Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements
Abstract
:1. Introduction
2. Results
2.1. Isolation, Enumeration, and Identification of Lactobacilli
2.2. Phenotypic Resistance of Lactobacilli
2.3. Genotypic Resistance of Lactobacilli
3. Discussion
4. Materials and Methods
4.1. Probiotics and Enumeration of Lactobacilli Contents
4.2. Isolation and Identification of Bacteria
4.3. Antibiotic Susceptibility Testing
4.4. Detection of Antibiotic Resistance Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G.; Chanishvili, N.; Widyastuti, Y. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 2010, 161, 480–487. [Google Scholar] [CrossRef]
- Report of a Joint FAO/WHO Expert Consultation. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. 2001. Available online: http://www.fao.org/tempref/docrep/fao/meeting/009/y6398e.pdf (accessed on 12 October 2022).
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R.; Ouwehand, A.C. The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarela, M.; Mogensen, G.; Fondén, R.; Mättö, J.; Mattila-Sandholm, T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 2000, 84, 197–215. [Google Scholar] [CrossRef]
- Ilinskaya, O.N.; Ulyanova, V.V.; Yarullina, D.R.; Gataullin, I.G. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front. Microbiol. 2017, 8, 1666. [Google Scholar] [CrossRef] [Green Version]
- Fortune Business Insights. Probiotics Market Size, Share and COVID-19 Impact Analysis, By Microbial Genus (Lactobacillus, Bifidobacterium, and Yeast), By Application (Functional Foods and Beverages, Dietary Supplements, and Animal Feed), Distribution Channel (Supermarkets/Hypermarkets, Pharmacies/Health Stores, Convenience Stores, Online Retail, and Others), and Regional Forecast, 2020–2027. 2021. Available online: https://www.fortunebusinessinsights.com/industry-reports/probiotics-market-100083 (accessed on 9 October 2022).
- Rossi, F.; Amadoro, C.; Gasperi, M.; Colavita, G. Lactobacilli Infection Case Reports in the Last Three Years and Safety Implications. Nutrients 2022, 14, 1178. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Girones, R.; Herman, L.; Koutsoumanis, K.; Lindqvist, R.; Nørrung, B.; et al. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 2017, 15, 4664. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. GRAS Notices. 2022. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices (accessed on 12 October 2022).
- Gueimonde, M.; Sánchez, B.; de Los Reyes-Gavilán, C.G.; Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013, 4, 202. [Google Scholar] [CrossRef] [Green Version]
- Ammor, M.S.; Flórez, A.B.; Mayo, B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2018, 85, e01738-18. [Google Scholar] [CrossRef]
- Hummel, A.S.; Hertel, C.; Holzapfel, W.H.; Franz, C.M.A.P. Antibiotic Resistances of Starter and Probiotic Strains of Lactic Acid Bacteria. Appl. Environ. Microbiol. 2007, 73, 730–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Tomar, S.K.; Sangwan, V.; Goswami, P.; Singh, R. Antibiotic Resistance of Lactobacillus sp. Isolated from Commercial Probiotic Preparations. J. Food Saf. 2016, 36, 38–51. [Google Scholar] [CrossRef]
- Nawaz, M.; Wang, J.; Zhou, A.; Ma, C.; Wu, X.; Moore, J.; Millar, B.C.; Xu, J. Characterization and Transfer of Antibiotic Resistance in Lactic Acid Bacteria from Fermented Food Products. Curr. Microbiol. 2011, 62, 1081–1089. [Google Scholar] [CrossRef]
- Feld, L.; Schjørring, S.; Hammer, K.; Licht, T.R.; Danielsen, M.; Krogfelt, K.; Wilcks, A. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J. Antimicrob. Chemother. 2008, 61, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Simone, C. The Unregulated Probiotic Market. Clin. Gastroenterol. Hepatol. 2019, 17, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Kumai, S.; Ogawa, M.; Benno, Y.; Nakase, T. Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation. Appl. Environ. Microbiol. 1999, 65, 2901–2906. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.C.; Sanunu, M.; Schneider, C.; Clad, A.; Karygianni, L.; Hellwig, E.; Al-Ahmad, A. Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC Microbiol. 2014, 14, 312. [Google Scholar] [CrossRef] [Green Version]
