - | + | - | - | - | - | + | - | + | map00750 |
Pantothenate and CoA biosynthesis | - | - | + | - | + | + | + | - | - | + | + | + | map00770 |
Folate biosynthesis | + | + | - | - | + | + | - | - | + | + | - | - | map00790 |
One carbon pool by folate | + | - | + | - | + | + | - | - | + | + | - | - | map00670 |
Fatty acid metabolism | |||||||||||||
Biosynthesis of unsaturated fatty acids | - | - | - | + | + | - | - | - | - | + | - | - | map01040 |
Arachidonic acid metabolism | - | - | + | - | + | + | - | - | - | + | - | - | map00590 |
Steroid biosynthesis | - | - | - | - | + | + | - | - | + | + | - | + | map00905 |
Terpenoid metabolism | |||||||||||||
Terpenoid backbone biosynthesis | - | + | - | - | + | + | - | - | + | + | - | + | map00909 |
Sesquiterpenoid and triterpenoid biosynthesis | - | - | - | - | - | + | - | - | + | + | - | + | map00909 |
Other metabolic pathways | |||||||||||||
Porphyrin and chlorophyll metabolism | - | - | - | - | + | - | - | - | - | + | - | - | map00860 |
Pyruvate metabolism | - | + | + | - | + | + | - | - | - | + | - | - | map00620 |
Citrate cycle (TCA cycle) | - | + | - | - | - | + | - | - | - | map00020 | |||
Glyoxylate and dicarboxylate metabolism | - | - | - | - | - | + | - | - | + | - | - | - | map00630 |
Butanoate metabolism | - | + | - | - | + | - | + | + | + | + | - | - | map00650 |
Phosphonate and phosphinate metabolism | + | - | - | - | + | - | - | - | - | - | - | - | map00440 |
Monobactam biosynthesis | - | - | - | - | + | - | - | - | - | - | - | - | map00261 |
Methane metabolism | + | - | - | - | + | - | - | - | + | + | - | - | map00680 |
Nitrogen metabolism | - | - | - | - | - | + | - | - | + | - | - | - | map00910 |
MIC (µg mL−1) * | ||||||||
---|---|---|---|---|---|---|---|---|
Escherichia coli | Escherichia coli | Escherichia coli | Bacillus cereus | Pseudomonas aeruginosa | Bacillus subtilis | Salmonella typhi | Staphylococcus aureus | |
Bacteria | (ATCC 10536) | (PeruMycA 2) | (PeruMycA 3) | (PeruMycA 4) | (ATCC 15442) | (PeruMycA 6) | (PeruMycA 7) | (ATCC 6538) |
PC1 | 125.99 (100–200) | 2.47 (1.56–3.12) | >200 | 7.87 (6.26–12.5) | >200 | >200 | >200 | >200 |
PE1 | 9.92 (6.25–12.5) | 3.93 (3.12–6.25) | >200 | 4.92 (3.125–6.25) | 3.93 (3.12–6.25) | 4.96 (3.125–6.25) | >200 | 19.84 (12.5–25) |
PO1 | 79.37 (50–100) | 79.37 (50–100) | 158.74 | >200 | >200 | >200 | >200 | >200 |
PN | 2.47 (1.56–3.12) | 3.93 (3.12–6.25) | >200 | 7.87 (6.25–12.5) | 7.87 (6.25–12.5) | 3.93 (3.12–6.25) | >200 | 7.87 (6.25–12.5) |
PE2 | 3.93 (3.12–6.25) | 3.93 (3.12–6.25) | >200 | 3.93 (3.12–6.25) | 7.87 (6.25–12.5) | 3.93 (3.12–6.25) | >200 | 16.74 (12.5–25) |
PE3 | 9.92 (6.25–12.5) | 7.87 (6.25–12.5) | >200 | 2.47 (1.56–3.12) | 3.93 (3.12–6.25) | 7.87 (6.25–12.5) | >200 | 9.92 (6.25–12.5) |
PO2 | 39.68 (25–50) | 79.37 (50–100) | >200 | 158.74 (100–200) | 158.74 (100–200) | >200 | >200 | >200 |
