Antibiotic Resistance in the Finfish Aquaculture Industry: A Review
Abstract
:1. Introduction
2. Antibiotic Usage: Regulations in Aquaculture Farms
3. Aquatic Environment and Antibiotic Resistance Circulation
4. Global Antibiotic Administering in the Aquaculture Sector
Continents | Countries | Antibiotic Classes |
---|---|---|
Asia-Pacific: 9623 tons | China: 5.572 tons [49] | Tetracyclines: 3065 tons |
Quinolones: 1393 tons | ||
Beta-lactams: 836 tons | ||
Sulfonamides (co-administered with phenicols): 278 tons | ||
India: 1.087 tons [48] | Tetracyclines: 706 tons | |
Beta-lactams: 195 tons | ||
Quinolones: 186 tons | ||
Indonesia: 827 tons [48] | Tetracyclines: 645 tons | |
Beta-lactams: 182 tons | ||
Vietnam: 481 tons [48] | Tetracyclines: 370 tons | |
Quinolones: 62 tons | ||
Beta-lactams: 49 tons | ||
Africa: 236 tons [48] | Egypt: 110 tons | Tetracyclines: 86 tons |
Beta-lactams: 13 tons | ||
Quinolones: 11 tons | ||
South Africa: 126 tons | Tetracyclines: 107 tons | |
Sulfonamides: 19 tons | ||
Europe: 185 tons | Turkey: 75 tons [50] | Tetracyclines: 39 tons |
Beta-lactams: 16 tons | ||
Quinolones: 8 tons | ||
Sulfonamides: 7 tons | ||
Phenicols (Chloramphenicol): 5 tons | ||
Norway: 45 tons [51] | Tetracyclines: 30 tons | |
Sulfonamides: 10 tons | ||
Quinolones: 5 tons | ||
Scotland: 32 tons [51] | Tetracyclines: 28 tons | |
Beta-lactams: 4 tons | ||
Italy: 13 tons [51] | Tetracyclines: 7 tons | |
Beta-lactams: 4 tons | ||
Sulfonamides: 2 tons |
5. ARBs Isolation and ARGs Detection from Aquaculture Finfish Samples
5.1. Quinolones
5.2. Tetracyclines
5.3. Sulfonamides
5.4. Thiamphenicol and Florfenicol
6. Antibiotic Substitutions
6.1. Vaccination
6.2. Structural Improvements
6.3. Probiotics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Approved Drugs for Use in Seafoods; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/3/ca9229en/ca9229en.pdf (accessed on 12 March 2021).
- United Nations (UN). The Sustainable Development Goals Report; UN: New York, NY, USA, 2018; Available online: https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-EN.pdf (accessed on 15 May 2021).
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/i9540en/i9540en.pdf (accessed on 7 June 2021).
- European Union Market Observatory for Fishery and Agriculture Products (EUMOFA). Case Study: Dried Salted Cod in Norway. Price Structure in the Supply Chain from Norway to Portugal March. 2018. Available online: www.EUMOFA.eu (accessed on 30 April 2021).
- Food and Drug Administration (FDA). Approved Drugs for Use in Seafoods; FDA:, New York. 2020. Available online: https://www.fda.gov/animal-veterinary/aquaculture/approved-aquaculture-drugs (accessed on 1 June 2021).
- Food and Agriculture Organization (FAO). Search Aquacultured Fact Sheets: Cultured Aquatic Species. 2016. Available online: http://www.fao.org/fishery/culturedspecies/search/en (accessed on 18 February 2021).
- World Health Organization (WHO). Report on Second WHO Expert Meeting, Copenhagen, Denmark: Critically Important Antimicrobials for Human Medicine; Categorization for the Development of Risk Management Strategies to Contain Antimicrobial Resistance Due to Non-Human Use. 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43765/9789241595742_eng.pdf;jsessionid=A14A12F19C1EDC617AD74724BBD65ED2?sequence=1 (accessed on 4 September 2021).
- Froehlich, H.E.; Runge, C.A.; Gentry, R.R.; Gaines, S.D.; Halpern, B.S. Comparative terrestrial feed and land use of aquaculture-dominant world. Proc. Nat. Acad. Sci. USA 2018, 115, 5295–5300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F. Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience 2013, 6, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Mo, W.Y.; Chen, Z.; Leung, H.M.; Leung, A.O.W. Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks. Environ. Sci. Pollut. Res. 2017, 24, 8978–8989. [Google Scholar] [CrossRef] [PubMed]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquacul. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Off. J. Eur. Union L 125 1996, 125, 10–32.
- European Medicines Agency (EMA). European Surveillance of Veterinary Antimicrobial Consumption. 2018. Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac (accessed on 25 July 2021).
- European Medicines Agency (EMA). Committee for Veterinary Medicinal Products. Update of the Position. Paper on Availability of Veterinary Medicines Agreed on 21 June 2000. Veterinary Medicines Information Technology. 2000. Available online: https://www.ema.europa.eu/en/documents/position/position-paper-regarding-availability-products-minor-uses-minor-species-mums_en.pdf (accessed on 22 January 2022).
- Brasil. Ministerio da Agricultura, Pecuaria e Abastecimento. Secretaria de Defesa Agropecuaria. Instrucao Normativa n° 13. Aprova os Programas de Controle de Resıduos e Contaminantes em Carnes (Bovina, Aves, Suına e Equina), Leite, Pescado, Mel e Ovos para o exercıcio de 2015. Diario Oficial da Uniao. 2015. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/plano-de-nacional-de-controle-de-residuos-e-contaminantes/documentos-da-pncrc/pncrc-2015 (accessed on 26 February 2022).
- Ministry of Fishery (MF). Decision No. 07/2005/QD-BTS. “Issued by the Ministry of Fisheries Dated 24/2/2005 on the Lists of Chemicals and Antibiotics Banned or Restricted from Use in Fisheries Production and Trade (ed. Fisheries Mo)”. 2005. Available online: https://ouci.dntb.gov.ua/en/works/4rOyXvMl/ (accessed on 22 July 2022).
