Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand
Abstract
:1. Introduction
2. Results
2.1. The Genotypic Distribution of MDR-TB in Upper Northern THAILAND
2.2. Demographics and Characteristics of Tuberculosis in Upper Northern THAILAND
2.3. The Association of MDR-TB and the Mutation Profiles in rpoB, katG, and the inhA Promoter
3. Discussion
4. Materials and Methods
4.1. Study Design, Study Period, and Ethics
4.2. Samples and Data Collection
4.3. DNA Sequencing and Analysis
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report. 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 18 November 2022).
- World Health Organization. Global Tuberculosis Report. 2020. Available online: https://www.who.int/publica-tions/i/item/9789240013131 (accessed on 1 August 2022).
- World Health Organization. Global Tuberculosis Report. 2021. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021 (accessed on 1 August 2022).
- Center of Epidemiological Information. Bureau of Epidemiology. Reported Cases and Deaths by Province and by Month Thailand 2561(2018). Tuberculosis. 2018, pp. 32–34. Available online: https://apps-doe.moph.go.th/boeeng/download/AW_Annual_Mix%206212_14_r1.pdf (accessed on 10 August 2022).
- Strategy and Evaluation Group in Bureau of Tuberculosis. Tuberculosis Situation in Thailand. 2018. Available online: https://www.tbthailand.org/download/สถานการณ์วัณโรคของประเทศไทย 10 พย. 60 final 1.pdf (accessed on 1 August 2022).
- Foreign Workers Administration Office. Journal of Statistics on the Number of Migrant Workers Permitted to Work Remaining throughout Thailand. 2015. Available online: https://www.doe.go.th/prd/alien/statistic/param/site/152/cat/82/sub/74/pull/sub_category/view/list-label (accessed on 1 August 2022).
- Jenkins, C.; Claxton, A.P.; Shorten, R.J.; McHugh, T.D.; Gillespie, S.H. Rifampicin Resistance in Tuberculosis Outbreak, London, England. Emerg. Infect. Dis. 2005, 11, 912–920. [Google Scholar] [CrossRef]
- Prammananan, T.; Cheunoy, W.; Taechamahapun, D.; Yorsangsukkamol, J.; Phunpruch, S.; Phdarat, P.; Leechawengwong, M.; Chaiprasert, A. Distribution of rpoB mutations among multidrug-resistant Mycobacterium tuberculosis (MDRTB) strains from Thailand and development of a rapid method for mutation detection. Clin. Microbiol. Infect. 2008, 14, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anukool, U.; Phunpae, P.; Tharinjaroen, C.S.; Butr-Indr, B.; Saikaew, S.; Netirat, N.; Intorasoot, S.; Suthachai, V.; Tragoolpua, K.; Chaiprasert, A. Genotypic Distribution and a Potential Diagnostic Assay of Multidrug-Resistant Tuberculosis in Northern Thailand. Infect. Drug Resist. 2020, 13, 3375–3382. [Google Scholar] [CrossRef]
- Seifert, M.; Catanzaro, D.; Catanzaro, A.; Rodwell, T.C. Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis: A Systematic Review. PLoS ONE 2015, 10, e0119628. [Google Scholar] [CrossRef] [Green Version]
- Lacoma, A.; Garcia-Sierra, N.; Prat, C.; Ruiz-Manzano, J.; Haba, L.; Rosés, S.; Maldonado, J.; Domínguez, J. GenoType MTBDR plus Assay for Molecular Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Strains and Clinical Samples. J. Clin. Microbiol. 2008, 46, 3660–3667. [Google Scholar] [CrossRef] [Green Version]
- Isakova, Z.T. Distribution of mutations in the rpoB, katG, inhA, ahpC gene of rifampicin and isoniazid resistant M. tuberculosis strains isolated in Kyrgyz Republic. Mol. Genet. Microbiol. Virol. 2008, 4, 36–38. [Google Scholar]
- Luo, T.; Zhao, M.; Li, X.; Xu, P.; Gui, X.; Pickerill, S.; DeRiemer, K.; Mei, J.; Gao, Q. Selection of Mutations to Detect Multidrug-Resistant Mycobacterium tuberculosis Strains in Shanghai, China. Antimicrob. Agents Chemother. 2010, 54, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gan, X.; Li, N.; Wang, J.; Li, K.; Zhang, H. rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou, one of the highest incidence rate regions in China. J. Antimicrob. Chemother. 2010, 65, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Boonaiam, S.; Chaiprasert, A.; Prammananan, T.; Leechawengwongs, M. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin. Microbiol. Infect. 