PO3 | 158.74 (100–200) | 3.93 (3.12–6.25) | >200 | 79.37 (50–100) | >200 | >200 | >200 | >200 |
PO4 | 39.68 (25–50) | 7.87 (6.25–12.5) | >200 | 15.74 (12.5–25) | >200 | >200 | >200 | >200 |
PE4 | 2.47 (1.56–3.12) | 3.93 (3.12–6.25) | >200 | 3.93 (3.12–6.25) | 7.87 (6.25–12.5) | <6.25 | >200 | 9.92 (6.25–12.5) |
PO5 | 3.93 (3.12–6.25) | >200 | >200 | 125.99 (100–200) | >200 | >200 | >200 | >200 |
PO6 | 1.96 (1.56–3.12) | 31.49 (25–50) | >200 | 125.99 (100–200) | >200 | >200 | >200 | >200 |
Ciprofloxacin (µg mL−1 ) | 31.49 (25–50) | 9.92 (6.25–12.5) | 79.37 (50–100) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 200- > 200 |
MIC (µg mL−1) * | ||||||||
---|---|---|---|---|---|---|---|---|
Escherichia coli | Escherichia coli | Escherichia coli | Bacillus cereus | Pseudomonas aeruginosa | Bacillus subtilis | Salmonella typhy | Staphylococcus aureus | |
Bacteria | (ATCC 10536) | (PeruMycA 2) | (PeruMycA 3) | (PeruMycA 4) | (ATCC 15442) | (PeruMycA 6) | (PeruMycA 7) | (ATCC 6538) |
PC1 | 79.37 (50–100) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 125.99 (100–200) |
PE1 | 3.93 (3.125–6.25) | 15.75 (12.5–25) | >200 | 3.93 (3.125–6.25) | 62.99 (50–100) | 31.49 (25–50 | >200 | 158.74 (100–200) |
PO1 | 158.74 (100–200) | 79.37 (100–200) | 158.74 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 158.74 (100–200) | 39.68 (25–50) | 158.74 (100–200) |
PN | 4.96 (3.125–6.25) | 9.92 (6.25–12.5) | >200 | 3.93 (3.125–6.25) | 79.37 (50–100) | 15.75 (12.5–25) | >200 | 125.99 (100–200) |
PE2 | 4.96 (3.125–6.25) | 7.87 (6.25–12.5) | >200 | 9.92 (6.25–12.5) | 39.68 (25–50) | 9.92 (6.25–12.5) | >200 | 62.99 (50–100) |
PE3 | 7.87 (6.25–12.5) | 9.92 (6.25–12.5) | >200 | 39.68 (25–50) | 62.99 (50–100) | 15.75 (12.5–25) | >200 | 158.74 (100–200) |
PO2 | 125.99 (100–200) | 158.74 (100–200) | 79.37 (50–100) | 62.99 (50–100) | 125.99 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 62.99 (50–100) |
PO3 | 125.99 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 125.99 (100–200) | 158.74 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 79.37 (50–100) |
PO4 | 158.74 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 79.37 (50–100) | >200 | 79.37 (50–100) | 62.99 (50–100) |
PE4 | 3.93 (3.125–6.25) | 3.93 (3.125–6.25) | >200 | 15.75 (12.5–25) | 62.99 (50–100) | 19.84 (12.5–25) | >200 | 62.99 (50–100) |
PO5 | 158.74 (100–200) | >200 | >200 | 158.74 (100–200) | >200 | >200 | >200 | >200 |
PO6 | 79.37 (50–100) | 62.99 (50–100) | >200 | 158.74 (100–200) | >200 | >200 | >200 | >200 |
Ciprofloxacin (µg mL−1) | 31.49 (25–50) | 9.92 (6.25–12.5) | 79.37 (50–100) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 200- > 200 |
MIC (µg mL−1) * | ||||
---|---|---|---|---|
Candida tropicalis | Candida albicans | Candida parapsilosis | Candida albicans | |