- Ministry of Agriculture and Rural Development (MARD). Circular No. 71/2009/TT-BNNPTNT. Issued by the Ministry of Agriculture and Rural Development dated 10/11/2009 on the Additional List of Products for Treating and Improving Aquaculture Environment Permitted for Circulation in Viet Nam. (ed. Development MoAaR). 2009. Available online: https://ouci.dntb.gov.ua/en/works/4rOyXvMl/ (accessed on 3 August 2022).
- Ministry of Agriculture and Rural Development (MARD). List of Drugs, Chemicals and Antibiotics of Banned or Limited Use for Aquaculture and Veterinary Purposes; Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2014. Available online: https://vanbanphapluat.co/circular-no-08-vbhn-bnnptnt-2014-list-of-banned-restricted-drugs-chemicals-antibiotics (accessed on 3 August 2022).
- National Service of Fishery and Aquaculture (NSFA). Report on the Use of Antimicrobials in National Salmon Farming 2015; National Service of Fishery and Aquaculture (NSFA): Valparaıso, Chile, 2016. [Google Scholar] [CrossRef]
- Ministry of Agriculture China (MAPRC). List of Banned Veterinary Drugs and Other Chemical Compounds for Food Animals. 2002. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=List%20of%20Veterinary%20Drugs%20Banned%20for%20Use%20for%20Food%20Animals_Beijing_China%20-%20Peoples%20Republic%20of_3-11-2011.pdf (accessed on 22 June 2022).
- Ministry of Agriculture China (MAPRC). Safety Food—Criterion for Usage of Fishery Drugs. 2002. Available online: https://www.fda.gov/media/80637/ (accessed on 12 April 2022).
- Ministry of Agriculture China (MAPRC). Administrative Regulation of Quality and Safety for Aquaculture. 2003. Available online: https://www.fda.gov/media/80637/ (accessed on 10 June 2022).
- Ministry of Agriculture China (MAPRC). Requirement for Water Discharge from Freshwater Aquaculture Pond. 2007. Available online: https://www.fda.gov/media/80637/ (accessed on 22 March 2022).
- Baoprasertkul, P.; Somsiri, T.; Boonyawiwat, V. Use of veterinary medicines in Thai aquaculture: Current status. In Improving Biosecurity through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production; Bondad-Reantaso, M.G., Arthur, J.R., Subasinghe, R.P., Eds.; FAO: Rome, Italy, 2012; p. 83. Available online: https://www.fao.org/3/ba0056e/ba0056e.pdf (accessed on 22 March 2022).
- Ministry of Agriculture and Rural Development (MARD). Decision 06/2008/QD-BNN. Issued by the Ministry of Agriculture and Rural Development Dated 18/1/2008 on Amending and Supplementing the List of Animal Medicine for the Field of Fisheries and Allowed Materials Used in Improving the Aquaculture Environment. (ed. Development MoAaR). 2008. Available online: https://www.fao.org/3/ba0056e/ba0056e.pdf (accessed on 10 February 2022).
- Lozano, I.; Dıaz, N.F.; Munoz, S.; Riquelme, C. Antibiotics in Chilean Aquaculture: A Review. Antibiot. Use Anim. 2018, 3, 25–44. Available online: https://www.intechopen.com/chapters/57645 (accessed on 5 September 2022).
- Thiang, E.L.; Lee, C.W.; Takada, H.; Seki, K.; Takei, A.; Suzuki, S.; Wang, A.; Bong, C.W. Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia. Ecosyst. Health Sustain. 2021, 7, 1926337. [Google Scholar] [CrossRef]
- Lin, A.Y.C.; Yu, T.H.; Lin, C.F. Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan. Chemosphere 2008, 74, 131–141. [Google Scholar] [CrossRef]
- Xiong, W.; Sun, Y.; Zhang, T.; Ding, X.; Li, Y.; Wang, M.; Zeng, Z. Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China. Microb. Ecol. 2015, 70, 425–432. [Google Scholar] [CrossRef]
- Lai, W.W.P.; Lin, Y.C.; Wang, Y.H.; Guo, Y.L.; Lin, A.Y.C. Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters. Water Air Soil Pollut. 2018, 229, 249. Available online: https://link.springer.com/article/10.1007/s11270-018-3901-3 (accessed on 2 March 2022). [CrossRef]
- Food and Drug Administration (FDA). U.S. Food and Drug Administration Import Refusals Report. 2018. Available online: https://www.accessdata.fda.gov/scripts/importrefusals/ (accessed on 2 March 2022).
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. The Review on Antimicrobial Resistance. 2014. Available online: https://amr-review.org/Publications.html (accessed on 2 March 2022).
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. Available online: https://www.nature.com/articles/s41467-019-08853-3 (accessed on 2 March 2022). [CrossRef] [PubMed] [Green Version]
- Ferri, G.; Vergara, A. Hepatitis E Virus in the Food of Animal Origin: A Review. Foodborne Pathog. Dis. 2021, 18, 368–377. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, E.; Borrego, C.M.; Balcazar, J.L.; Cummins, E. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Sci. Total. Environ. 2018, 616–617, 1356–1364. [Google Scholar] [CrossRef]
- Hatosy, S.M.; Martiny, A.C. The ocean as a global reservoir of antibiotic resistance genes. J. Appl. Environ. Microbiol. 2015, 81, 7593–7599. [Google Scholar] [CrossRef] [Green Version]
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef]
- Muziasari, W.I.; Pitkanen, L.K.; Sørum, H.; Stedtfeld, R.D.; Tiedje, J.M.; Virta, M. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Front. Microbiol. 2017, 7, 2137. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, E.; Tedesco, P.; Esposito, F.P.; January, G.G.; Fani, R.; Jaspars, M.; de Pascale, D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Marine Drugs 2018, 16, 355. [Google Scholar] [CrossRef] [Green Version]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; de Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, I.H.; Beshiru, A.; Igbinosa, E.O. Antibiotic resistance profile of Pseudomonas aeruginosa isolated from aquaculture and abattoir environments in urban communities. Asian Pac. J. Trop. Dis. 2017, 7, 47–52. [Google Scholar] [CrossRef]
- Reilly, A.; Käferstein, F. Food safety hazard and the application of the principles of hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquacul. Res. 1997, 28, 735–752. [Google Scholar] [CrossRef]
- Vikesland, P.J.; Pruden, A.; Alvarez, P.; Aga, D.; Bürgmann, H.; Li, X.D.; Manaia, C.M.; Nambi, I.; Wigginton, K.; Zhang, T.; et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environ. Sci. Technol. 2017, 51, 13061–13069. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, D.; He, S.; Ye, H.; Zhang, L.; Wen, Y.; Zhang, W.; Shu, L.; Chen, S. Prevalence of antibiotic-resistant Escherichia coli in drinking water sources in Hangzhou city. Front. Microbiol. 2017, 8, 1133. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Gravningen, K.; Sorum, H.; Horsberg, T.E. The future of therapeutic agents in aquaculture. Rev. Sci. Tech. 2019, 38, 641–651. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in Aquaculture-Use, Abuse and Alternatives. In Health and Environment in Aquaculture; Carvalho, E.D., David, G.S., Silva, R.J., Eds.; InTech: Rang-Du-Fliers, France, 2012; Volume 6, Available online: https://books.google.it/books?hl=it&lr=&id=f9CPDwAAQBAJ&oi=fnd&pg=PA159&dq=Antibiotics+in+Aquaculture-Use,+Abuse+and+Alternatives&ots=4xDCv9_EpS&sig=V1CoGUTkCRdKzkGdtJ (accessed on 22 July 2022).