2010, 16, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.J.; Morlock, G.P.; Sikes, R.D.; Dalton, T.L.; Metchock, B.; Starks, A.M.; Hooks, D.P.; Cowan, L.S.; Plikaytis, B.B.; Posey, J.E. Molecular Detection of Mutations Associated with First- and Second-Line Drug Resistance Compared with Conventional Drug Susceptibility Testing of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2011, 55, 2032–2041. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, F.B.; Guthrie, J.L.; Neemuchwala, A.; Lastovetska, O.; Melano, R.G.; Mehaffy, C. Profiling of rpoB Mutations and MICs for Rifampin and Rifabutin in Mycobacterium tuberculosis. J. Clin. Microbiol. 2014, 52, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Jaksuwan, R.; Tharavichikul, P.; Patumanond, J.; Chuchottaworn, C.; Chanwong, S.; Smithtikarn, S.; Settakorn, J. Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand. Infect. Drug Resist. 2017, 10, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, K.; Abe, C.; Takahashi, M. Mutations in the rpoB Gene of Rifampin-Resistant Mycobacterium tuberculosis Strains Isolated Mostly in Asian Countries and Their Rapid Detection by Line Probe Assay. J. Clin. Microbiol. 1999, 37, 2663–2666. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Shi, W.; Xie, J.; Li, Y.; Zeng, E.; Wang, H. Mutations in the rpoB Gene of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China. J. Clin. Microbiol. 2003, 41, 2209–2212. [Google Scholar] [CrossRef] [Green Version]
- Min, P.K.H.; Pitaksajjakul, P.; Tipkrua, N.; Wongwit, W.; Jintaridh, P.; Ramasoota, P. Novel mutation detection IN rpoB OF rifampicin-resistant Mycobacterium tuberculosis using pyrosequencing. Southeast Asian J. Trop. Med. Public Health 2014, 45, 843. [Google Scholar]
- Suthum, K.; Samosornsuk, W.; Samosornsuk, S. Characterization of katG, inhA, rpoB and pncA in Mycobacterium tuberculosis isolates from MDR-TB risk patients in Thailand. J. Infect. Dev. Ctries. 2020, 14, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-L.; Wen, Z.-L.; Chen, G.-Z.; Li, R.; Ding, B.-B.; Yao, Y.-F.; Li, Y.; Wu, H.; Guo, X.-K.; Wang, H.-H.; et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated from South-central in China. J. Antibiot. 2014, 67, 291–297. [Google Scholar] [CrossRef]
- Berrada, Z.L.; Lin, S.-Y.G.; Rodwell, T.C.; Nguyen, D.; Schecter, G.F.; Pham, L.; Janda, J.M.; Elmaraachli, W.; Catanzaro, A.; Desmond, E. Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn. Microbiol. Infect. Dis. 2016, 85, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-C.; Lu, J.; Lu, Y.; Xiao, T.-Y.; Liu, H.-C.; Lin, S.-Q.; Xu, D.; Li, G.-L.; Zhao, X.-Q.; Liu, Z.-G.; et al. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect. Drug Resist. 2021, 14, 4119–4128. [Google Scholar] [CrossRef]
- Hughes, D.; Brandis, G. Rifampicin Resistance: Fitness Costs and the Significance of Compensatory Evolution. Antibiotics 2013, 2, 206–216. [Google Scholar] [CrossRef] [Green Version]
- da Silva, P.E.A.; Palomino, J.C. Molecular Basis and Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Classical and New Drugs. J. Antimicrob. Chemother. 2011, 66, 1417–1430. [Google Scholar] [CrossRef]
- Louw, G.E.; Warren, R.M.; van Pittius, N.C.G.; McEvoy, C.R.E.; Van Helden, P.D.; Victor, T.C. A Balancing Act: Efflux/Influx in Mycobacterial Drug Resistance. Antimicrob. Agents Chemother. 2009, 53, 3181–3189. [Google Scholar] [CrossRef]
- Choi, G.E.; Lee, S.M.; Yi, J.; Hwang, S.H.; Kim, H.H.; Lee, E.Y.; Cho, E.H.; Kim, J.H.; Kim, H.-J.; Chang, C.L. High-Resolution Melting Curve Analysis for Rapid Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Clinical Isolates. J. Clin. Microbiol. 2010, 48, 3893–3898. [Google Scholar] [CrossRef] [Green Version]
- Galarza, M.; Fasabi, M.; Levano, K.S.; Castillo, E.; Barreda, N.; Rodriguez, M.; Guio, H. High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infect. Dis. 2016, 16, 260. [Google Scholar] [CrossRef] [Green Version]
- Dohál, M.; Dvořáková, V.; Šperková, M.; Pinková, M.; Spitaleri, A.; Norman, A.; Cabibbe, A.M.; Rasmussen, E.M.; Porvazník, I.; Škereňová, M.; et al. Whole genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates collected in the Czech Republic, 2005–2020. Sci. Rep. 2022, 12, 7149. [Google Scholar] [CrossRef]