Yeast Strain | (YEPGA 6184) | (YEPGA 6379) | (YEPGA 6551) | (YEPGA 6183) |
PC1 | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) | >200 |
PE1 | >200 | 158.74 (100–200) | 15.74 (12.5–25) | >200 |
PO1 | >200 | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) |
PN | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PE2 | >200 | >200 | 9.92 (6.25–12.5) | >200 |
PE3 | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PO2 | 158.74 (100–200) | >200 | 125.99 (100–200) | >200 |
PO3 | 158.74 (100–200) | >200 | >200 | 158.74 (100–200) |
PO4 | 158.74 (100–200) | >200 | >200 | >200 |
PE4 | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PO5 | 158.74 (100–200) | >200 | 158.74 (100–200) | >200 |
PO6 | >200 | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) |
Fluconazole (µg mL−1) | 2 | 1 | 4 | 2 |
MIC (µg mL−1) * | ||||
---|---|---|---|---|
Candida tropicalis | Candida albicans | Candida parapsilosis | Candida albicans | |
Yeast Strain | (YEPGA 6184) | (YEPGA 6379) | (YEPGA 6551) | (YEPGA 6183) |
PC1 | 79.37 | >200 | 39.68 (25–50) | >200 |
PE1 | 158.74 (100–200) | 158.74 (100–200) | 15.74 | >200 |
PO1 | >200 | >200 | 62.99 (50–100) | >200 |
PN | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PE2 | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PE3 | >200 | >200 | 7.87 (6.25–12.5) | >200 |
PO2 | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) | >200 |
PO3 | 158.74 (100–200) | >200 | >200 | 62.99 (50–100) |
PO4 | 158.74 (100–200) | >200 | 79.37 (50–100) | >200 |
PE4 | >200 | >200 | 9.92 (6.25–12.5) | >200 |
PO5 | 158.74 (100–200) | 158.74 (100–200) | 125.99 (100–200) | >200 |
PO6 | 158.74 (100–200) | 158.74 (100–200) | >200 | 158.74 (100–200) |
Fluconazole (µg mL−1) | 2 | 1 | 4 | 2 |
MIC (µg mL−1) * | ||||||||
---|---|---|---|---|---|---|---|---|
Trichophyton mentagrophytes | Trichophyton tonsurans | Trichophyton rubrum | Arthroderma quadrifidum | Trichophyton mentagrophytes | Arthroderma gypseum | Arthroderma curreyi | Arthroderma insingulare | |
Dermatophyte | (CCF 4823) | (CCF 4834) | (CCF 4933) | (CCF 5792) | (CCF 5930) | (CCF 6261) | (CCF 5207) | (CCF 5417) |
PC1 | >200 | >200 | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 62.99 (50–100) | 79.37 (50–100) |
PE1 | >200 | >200 | 158.74 (100–200) | 79.37 (50–100) | 158.74 (100–200) | >200 | 79.37 (50–100) | 125.99 (100–200) |
PO1 | >200 | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 125.99 (100–200) | >200 | 62.99 (50–100) | 79.37 (50–100) |
PN | 125.99 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 158.74 (100–200) | >200 | >200 | >200 |
PE2 | 125.99 (100–200) | >200 | 158.74 (100–200) | >200 | >200 | 125.99 (100–200) | 79.37 (50–100) | 79.37 (50–100) |
PE3 | 79.37 (50–100) | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 158.74 (100–200) | 158.74 (100–200) | 79.37 (50–100) | 79.37 (50–100) |