- Kümmerer, K. Resistance in the Environment. J. Antimicrob. Chemother. 2004, 54, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Hazrat, A.; Rico, A.; Murshed-e-jahan, K.; Belton, B. An Assessment of Chemical and Biological Product Use in Aquaculture in Bangladesh. Aquaculture 2016, 454, 199–209. [Google Scholar] [CrossRef]
- Shamsuzzaman, M.M.; Biswas, T.K. Aqua Chemicals in Shrimp Farm: A Study from South-west Coast of Bangladesh. Egypt J. Aquatic. Res. 2012, 38, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Hassali, M.A.; Ho, R.Y.; Verma, A.K.; Hussain, R.; Sivaraman, S. Antibiotic Use in Food Animals: Malaysia Overview; Universiti Sains Malaysia: George Town, Malaysia, 2018; Available online: https://www.reactgroup.org/wp-content/uploads/2018/11/Antibiotic_Use_in_Food_Animals_Malaysia_Overview_2018web.pdf (accessed on 22 June 2022).
- Nonaka, L.; Ikeno, K.; Suzuki, S. Distribution of Tetracycline Resistance Gene, tet(M), in Gram-positive and Gram-negative Bacteria Isolated from Sediment and Seawater at a Coastal Aquaculture Site in Japan. Microb. Environ. 2007, 22, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Hoa, P.T.P. Distribution of Quinolones, Sulfonamides, Tetracyclines in Aquatic Environment and Antibiotic Resistance in Indochina. Front. Microbiol. 2012, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.V.; Ren, Y.L. Biodegradation of Three Tetracyclines in River Sediment. Ecol. Engin. 2015, 75, 272–277. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W. Molecular Engineering of Polymeric Carbon Nitride for Highly Efficient Photocatalytic Oxytetracycline Degradation and H2O2 Production. Appl. Catal. Environ. 2020, 272, 118970. [Google Scholar] [CrossRef]
- Brooks, B.W.; Maul, J.D.; Belden, J.B. Antibiotics in Aquatic and Terrestrial Ecosystems. Encyclop. Ecol. 2008, 1, 210–217. [Google Scholar] [CrossRef]
- Leal, J.F.; Esteves, V.I.; Santos, E.B.H. Use of Sunlight to Degrade Oxytetracycline in Marine Aquaculture’s Waters. Environ. Pollut. 2016, 213, 932–939. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, Residue, and Human Health Risk of Antibiotics in Chinese Aquaculture: A Review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Igbinosa, E.O.; Okoh, A.I. Molecular detection of metallo-β-lactamase and putative virulence genes in environmental isolates of Pseudomonas species. Pol. J. Environ. Stud. 2014, 23, 2327–2331. Available online: http://www.pjoes.com/pdf-89415-23293?filename=Molecular%20Detection%20of.pdf (accessed on 19 June 2022).
- Chuah, L.O.; Effarizah, M.E.; Goni, A.M.; Rusul, G. Antibiotic application and emergence of multiple antibiotic resistance (MAR) in global catfish aquaculture. Curr. Environ. Health Rep. 2016, 3, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Oyinlola, M.A.; Reygondeau, G.; Wabnitz, C.; Frölicher, T.L.; Lam, V.; Cheung, W. Projecting global mariculture production and adaptation pathways under climate change. Glob. Chang. Biol. 2022, 28, 1315–1331. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Book Antibiotico-Resistenza: Una Minaccia Globale per la Sanità Pubblica e i Sistemi Sanitari; Chapter 2; Piano Prevenzione 2014–2018 ASL Roma 1; 2017 Crit. Rev. Food Sci. Nutr. Available online: https://www.veterinariapreventiva.it/wp-content/uploads/2019/11/027-050_CAPITOLO-2.2.pdf (accessed on 3 March 2022).
- Devarajan, N.; Laffite, A.; Mulaji, C.K.; Otamonga, J.P.; Mpiana, P.T.; Mubedi, J.I.; Prabakar, K.; Ibelings, B.W.; Pote, J. Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLoS ONE 2016, 11, e0149211. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, C.F.; Odume, O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef] [PubMed]
- Piedra-Carrasco, N.; Fàbrega, A.; Calero-Cáceres, W.; Cornejo-Sánchez, T.; Brown-Jaque, M.; Mir-Cros, A.; Muniesa, M.; González-López, J.J. Carbapenemase-producing Enterobacteriaceae recovered from a Spanish river ecosystem. PLoS ONE 2017, 12, e0175246. [Google Scholar] [CrossRef] [Green Version]
- Szekeres, E.; Chiriac, C.M.; Baricz, A.; Szőke-Nagy, T.; Lung, I.; Soran, M.L.; Rudi, K.; Dragos, N.; Coman, C. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ. Pollut. 2018, 236, 734–744. [Google Scholar] [CrossRef]
- Ginovyan, M.; Hovsepyan, V.; Sargsyan, M.; Grigoryan, K.; Trchounian, A. Antibiotic resistance of Pseudomonas species isolated from Armenian fish farms. Process Union Res Inst Marine Fish Oceanograph 2017, 167, 163–173. Available online: http://aquacultura.org/upload/files/pdf/library/trudy/167-20.pdf (accessed on 22 March 2022).