- Shah, N. Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods. J. Dairy Sci. 2000, 83, 894–907. [Google Scholar] [CrossRef]
- Minelli, E.B.; Benini, A. Relationship between number of bacteria and their probiotic effects. Microb. Ecol. Health Dis. 2008, 20, 180–183. [Google Scholar] [CrossRef]
- Lahtinen, S.J. Probiotic viability—Does it matter? Microb. Ecol. Health Dis. 2012, 23, 1. [Google Scholar] [CrossRef]
- Dec, M.; Puchalski, A.; Urban-Chmiel, R.; Wernicki, A. 16S-ARDRA and MALDI-TOF mass spectrometry as tools for identification of Lactobacillus bacteria isolated from poultry. BMC Microbiol. 2016, 16, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton-Miller, J.; Shah, S.; Winkler, J. Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutr. 1999, 2, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.; Ngu, D.Y.S.; Dan, L.A.; Ooi, A.; Lim, R.L.H. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr. J. 2015, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C. Mechanisms of fluoroquinolone resistance. Drug Resist. Updat. 1999, 2, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, E.; Yarullina, D. Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. Int. J. Microbiol. 2018, 2018, 3912326. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, E.A.; Yarullina, D.R. Antibiotic Resistance of Lactobacillus Strains. Curr. Microbiol. 2019, 76, 1407–1416. [Google Scholar] [CrossRef]
- Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Jarvinen, A. Lactobacillus Bacteremia, Species Identification, and Antimicrobial Susceptibility of 85 Blood Isolates. Clin. Infect. Dis. 2006, 42, e35–e44. [Google Scholar] [CrossRef]
- Guo, H.; Pan, L.; Li, L.; Lu, J.; Kwok, L.; Menghe, B.; Zhang, H.; Zhang, W. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J. Food Sci. 2017, 82, 724–730. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.-Y.; Dong, K.; Yuan, J.-P.; Guo, X.-K. Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs. Biomed. Environ. Sci. 2009, 22, 401–412. [Google Scholar] [CrossRef]
- Hazırolan, G.; Gündoğdu, A.; Nigiz, S.; Altun, B.; Gür, D. Presence of OXA-48 Gene in a Clinical Isolate of Lactobacillus rhamnosus. Foodborne Pathog. Dis. 2019, 16, 840–843. [Google Scholar] [CrossRef]
- Vanichanan, J.; Chavez, V.; Wanger, A.; De Golovine, A.M.; Vigil, K.J. Carbapenem-resistant Lactobacillus intra-abdominal infection in a renal transplant recipient with a history of probiotic consumption. Infection 2016, 44, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Gharajalar, S.N.; Firouzamandi, M. Molecular Detection of Antibiotic Resistance Determinants in Lactobacillus Bacteria Isolated from Human Dental Plaques. J. Med. Microbiol. Infect. Dis. 2017, 5, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Afsana, S.; Kibtia, M.; Hossain, M.; Choudhury, N.; Ahsan, C.R. Presence of blaCTX-M antibiotic resistance gene in Lactobacillus spp. isolated from Hirschsprung diseased infants with stoma. J. Infect. Dev. Ctries. 2019, 13, 426–433. [Google Scholar] [CrossRef]
- Drawz, S.M.; Bonomo, R.A. Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Atherton, J.; Axon, A.T.R.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; et al. Management of Helicobacter pylori infection—The Maastricht IV/Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, R.; Nakaminami, H.; Rimbara, E.; Noguchi, N.; Sasatsu, M.; Suzuki, T.; Matsushima, M.; Koike, J.; Igarashi, M.; Ozawa, H.; et al. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy. J. Gastroenterol. Hepatol. 2012, 27, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Gavrilova, E.; Anisimova, E.; Gabdelkhadieva, A.; Nikitina, E.; Vafina, A.; Yarullina, D.; Bogachev, M.; Kayumov, A. Newly isolated lactic acid bacteria from silage targeting biofilms of foodborne pathogens during milk fermentation. BMC Microbiol. 2019, 19, 248. [Google Scholar] [CrossRef] [PubMed]
- Bruslik, N.L.; Akhatova, D.R.; Toimentseva, A.A.; Abdulkhakov, S.R.; Ilyinskaya, O.N.; Yarullina, D.R. Estimation of Probiotic Lactobacilli Drug Resistance. Antibiot. Khimioter. 2015, 60, 6–13. [Google Scholar]