PO2 | 79.37 (50–100) | >200 | 125.99 (100–200) | 79.37 (50–100) | 158.74 (100–200) | >200 | 31.49 (25–50) | 62.99 (50–100) |
PO3 | 158.74 (100–200) | 158.74 (100–200) | >200 | 125.99 (100–200) | >200 | >200 | 79.37 (50–100) | 125.99 (100–200) |
PO4 | >200 | >200 | 158.74 (100–200) | 125.99 (100–200) | 158.74 (100–200) | >200 | 79.37 (50–100) | 125.99 (100–200) |
PE4 | 158.74 (100–200) | 125.99 (100–200) | 79.37 (50–100) | >200 | 125.99 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 79.37 (50–100) |
PO5 | >200 | >200 | >200 | >200 | >200 | >200 | 62.99 (50–100) | 79.37 (50–100) |
PO6 | 79.37 (50–100) | >200 | 79.37 (50–100) | 125.99 (100–200) | 79.37 (50–100) | 158.74 (100–200) | 31.49 (25–50) | 39.68 (25–50) |
Griseofulvin µg mL−1 | 2.52 (2–4) | 0.198 (0.125–0.25) | 1.26 (1–2) | >8 | 3.174 (2–4) | 1.587 (1–2) | >8 | >8 |
MIC (µg mL−1) * | ||||||||
---|---|---|---|---|---|---|---|---|
Trichophyton mentagrophytes | Trichophyton tonsurans | Trichophyton rubrum | Arthroderma quadrifidum | Trichophyton mentagrophytes | Arthroderma gypseum | Arthroderma curreyi | Arthroderma insingulare | |
Dermatophyte | (CCF 4823) | (CCF 4834) | (CCF 4933) | (CCF 5792) | (CCF 5930) | (CCF 6261) | (CCF 5207) | (CCF 5417) |
PC1 | 125.99 (100–200) | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) | >200 | >200 | 31.49 (25–50) | >200 |
PE1 | 62.99 (50–10) | 158.74 (100–200) | 39.68 (25–50) | 39.68 (25–50) | >200 | 62.99 (50–100) | 39.68 (25–50) | 62.99 (50–100) |
PO1 | >200 | 125.99 (100–200) | 158.74 (100–200) | >200 | 125.99 (100–200) | 158.74 (100–200) | 39.68 (25–50) | 125.99 (100–200) |
PN | 125.99 (100–200) | 79.37 (50–100) | 31.49 (25–50) | >200 | 158.74 (100–200) | 158.74 (100–200) | 62.99 (50–100) | >200 |
PE2 | 158.74 (100–200) | 125.99 (100–200) | 79.37 (50–100) | 125.99 (100–200) | >200 | 125.99 (100–200) | 62.99 (50–100) | 79.37 (50–100) |
PE3 | >200 | 158.74 (100–200) | 125.99 (100–200) | 158.74 (100–200) | >200 | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) |
PO2 | 158.74 (100–200) | >200 | 125.99 (100–200) | 125.99 (100–200) | 158.74 (100–200) | >200 | 158.74 (100–200) | 79.37 (50–100) |
PO3 | >200 | >200 | 79.37 (50–100) | 125.99 (100–200) | >200 | >200 | 79.37 (50–100) | 79.37 (50–100) |
PO4 | 158.74 (100–200) | 158.74 (100–200) | 125.99 (100–200) | 125.99 (100–200) | 158.74 (100–200) | >200 | 79.37 (50–100) | 62.99 (50–100) |
PE4 | >200 | >200 | 79.37 (50–100) | >200 | 125.99 (100–200) | 79.37 (50–100) | 62.99 (50–100) | 125.99 (100–200) |
PO5 | >200 | 158.74 (100–200) | 158.74 (100–200) | 158.74 (100–200) | >200 | >200 | 62.99 (50–100) | 158.74 (100–200) |
PO6 | >200 | >200 | 125.99 (100–200) | 125.99 (100–200) | >200 | >200 | 125.99 (100–200) | 79.37 (50–100) |
Griseofulvin (µg mL−1) | 2.52 (2–4) | 0.198 (0.125–0.25) | 1.26 (1–2) | >8 | 3.174 (2–4) | 1.587 (1–2) | >8 | >8 |