- Sacramento, A.G.; Fernandes, M.R.; Sellera, F.P.; Dolabella, S.S.; Zanella, R.C.; Cerdeira, L.; Lincopan, N. VanA-type vancomycin-resistant Enterococcus faecium ST1336 isolated from mussels in an anthropogenically impacted ecosystem. Marine Pollut. Bull. 2019, 142, 533–536. [Google Scholar] [CrossRef]
- Ferreira, A.; Pavelquesi, S.; Monteiro, E.; Rodrigues, L.; Silva, C.; Silva, I.; Orsi, D.C. Prevalence and Antimicrobial Resistance of Salmonella spp. in Aquacultured Nile Tilapia (Oreochromis niloticus) Commercialized in Federal District, Brazil. Foodborne Pathog. Dis. 2021, 18, 778–783. [Google Scholar] [CrossRef]
- Araújo, A.; Grassotti, T.T.; Frazzon, A. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. Brazil. J. Biol. 2021, 81, 954–961. [Google Scholar] [CrossRef]
- Fu, H.; Yu, P.; Liang, W.; Kan, B.; Peng, X.; Chen, L. Virulence, Resistance, and Genomic Fingerprint Traits of Vibrio cholerae Isolated from 12 Species of Aquatic Products in Shanghai, China. Microb. Drug Res. 2020, 26, 1526–1539. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Bai, M.; Geng, Y.; Chen, D.; Huang, X.; Ouyang, P.; Guo, H.; Zuo, Z.; Huang, C.; Lai, W. The potential risk of antibiotic resistance of Streptococcus iniae in sturgeon cultivation in Sichuan, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 69171–69180. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhou, S.; Chu, W. Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish. Microb. Pathog. 2020, 139, 103930. [Google Scholar] [CrossRef] [PubMed]
- Preena, P.G.; Dharmaratnam, A.; Swaminathan, T.R. Antimicrobial Resistance analysis of Pathogenic Bacteria Isolated from Freshwater Nile Tilapia (Oreochromis niloticus) Cultured in Kerala, India. Cur. Microbiol. 2020, 77, 3278–3287. [Google Scholar] [CrossRef] [PubMed]
- Basha, K.A.; Kumar, N.R.; Das, V.; Reshmi, K.; Rao, B.M.; Lalitha, K.V.; Joseph, T.C. Prevalence, molecular characterization, genetic heterogeneity and antimicrobial resistance of Listeria monocytogenes associated with fish and fishery environment in Kerala, India. Lett. Appl. Microbiol. 2019, 69, 286–293. [Google Scholar] [CrossRef]
- Labella, A.; Gennari, M.; Ghidini, V.; Trento, I.; Manfrin, A.; Borrego, J.J.; Lleo, M.M. High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Marine Pollut. Bull. 2013, 70, 197–203. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Van, T.T.; Nguyen, H.T.; Smooker, P.M.; Shimeta, J.; Coloe, P.J. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet. Microbiol. 2014, 171, 397–405. [Google Scholar] [CrossRef]
- Boss, R.; Overesch, G.; Baumgartner, A. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. J. Food Protect. 2016, 79, 1240–1246. [Google Scholar] [CrossRef]
- Koudou, A.A.; Kakou-Ngazoa, S.; Konan, K.F.; Aka, E.; Addablah, A.; Coulibaly N’Golo, D.; Kouassi, S.; Sina, M.K.; Atta Diallo, H.; Guessend, N.; et al. Occurrence of multidrug-resistant bacteria in aquaculture farms in Côte d’Ivoire (West Africa). Afr. J. Microbiol. Res. 2020, 14, 182–188. Available online: https://academicjournals.org/journal/AJMR/article-full-text-pdf/D4E869B63678 (accessed on 2 July 2022).