- The Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP). Technical guidance—Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance (question No. EFSA-Q-2008-004). EFSA J. 2008, 732, 1–15. [Google Scholar]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Antibiotic Susceptibility of Potentially Probiotic Lactobacillus Species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.A.; dos Santos, T.F.; Pereira, L.R.; Passos, H.M.; Rezende, R.P.; Romano, C.C. Functional Profile Evaluation of Lactobacillus fermentum TCUESC01: A New Potential Probiotic Strain Isolated during Cocoa Fermentation. Biomed. Res. Int. 2017, 2017, 5165916. [Google Scholar] [CrossRef]
- Egervärn, M.; Roos, S.; Lindmark, H. Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum. J. Appl. Microbiol. 2009, 107, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Willems, R.J.L.; Hildebrandt, B.; Klare, I.; Witte, W. Influence of Transferable Genetic Determinants on the Outcome of Typing Methods Commonly Used for Enterococcus faecium. J. Clin. Microbiol. 2003, 41, 1499–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gevers, D.; Danielsen, M.; Huys, G.; Swings, J. Molecular Characterization of tet(M) Genes in Lactobacillus Isolates from Different Types of Fermented Dry Sausage. Appl. Environ. Microbiol. 2003, 69, 1270–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouoba, L.I.I.; Lei, V.; Jensen, L.B. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 2008, 121, 217–224. [Google Scholar] [CrossRef]
- Kastner, S.; Perreten, V.; Bleuler, H.; Hugenschmidt, G.; Lacroix, C.; Meile, L. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst. Appl. Microbiol. 2006, 29, 145–155. [Google Scholar] [CrossRef]
- Sabouni, F.; Movahedi, Z.; Mahmoudi, S.; Pourakbari, B.; Valian, S.K.; Mamishi, S. High frequency of vancomycin resistant Enterococcus faecalis in children: An alarming concern. J. Prev. Med. Hyg. 2016, 57, E201–E204. [Google Scholar]
- Colom, K.; Pérez, J.; Alonso, R.; Fernández-Aranguiz, A.; Lariño, E.; Cisterna, R. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 2003, 223, 147–151. [Google Scholar] [CrossRef]
- Shevchenko, O.V.; Edelstein, M.V.; Stepanova, M.N. Metallo-beta-lactamases: Importance and detection methods in gram-negative non-fermenting bacteria. Clin. Microbiol. Antimicrob. Chemother. 2007, 9, 211–219. [Google Scholar]
Product | Country of Manufacture | Probiotic Content | Manufacturer Claim of Probiotic Amount | Enumerated Amount of Lactobacilli | Isolate (Strain) c | Log Score d |
---|---|---|---|---|---|---|
(CFU/Pharmaceutical Form) | ||||||
Al a | Russia | L. acidophilus | 107 per capsule | 2.8 × 109 | L. helveticus Al-1 (Unchanged) L. helveticus Al-2 (Unchanged) L. helveticus Al-3 (Unchanged) L. helveticus Al-4 (Unchanged) | 2.326 2.368 2.333 2.302 |
At a | Russia | L. acidophilus | 107 per vaginal suppository | 3.9 × 106 | L. plantarum At-1 (Lactiplantibacillus plantarum At-1) L. plantarum At-2 (Lactiplantibacillus plantarum At-2) L. plantarum At-3 (Lactiplantibacillus plantarum At-3) | 2.342 2.399 2.436 |
Ea b | Russia | L. acidophilus, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, Propionibacterium freudenreichii ssp. shermanii | 4.0 × 109 per vial | 1.6 × 106 | L. paracasei Ea-1 (Lacticaseibacillus paracasei Ea-1) L. paracasei Ea-2 (Lacticaseibacillus paracasei Ea-2) L. paracasei Ea-3 (Lacticaseibacillus paracasei Ea-3) | 2.427 2.444 2.429 |
Gm a | Bulgaria | L. delbrueckii ssp. bulgaricus 51 | 102 per morsulus | 0 | L. fermentum Gm (Limosilactobacillus fermentum Gm) | 2.115 |
Ln a | Russia | L. plantarum 8P-A3 or L. fermentum 90T-C4 | 1010 per vial | 3.7 × 109 | L. plantarum 8PA3 (Lactiplantibacillus plantarum 8PA3) | 2.452 |
Ls a | Slovenia | L. acidophilus, Bifidobacterium infantis, Enterococcus faecium | 1.2 × 107 per capsule | 1.1 × 109 | L. plantarum Ls (Lactiplantibacillus plantarum Ls) | 2.312 |
Ne b | Armenia | L. acidophilus | 1.8 × 108 per capsule | 0 | L. plantarum Ne (Lactiplantibacillus plantarum Ne) | 2.282 |