DPPH Test | ABTS Test | |||
---|---|---|---|---|
Sample | EC50 | EC50 | ||
µg mL−1 | Trolox eq. | µg mL−1 | Trolox eq. | |
PC1-S1 | 3248 ± 388 | 650 ± 78 | 152 ± 18 | 38 ± 5 |
PE1-S1 | 4871 ± 538 | 974 ± 108 | 103 ± 12 | 26 ± 3 |
PO1-S1 | 4871 ± 525 | 974 ± 105 | 133 ± 16 | 33 ± 4 |
PN-S1 | 1392 ± 168 | 278 ± 34 | 97 ± 12 | 24 ± 3 |
PE2-S1 | 2436 ± 294 | 487 ± 59 | 87 ± 10 | 22 ± 3 |
PE3-S1 | 886 ± 103 | 177 ± 21 | 135 ± 16 | 34 ± 4 |
PO2-S1 | 3248 ± 353 | 650 ± 71 | 189 ± 22 | 47 ± 6 |
PO3-S1 | 3248 ± 368 | 650 ± 74 | 374 ± 41 | 87 ± 10 |
PO4-S1 | 3248 ± 360 | 650 ± 72 | 170 ± 20 | 43 ± 5 |
PE4-S1 | 1949 ± 235 | 390 ± 47 | 271 ± 32 | 68 ± 8 |
PO5-S1 | 2436 ± 292 | 487 ± 58 | 101 ± 12 | 25 ± 3 |
PO6-S1 | 1949 ± 277 | 390 ± 46 | 131 ± 16 | 33 ± 4 |
PC1-S2 | 3248 ± 375 | 650 ± 75 | 234 ± 28 | 59 ± 7 |
PE1-S2 | 1949 ± 218 | 390 ± 44 | 189 ± 22 | 47 ± 6 |
PO1-S2 | 2436 ± 279 | 487 ± 56 | 100 ± 12 | 25 ± 3 |
PN-S2 | 1392 ± 152 | 278 ± 30 | 167 ± 20 | 42 ± 5 |
PE2-S2 | 1392 ± 154 | 278 ± 31 | 94 ± 11 | 24 ± 3 |
PE3-S2 | 1624 ± 178 | 354 ± 36 | 91 ± 11 | 23 ± 3 |
PO2-S2 | 3248 ± 390 | 650 ± 78 | 147 ± 17 | 37 ± 4 |
PO3-S2 | 3248 ± 397 | 650 ± 79 | 255 ± 30 | 64 ± 8 |
PO4-S2 | 3248 ± 391 | 650 ± 78 | 377 ± 45 | 94 ± 11 |
PE4-S2 | 2436 ± 289 | 487 ± 58 | 263 ± 31 | 66 ± 8 |
PO5-S2 | 2436 ± 287 | 487 ± 57 | 119 ± 14 | 30 ± 4 |
PO6-S2 | 3248 ± 386 | 650 ± 77 | 206 ± 22 | 52 ± 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, G.A.; Girometta, C.E.; Cusumano, G.; Angelini, P.; Tirillini, B.; Ianni, F.; Blasi, F.; Cossignani, L.; Pellegrino, R.M.; Emiliani, C.; et al. Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media. Antibiotics 2022, 11, 1468. https://doi.org/10.3390/antibiotics11111468
Flores GA, Girometta CE, Cusumano G, Angelini P, Tirillini B, Ianni F, Blasi F, Cossignani L, Pellegrino RM, Emiliani C, et al. Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media. Antibiotics. 2022; 11(11):1468. https://doi.org/10.3390/antibiotics11111468
Chicago/Turabian StyleFlores, Giancarlo Angeles, Carolina Elena Girometta, Gaia Cusumano, Paola Angelini, Bruno Tirillini, Federica Ianni, Francesca Blasi, Lina Cossignani, Roberto Maria Pellegrino, Carla Emiliani, and et al. 2022. "Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media" Antibiotics 11, no. 11: 1468. https://doi.org/10.3390/antibiotics11111468
APA StyleFlores, G. A., Girometta, C. E., Cusumano, G., Angelini, P., Tirillini, B., Ianni, F., Blasi, F., Cossignani, L., Pellegrino, R. M., Emiliani, C., Venanzoni, R., Venturella, G., Colasuonno, P., Cirlincione, F., Gargano, M. L., Zengin, G., Acquaviva, A., Di Simone, S. C., Orlando, G., ... Ferrante, C. (2022). Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media. Antibiotics, 11(11), 1468. https://doi.org/10.3390/antibiotics11111468