- Rezai, R.; Ahmadi, E.; Salimi, B. Prevalence and Antimicrobial Resistance Profile of Listeria Species Isolated from Farmed and On-Sale Rainbow Trout (Oncorhynchus mykiss) in Western Iran. J. Food Protect. 2018, 81, 886–891. [Google Scholar] [CrossRef]
- Colquhoun, D.J.; Aarflot, L.; Melvold, C.F. gyrA and parC mutations and associated quinolone resistance in Vibrio anguillarum serotype O2b strains isolated from farmed Atlantic cod (Gadus morhua) in Norway. Antimicrob. Agents Chemother. 2007, 51, 2597–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, S.; Ouchi, S.; Kuge, T.; Arai, H.; Mito, T.; Fujii, H. PCR–RFLP genotypes associated with quinolone resistance in isolates of Flavobacterium psy- chrophilum. J. Fish Dis. 2007, 30, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.Q.; Nilsen, H.; Bottolfsen, K.; Colquhoun, D.J.; Sørum, H. DNA gyrase and topoisomerase IV mutations in quinolone-resistant Flavobacterium psychrophilum isolated from dis- eased salmonids in Norway. Microb. Drug Res. 2012, 18, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lukkana, M.; Wongtavatchai, J.; Chuanchuen, R. Class 1 integrons in Aeromonas hydrophila isolates from farmed Nile tilapia (Oreochromis nilotica). J. Vet. Med. Sci. 2012, 74, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Goñi-Urriza, M.; Arpin, C.; Capdepuy, M.; Dubois, V.; Caumette, P.; Quentin, C. Type II topoisomerase quinolone resistance- determining regions of Aeromonas caviae, A. hydrophila and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob. Agents Chemother. 2002, 46, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R.; Nonaka, L.; Suzuki, S. Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aqua- culture sites. FEMS Microbiol. 2004, 237, 147–156. [Google Scholar] [CrossRef]
- Pepi, M.; Focardi, S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Int. J. Environ. Res. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef]
- Yan, L.; Liu, D.; Wang, X.H.; Wang, Y.; Zhang, B.; Wang, M.; Xu, H. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Sci. Rep. 2017, 7, 40610. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Tang, D.; Liu, Y.; Zhang, X.; Zeng, Z.; Xu, L.; Hawkey, P. Prevalence and characteristics of β-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. J. Antimicrob. Chemother. 2012, 67, 2350–2353. [Google Scholar] [CrossRef]
- Dobiasova, H.; Kutilova, I.; Piackova, V.; Vesely, T.; Cizek, A.; Dolejska, M. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Vet. Microbiol. 2014, 171, 413–421. [Google Scholar] [CrossRef]
- Tomova, A.; Ivanova, L.; Buschmann, A.H.; Godfrey, H.P.; Cabello, F.C. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. Microb. Ecol. 2017, 75, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Khajanchi, B.K.; Fadl, A.A.; Borchardt, M.A.; Berg, R.L.; Horneman, A.J.; Stemper, M.E.; Joseph, S.W.; Moyer, N.P.; Sha, J.; Chopra, A.K. Distribution of Virulence Factors and Molecular Fingerprinting of Aeromonas Species Isolates from Water and Clinical Samples: Suggestive Evidence of Water-to-Human Transmission. Appl. Environ. Microbiol. 2010, 76, 2313–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattoir, V.; Poirel, L.; Mazel, D.; Soussy, C.J.; Nordmann, P. Vibrio splendidus as the source of plasmid-mediated QnrS-Like quinolone resistance determinants. Antimicrob. Agents Chemother. 2007, 51, 2650–2651. [Google Scholar] [CrossRef] [Green Version]
- Mukwabi, D.M.; Okemo, P.O.; Otieno, S.A.; Oduor, R.O.; Okwany, Z.W. Antibiotic Resistant Pathogenic Bacteria Isolated from Aquaculture System in Bungoma County, Kenya. J. Appl. Environ. Microbioliol. 2019, 7, 25–37. Available online: https://ir-library.ku.ac.ke/bitstream/handle/123456789/21128/Antibiotic%20resistant%20pathogenic%20bacteria%20isolated%20from%20Aquaculture%20systems.pdf?sequence=1 (accessed on 3 March 2022).
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef]
- Zhao, S.; Wei, W.; Fu, G.; Zhou, J.; Wang, Y.; Li, X.; Ma, L.; Fang, W. Application of biofertilizers increases fluoroquinolone resistance in Vibrio parahaemolyticus isolated from aquaculture environments. Marine Pollut. Bull. 2020, 150, 110592. [Google Scholar] [CrossRef]
- Speer, B.S.; Shoemaker, N.B.; Salyers, A.A. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 1992, 5, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.E.; Chau, A. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 1996, 40, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.C.; Schwarz, S.; Aarts, H.J.M. Erratum: Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2012, 3, 384. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, Y.; Kadoya, A.; Kataoka, N.; Kanda, K.; Bak, S.M.; Iwata, H.; Suzuki, S. Tetracycline Resistance Gene Profiles in Red Seabream (Pagrus major) Intestine and Rearing Water After Oxytetracycline Administration. Front. Microbiol. 2020, 11, 1764. [Google Scholar] [CrossRef]
- Roberts, M.C.; No, D.; Kuchmiy, E.; Miranda, C.D. Tetracycline resistance gene tet(39) identified in three new genera of bacteria isolated in 1999 from Chilean salmon farms. J. Antimicrob. Chemother. 1999, 70, 619–621. [Google Scholar] [CrossRef] [Green Version]
- Higuera-Llante´n, S.; Va´squez-Ponce, F.; Barrientos-Espinoza, B.; Mardones, F.O.; Marshall, S.H.; Olivares-Pacheco, J. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE 2018, 13, e0203641. [Google Scholar] [CrossRef] [Green Version]
- Concha, C.; Miranda, C.D.; Santander, J.; Roberts, M.C. Genetic Characterization of the Tetracycline Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile. Antibiotics 2021, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Han, J.E.; Mohney, L.L.; Tang, K.F.J.; Pantoja, C.R.; Lightner, D.V. Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquacul. Rep. 2015, 2, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Agersø, Y.; Bruun, M.S.; Dalsgaard, I.; Larsen, J.L. The tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plas- mids in Aeromonas spp. from fish farms. Aquaculture 2007, 266, 47–52. [Google Scholar] [CrossRef]
- Miranda, C.D.; Kehrenberg, C.; Ulep, C.; Schwarz, S.; Roberts, M.C. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 2003, 47, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Su, H.C.; Ying, G.G.; Tao, R.; Zhang, R.Q.; Fogarty, L.R.; Kolpin, D.W. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. J. Environ. Monit. 2011, 13, 3229–3236. [Google Scholar] [CrossRef]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- Sørum, H. Antimicrobial drug resistance in fish pathogens. In Antimicrobial Resistance in Bacteria of Animal Origin; Wiley Online Library: Hoboken, NJ, USA, 2006; pp. 213–238. [Google Scholar] [CrossRef]
- Serrano, P.H. Responsible Use of Antibiotics in Aquaculture; FAO Fisheries Technical Paper; FAO: Rome, Italy, 2005; p. 469. Available online: https://books.google.it/books?hl=it&lr=&id=f3Eql-OUOrAC&oi=fnd&pg=PR9&dq=Responsible+use+of+antibiotics+in+aquaculture&ots=by9D2xmv0K&sig=7LtKD2EFrqNSS8spEK5nA1pAVho&redir_esc=y#v=onepage&q=Responsible%20use%20of%20antibiotics%20in%20aquaculture&f=false (accessed on 2 March 2021).