Ro b | Netherlands | L. acidophilus (2 strains), L. plantarum, L. paracasei, L. rhamnosus, L. salivarius, Bifidobacterium lactis, B. bifidum | 5.0 × 108 per capsule | 2.4 × 109 | L. plantarum Ro-1 (Lactiplantibacillus plantarum Ro-1) L. plantarum Ro-2 (Lactiplantibacillus plantarum Ro-2) L. plantarum Ro-5 (Lactiplantibacillus plantarum Ro-5) L. plantarum Ro-7 (Lactiplantibacillus plantarum Ro-7) L. plantarum Ro-8 (Lactiplantibacillus plantarum Ro-8) | 2.282 2.278 2.173 2.279 2.298 |
Phenotype a | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Strain | Amikacin | Ampicillin | Amoxicillin | Imipenem | Meropenem | Ertapenem | Cefazolin | Cefotaxime | Ceftazidime | Ceftriaxone | Cefoperazone | Cefoperazone/sulbactam | Cefepim | Clarithromycin | Vancomycin | Linezolid | Ciprofloxacin | Norfloxacin | Erythromycin | Chloramphenicol | Tetracycline | Genotype |
1 | L. plantarum 8PA3 | R | S | S | S | S | S | S | R | R | MS | S | S | R | S | S | S | R | R | MS | S | S | - |
2 | L. fermentum Gm | R | S | S | S | S | S | S | MS | R | MS | MS | S | R | S | S | S | R | R | MS | S | S | vanX, blaTEM |
3 | L. plantarum Ne | R | S | R | S | S | S | MS | R | R | R | MS | R | R | R | R | S | R | R | S | S | S | vanX, blaTEM |
4 | L. plantarum Ro-1 | R | S | S | S | S | S | MS | R | R | R | R | R | R | S | R | S | R | R | S | S | MS | parC, blaTEM |
5 | L. plantarum Ro-2 | R | S | S | S | S | S | R | R | R | R | R | R | R | S | R | S | R | R | S | S | S | parC, blaTEM |
6 | L. plantarum Ro-5 | R | S | S | S | S | S | S | R | R | R | R | MS | R | S | R | S | R | R | S | S | MS | vanX, parC, blaTEM |
7 | L. plantarum Ro-7 | R | S | S | S | S | S | MS | R | R | R | MS | R | R | S | R | S | R | R | S | S | MS | parC |
8 | L. plantarum Ro-8 | R | S | S | S | S | S | S | R | R | MS | R | R | R | S | R | S | R | R | S | S | MS | vanX, parC, blaTEM |
9 | L. plantarum At-1 | R | S | S | S | S | S | MS | R | R | R | R | R | R | S | R | S | R | R | S | S | MS | vanX, parC, blaTEM |
10 | L. plantarum At-2 | R | S | S | S | S | S | S | R | R | R | MS | S | R | S | R | S | R | R | S | S | S | vanX, parC, blaTEM |
11 | L. plantarum At-3 | R | S | S | S | S | S | MS | MS | R | R | MS | R | R | S | R | S | R | R | S | S | MS | parC, blaTEM |
12 | L. plantarum Ls | R | S | S | S | S | S | S | R | R | MS | MS | MS | R | S | R | S | R | R | S | S | MS | vanX, blaTEM |
13 | L. paracasei Ea-1 | R | MS | S | MS | MS | R | R | MS | R | R | MS | MS | R | S | R | S | R | R | S | S | S | vanX, blaTEM, tetK |
14 | L. paracasei Ea-2 | R | MS | S | S | R | MS | R | MS | R | R | MS | MS | R | S | R | S | R | R | S | S | S | blaTEM |
15 | L. paracasei Ea-3 | R | R | S | S | R | MS | R | MS | R | R | MS | S | R | S | R | S | R | MS | S | S | S | vanX |
16 | L. helveticus Al-1 | R | S | S | S | S | MS | R | S | R | MS | MS | MS | R | S | R | S | R | R | S | S | S | vanX, parC, blaTEM |
17 | L. helveticus Al-2 | R | S | S | S | S | MS | R | MS | R | MS | MS | MS | R | S | R | S | R | R | S | S | S | vanX, parC, blaTEM |
18 | L. helveticus Al-3 | R | S | S | S | S | S | S | S | R | S | S | S | MS | S | S | MS | R | R | S | S | S | vanX, parC, blaTEM |
19 | L. helveticus Al-4 | R | S | S | S | S | S | S | S | S | S | S | S | R | S | S | S | R | R | S | S | S | vanX, parC, blaTEM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anisimova, E.; Gorokhova, I.; Karimullina, G.; Yarullina, D. Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics 2022, 11, 1557. https://doi.org/10.3390/antibiotics11111557
Anisimova E, Gorokhova I, Karimullina G, Yarullina D. Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics. 2022; 11(11):1557. https://doi.org/10.3390/antibiotics11111557
Chicago/Turabian StyleAnisimova, Elizaveta, Islamiya Gorokhova, Guzel Karimullina, and Dina Yarullina. 2022. "Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements" Antibiotics 11, no. 11: 1557. https://doi.org/10.3390/antibiotics11111557
APA StyleAnisimova, E., Gorokhova, I., Karimullina, G., & Yarullina, D. (2022). Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics, 11(11), 1557. https://doi.org/10.3390/antibiotics11111557