- Rådström, P.; Swedberg, G.; Sköld, O. Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. Antimicrob. Agents Chemother. 1991, 35, 1840–1848. [Google Scholar] [CrossRef] [Green Version]
- Enne, V.I.; Livermore, D.M.; Stephens, P.; Hall, L.M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 2001, 357, 1325–1328. [Google Scholar] [CrossRef]
- Nakayama, T.; Tran, T.T.H.; Harada, K.; Warisaya, M.; Asayama, M.; Hinenoya, A.; Lee, J.W.; Phu, T.M.; Ueda, S.; Sumimura, Y. Water metagenomic analysis reveals low bacterial diversity and the presence of antimicrobial residues and resistance genes in a river containing wastewater from backyard aquacultures in the Mekong Delta, Vietnam. Environ. Pollut. 2017, 222, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Thawng, C.N.; Lee, K.; Wellington, E.M.H.; Cha, C.J. A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. Environ. Int. 2019, 127, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Managaki, S.; Pärnänen, K.; Karkman, A.; Lyra, C.; Tamminen, M. Sulfonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment. PLoS ONE 2014, 9, e92702. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.; Miranda, C.D.; Fuentes, O.; de la Fuente, M.; Godoy, F.A.; Bello-Toledo, H.; González-Rocha, G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front. Microbiol. 2019, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Monika, H.; Ewa, K.; Iwona, G. The impact of a freshwater fish farm on the community of tetracycline resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere 2014, 128, 134–141. [Google Scholar] [CrossRef]
- Wu, J.J.; Su, Y.L.; Deng, Y.Q.; Guo, Z.X.; Mao, C.; Liu, G.F.; Xu, L.W.; Cheng, C.H.; Bei, L.; Feng, J. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China. Sci. Total Environ. 2019, 653, 605–611. [Google Scholar] [CrossRef]
- Yuan, J.L.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z.M. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Marine Pollut. Bull. 2019, 138, 376–384. [Google Scholar] [CrossRef]
- Liang, X.M.; Nie, X.P.; Shi, Z. Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary. Chin. J. Environ. Sci. 2013, 34, 4073–4080. Available online: https://europepmc.org/article/med/24364333 (accessed on 25 August 2022).
- Jung, H.N.; Park, D.H.; Choi, Y.J.; Kang, S.H.; Cho, H.J.; Choi, J.M.; Shim, J.H.; Zaky, A.A.; Abd El-Aty, A.M.; Shin, H.C. Simultaneous Quantification of Chloramphenicol, Thiamphenicol, Florfenicol, and Florfenicol Amine in Animal and Aquaculture Products Using Liquid Chromatography-Tandem Mass Spectrometry. Front. Nutr. 2022, 8, 812803. [Google Scholar] [CrossRef]
- Zeng, Q.; Liao, C.; Terhune, J.; Wang, L. Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. Microbiome 2019, 7, 155. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Wang, B.; Pang, M.; Zhao, X.; Xie, K.; Zhang, Y.; Wang, Y.; Guo, Y.; Liu, C.; Bu, X.; et al. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry. Food Chem. 2018, 269, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa, J.; Castro, D.; Lagos, F.; Cartes, C.; Isla, A.; Yáñez, A.J.; Avendaño-Herrera, R.; Haussmann, D. Analysis of single nucleotide polymorphisms (SNPs) associated with antibiotic resistance genes in Chilean Piscirickettsia salmonis strains. J. Fish Dis. 2019, 42, 1645–1655. [Google Scholar] [CrossRef]
- Assaneab, I.M.; Suemi, K.; Moraes, G.G.; Valladãoac, R.; Pilarskia, F. Combination of antimicrobials as an approach to reduce their application in aquaculture: Emphasis on the use of thiamphenicol/florfenicol against Aeromonas hydrophila. Aquaculture 2019, 507, 238–245. [Google Scholar] [CrossRef]
- Rodger, H.D. Fish Disease Causing Economic Impact in Global Aquaculture. In Fish Vaccines. Birkhäuser Advances in Infectious Diseases; Adams, A., Ed.; Springer: Basel, Switzerland, 2016; Available online: https://link.springer.com/chapter/10.1007/978-3-0348-0980-1_1 (accessed on 3 March 2022).
- Lakshmi, B.; Syed, S.; Buddolla, V. Chapter 10—Current advances in the protection of viral diseases in aquaculture with special reference to vaccination. In Recent Developments in Applied Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 127–146. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). Get Smart: Know when Antibiotics Work; Center for Disease Control: Atlanta, GA, USA, 2010; Available online: https://apua.org/cdc-get-smart-week (accessed on 12 May 2022).
- Flores-Kossack, C.; Montero, R.; Köllner, B.; Maisey, K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol. 2020, 98, 52–67. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Mutoloki, S.; Evensen, Ø.A. Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front. Immunol. 2015, 6, 427. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Torrealba, D.; Ruyra, À.; Roher, N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology 2015, 4, 664–696. [Google Scholar] [CrossRef] [Green Version]
- Brudeseth, B.E.; Wiulsrød, R.; Fredriksen, B.N.; Lindmo, K.; Løkling, K.E.; Bordevik, M.; Steine, N.; Klevan, A.; Gravningen, K. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013, 35, 1759–1768. [Google Scholar] [CrossRef]
- United States Department of Agriculture (UNDA). Performance Evaluation of Intensive, Pond-Based Culture Systems for Catfish Production; Southern Regional Aquaculture Center (USA, New York): 2014. Available online: https://srac.msstate.edu/pdfs/APRS%20and%20Summary/27th%20APR%20web-%20indivual%20reports/Intensive%20Systems%20CR%20for%202014.pdf (accessed on 2 February 2022).
- Brunton, L.A.; Desbois, A.P.; Garza, M.; Wieland, B.; Mohan, C.V.; Häsler, B.; Tam, C.C.; Le, P.; Phuong, N.T.; Van, P.T.; et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems. Sci. Total Environ. 2019, 687, 1344–1356. [Google Scholar] [CrossRef]
- Lauzon, H.L.; Gudmundsdottir, S.; Steinarsson, A.; Oddgerisson, M.; Peturdottir, S.K.; Reynisson, E.; Bjorndottir, R.; Gudumundsdottir, B.K. Effects of bacterial treatment at early stages of Atalntic cod (Gadus morhua L.) on larval survival and development. J. Appl. Microbiol. 2010, 108, 624–632. [Google Scholar] [CrossRef]
- Makridis, P.; Martins, S.; Reis, J.; Dinis, M.T. Use of probiotic bacteria in the rearing of Senegalese sole (Solea senegalensis) larvae. Aquacul. Res. 2008, 39, 627–634. [Google Scholar] [CrossRef]
- Plante, S.; Pernet, F.; Hache, R.; Ritchie, R.; Ji, B.J.; McIntosh, D. Ontogenetic variations in lipid class and fatty acid composition of haddock larvae Melanogrammus aeglefinus in relation to changes in diet and microbial environment. Aquaculture 2007, 263, 107–121. [Google Scholar] [CrossRef]
- Zou, J.; Jiang, H.; Cheng, H.; Fang, J.; Huang, G. Strategies for screening, purification and characterization of bacteriocins. Int. J. Biol. Macromol. 2018, 117, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef]
- An, J.; Zhu, W.; Liu, Y.; Zhang, X.; Sun, L.; Hong, P.; Wang, Y.; Xu, C.; Liu, H. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 2015, 51, 278–282. [Google Scholar] [CrossRef]
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K.N. Aquaculture and stress management: A review of probiotic intervention. J. Animal Physiol. Animal Nutr. 2013, 97, 405–430. [Google Scholar] [CrossRef]
- Wilson, A.B. MHC and adaptive immunity in teleost fishes. Immunogen 2017, 69, 521–528. [Google Scholar] [CrossRef]
Pharmacologically Active Substance | Marker Residue | Animal Species | MRL* |
---|---|---|---|
Benzylpenicillin | Benzylpenicillin | All other food-producing species. | 50 µg/kg |
Chlortetracycline | Sum of parent drug and its 4-epimer | Fin fish (all other food-producing species). | 100 µg/kg |
Cloxacillin | Cloxacillin | Fin fish (all other food-producing species). | 300 µg/kg |
Colistin | Colistin | Fin fish (all other food-producing species). | 150 µg/kg |
Danofloxacin | Danofloxacin | Fin fish (all other food-producing species). | 100 µg/kg |
Dicloxacillin | Dicloxacillin | Fin fish (all other food-producing species). | 300 µg/kg |
Difloxacin | Difloxacin | Fin fish (all other food-producing species). | 300 µg/kg |
Enrofloxacin | Enrofloxacin | Fin fish | 100 µg/kg |
Erythromycin | Erythromycin A | Fin fish | 200 µg/kg |
Florfenicol | Sum of florfenicol and its metabolites measured as florfenicol amine | Fin fish | 1000 µg/kg |
Flumequine | Flumequine | Fin fish | 600 µg/kg |
Lincomycin | Lincomycin | Fin fish (all other food-producing species). | 1000 µg/kg |
Neomycin (including Framycetin) | Neomycin B | Fin fish (all other food-producing species). | 500 µg/kg |
Oxacillin | Oxacillin | Fin fish (all other food-producing species). | 300 µg/kg |
Oxolinic acid | Oxolinic acid | Fin fish (all other food-producing species). | 100 µg/kg |
Oxytetracycline | Sum of parent drug and its 4-epimer | Fin fish (all other food-producing species). | 100 µg/kg |
Paromomycin | Paromomycin | Fin fish (all other food-producing species). | 500 µg/kg |
Sarafloxacin | Sarafloxacin | Salmonidae | 30 µg/kg |
Spectinomycin | Spectinomycin | Fin fish (all other food-producing species). | 300 µg/kg |
Sulfonamides (all substances belonging to the Sulfonamides group) | Parent group | Fin fish (all other food-producing species). | 100 µg/kg |
Tetracycline | Sum of parent drug and its 4-epimer | Fin fish (all other food-producing species). | 100 µg/kg |
Thiamphenicol | Thiamphenicol | Fin fish (all other food-producing species). | 50 µg/kg |
Tilmicosin | Tilmicosin | Fin fish (all other food-producing species). | 50 µg/kg |
Trimethoprim | Trimethoprim | Fin fish (all other food-producing species). | 50 µg/kg |
Tylosin | Tylosin | Fin fish (all other food-producing species). | 100 µg/kg |
Antimicrobials/Chemical Molecules | Use | Dose | Withdrawal Time and Other Limitations (Useful for MRL*) |
---|---|---|---|
Chloramine-T | For the control of mortality in: Freshwater-reared salmonids infected by Flavobacterium spp. Walleye due to Flavobacterium columnare. | 12–20 mg/L (administered as a static bath every day for three treatments). | 0 day |
Formalin (37%) | The use of formalin is possible to be expanded as a parasiticide for all finfish and penaeid shrimp and as a fungicide to the eggs of all finfish | Administered in tanks and raceways for up 1 h (µL/L): Salmon and trout → up to 170 µL/L with a temperature above 10 °C/50 °F, or → up to 250 µL/L with a temperature below 10 °C/50 °F. All other finfish → up to 250 µL/L. | 0 day |
Hydrogen peroxide (35%) | For the control of mortality in finfish’s eggs and other losses caused by Flavobacterium branchiophilum and F. columnare. | Freshwater-reared finfish eggs: 500 to 1000 mg/L for 15 min in a continuous flow system (consecutive or alternate days) until hatch. Freshwater-reared salmonids: 100 mg/L for 30 min or 50–100 mg/L for 60 min once per day on alternate days for three treatments in a continuous flow. | 0 day |
Oxytetraycline hydrochloride | For the marking of skeletal tissues in finfish fry and fingerlings. | 200–700 mg/2 L of water for 2 to 6 h. | 0 day |
Florfenicol | For control mortality caused by Edwardsiela ictaluri (enteric septicemia) and Flavobacterium columnare. | 10 mg/kg of body weight for 10 consecutive days. | 12 days (under veterinarian prescription) |
Oxytetracycline dehydrate | Control Aeromonas liquifaciens and Pseusomonas spp. disease (they cause hemorrhagic septicemia), especially in Oncorhynchus spp. and Salmo spp. | 10 mg/kg of body weight for 10 consecutive days. | 21 days to catfish and 30 days to lobster |
Sulfadimethoxine/ormetoprim | Control of E. ictulari | 50 mg/kg of body weight for 5 days. | 3 days. |
Country | Finfish Samples n. | Isolated Bacterial Strains | Phenotypic AMR*/MDR* | References |
---|---|---|---|---|
Brazil | n. 101 Oreochromis niloticus | Salmonella spp. (46 isolates) | Amoxicillin/Clavulanic acid (87.7%) Tetracycline (82.5%) Sulfonamide (57.9%) Chloramphenicol (26.3%) 56:1% of Salmonella spp. isolates were MDR: Beta-lactam (blaCTX gene 66.7%) Tetracycline (tetA gene 54.4%) Chloramphenicol (floR gene 50.9%) Sulfonamide (sul2 gene 49.1%) | [74] |
n. 50 Cyprinus carpio n. 50 Oreochromis niloticus | Enterococcus faecalis (79 isolates) | Tetracycline (57.7% tetL and tetM) Erythromycin (31.01% msrC) | [75] | |
China | n. 50 fish samples: Aristichthys nobilis Carassius auratus Ctenopharyngodon idellus Parabramis pekinensis | Vibrio cholerae (370 isolates) | MDR: Streptomycin (62.2%) 230 Ampicillin (60.3%) 223 Rifampicin (53.8%) 199 | [76] |
n. 17 Acipenser spp. | Streptococcus iniae (18 isolates) | Tetracycline (35.6% tetA-02) Beta-lactams (25.3% blaTEM) Aminoglycosides (22.1% aadA1) | [77] | |
n. 75 Carassius auratus | Aeromonas hydrophila (n. 28 isolates) | MDR: Penicillin (100%) Ampicillin (100%) Amoxicillin (96.4%) Piperacillin (92.9%) Cefalexin (78.6%) Doxitard (75%) Teicoplanin (67.9%) | [78] | |
India | n. 25 Oreochromis niloticus | Pseudomonas entomophila Aeromonas hydrophila | MDR: Bacitracin (100%) Ampicillin (70%) Cephalothin (60%) Cafazolin (50%) All resistant to: Amoxicillin Ampicillin | [79] |
n. 97 Mugil cephalus | Listeria monocytogenes (n. 21 isolates) | 69% of Listeria isolates were MDR to: Ampicillin Penicillin Erythromycin Tetracycline Clindamycin | [80] | |
Armenia | n. 25 Oncorhyncus mykiss | Pseudomonas spp.: P. anguilliseptica P. fluorescens P. stutzeri P.putida P. aeruginosa P. algaligenes | Resistance percentages: Piperacillin (45.6%) Pefloxacin (33.3%) Ciprofloxacin (3.2%) All susceptible to: Chloramphenicol | [72] |
Italy | n. 300 fish samples: n. 100 Dicentrarchus labrax n. 100 Umbrina cirrose n. 100 Sparus aurata | Vibrio spp. Aeromonas spp. Shewanella spp. Photobacterium spp. | Resistance percentages: Tetracycline (11.54%) (147/1274) Trimethoprim/Sulfadiazine (7%) (89/1274) | [81] |
Vietnam | n. 50 Ictalurus spp. | Pseudomonas spp. (n. 116 isolates) | Ampicillin (99.1%) Sulfamethoxazole (93.1%) Chloramphenicol (88.8%) Nitrofurantoin (90.5%) Nalidixic acid (90.5%) Norfloxacin (9.5%) Ciprofloxacin (8.6%) Tetracycline (30.2%) Doxycycline (25%) | [82] |
Aeromonas spp. (n. 92 isolates) | Ampicillin (93.5%) Sulfamethoxazole (60.9% Chloramphenicol (31.5%) Nitrofurantoin (25%) Nalidixic acid (52.2%) Ciprofloxacin (7.6%) Norfloxacin (4.4%) | |||
Vietnam Scotland Denmark Norway France Bangladesh Thailand Indonesia Ecuador | n. 44 fish samples: n. 12 Pangasiodon hypophthalmus 11 Salmo salar 10 Crassostrea gigas 11 Penaeus mongodon | Escherichia coli (n. 60) Enterococcus spp. (n.69) Pseudomonas spp. (n. 26) Staphylococcus aureus (n. 9) (246 isolates) | MDR strains: n. 7 E. coli resistant to: Chloramphenicol Ciprofloxacin Ampicillin Nalidixic acid Sulfamethoxazole Trimethoprim n. 3 Enterococcus faecalis resistant to: Chloramphenicol Gentamicine Tetracycline n. 4 Staphylococcus aureus resistant to: Chloramphenicol Kanamycin Tetracycline | [83] |
Côte d’Ivoire | n. 480 Oreochromis niloticus | n. 1696 strains: Escherichia coli (15.9%) Pseudomonas aeruginosa (10.4%) Bacillus cereus (14.9%) Enterococcus faecalis (14.2%) Citrobacter freundii (13.5%) | Resistance percentages: Amoxicillin/Clavulanic Acid (5.8%) Piperacillin and Penicillin (8.7%) Gentamycin (7.2%) | [84] |
Iran | n. 240 Trota iridea | n. 86 Listeria spp. isolates | Tetracycline (62.79%) Enrofloxacin (56.97%) Ciprofloxacin (38.37%) Penicillin (36.04%) Ampicillin (34.88%) | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics 2022, 11, 1574. https://doi.org/10.3390/antibiotics11111574
Ferri G, Lauteri C, Vergara A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics. 2022; 11(11):1574. https://doi.org/10.3390/antibiotics11111574
Chicago/Turabian StyleFerri, Gianluigi, Carlotta Lauteri, and Alberto Vergara. 2022. "Antibiotic Resistance in the Finfish Aquaculture Industry: A Review" Antibiotics 11, no. 11: 1574. https://doi.org/10.3390/antibiotics11111574
APA StyleFerri, G., Lauteri, C., & Vergara, A. (2022). Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics, 11(11), 1574. https://doi.org/10.3390/antibiotics11111574