- Chuchottaworn, C.; Thanachartwet, V.; Sangsayunh, P.; Than, T.Z.M.; Sahassananda, D.; Surabotsophon, M.; Desakorn, V. Risk Factors for Multidrug-Resistant Tuberculosis among Patients with Pulmonary Tuberculosis at the Central Chest Institute of Thailand. PLoS ONE 2015, 10, e0139986. [Google Scholar] [CrossRef]
- Jitmuang, A.; Munjit, P.; Foongladda, S. Prevalence and Factors Associated with Multidrug-Resistant Tuberculosis at Siriraj Hospital, Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46, 697–706. [Google Scholar]
- Baya, B.; Achenbach, C.J.; Kone, B.; Toloba, Y.; Dabitao, D.K.; Diarra, B.; Goita, D.; Diabaté, S.; Maiga, M.; Soumare, D.; et al. Clinical risk factors associated with multidrug-resistant tuberculosis (MDR-TB) in Mali. Int. J. Infect. Dis. 2019, 81, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Guled, A.Y.; Elmi, A.H.; Abdi, B.M.; Rage, A.M.A.; Ali, F.M.; Abdinur, A.H.; Ali, A.A.; Ahmed, A.A.; Ibrahim, K.A.; Mohamed, S.O.; et al. Prevalence of Rifampicin Resistance and Associated Risk Factors among Suspected Multidrug Resistant Tuberculosis Cases in TB Centers Mogadishu-Somalia: Descriptive Study. Open J. Respir. Dis. 2016, 6, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Mulisa, G.; Workneh, T.; Hordofa, N.; Suaudi, M.; Abebe, G.; Jarso, G. Multidrug-resistant Mycobacterium tuberculosis and associated risk factors in Oromia Region of Ethiopia. Int. J. Infect. Dis. 2015, 39, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ma, Y.; Du, J.; Zhu, G.; Tan, S.; Fu, Y.; Ma, L.; Zhang, L.; Liu, F.; Hu, D.; et al. Later emergence of acquired drug resistance and its effect on treatment outcome in patients treated with Standard Short-Course Chemotherapy for tuberculosis. BMC Pulm. Med. 2016, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.M.; Akhtar, S.; Hasan, R.; Khan, J.A.; Hussain, S.F.; Rizvi, N. Risk factors for multidrug-resistant tuberculosis in urban Pakistan: A multicenter case–control study. Int. J. Mycobacteriology 2012, 1, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Stosic, M.; Vukovic, D.; Babic, D.; Antonijevic, G.; Foley, K.L.; Vujcic, I.; Grujicic, S.S. Risk factors for multidrug-resistant tuberculosis among tuberculosis patients in Serbia: A case-control study. BMC Public Health 2018, 18, 1114. [Google Scholar] [CrossRef]
- Shin, H.S.; Choi, D.S.; Na, J.B.; Choi, H.Y.; Kim, J.-E.; Choi, H.C.; Won, J.H.; Lee, S.J.; Park, M.J. Low pectoralis muscle index, cavitary nodule or mass and segmental to lobar consolidation as predictors of primary multidrug-resistant tuberculosis: A comparison with primary drug sensitive tuberculosis. PLoS ONE 2020, 15, e0239431. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Zhang, W.; Qiao, R.-J.; Tang, J. Risk factors for multidrug-resistant tuberculosis: A worldwide systematic review and meta-analysis. PLoS ONE 2022, 17, e0270003. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.V.; Cowart, K.C.; Campbell, P.J.; Morlock, G.P.; Sikes, D.; Winchell, J.M.; Posey, J.E. Rapid Detection of Multidrug-Resistant Mycobacterium tuberculosis by Use of Real-Time PCR and High-Resolution Melt Analysis. J. Clin. Microbiol. 2010, 48, 4003–4009. [Google Scholar] [CrossRef]
- Hall, T.A. BIOEDIT: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
Mutation Profile | Frequency | Percent (%) | |
---|---|---|---|
The Mutation in rpoB Gene | |||
rpoB | S531L (TCG>TTG) | 26 | 50.98 |
H526Y (CAC>TAC) | 10 | 19.61 | |
H526D (CAC>GAC) | 6 | 11.76 | |
D516V (GAC>GTC) | 3 | 5.88 | |
S522L (TCG>TTG) | 1 | 1.96 | |
H526R (CAC>CGC) | 1 | 1.96 | |
H526P (CAC>CCC) | 1 | 1.96 | |
Q513P (CAA>CCA) | 1 | 1.96 | |
H526C (CAC>TGC) | 1 | 1.96 | |
No mutation | 1 | 1.96 | |
The mutation in katG and inhA promoter | |||
katG | S315T (AGC>ACC) | 27 | 52.94 |
inhA promoter | −15 (C>T) −9 (T>C) −17 (G>T) | 8 1 1 | 15.67 1.96 1.96 |
katG/inhA promoter | S315T (AGC>ACC)/−8 (T>G) S315T (AGC>ACC)/−15 (C>T) S315T (AGC>ACC)/−17 (G>T) | 3 1 1 | 5.88 1.96 1.96 |
No mutation | 9 | 17.67 |
Sample Code | Mutation Profile | Percent (%) (n) | ||
---|---|---|---|---|
rpoB | katG | inhA Promoter | ||
MDR 1-5 | S531L | No mutation | No mutation | 9.80 (5) |
MDR 6-16 | S315T | No mutation | 21.57 (11) | |
MDR 17-22 | No mutation | −15 (C>T) | 11.76 (6) | |
MDR 23 | No mutation | −7 (G>T) | 1.96 (1) | |
MDR 24-26 | S315T | −8 (T>G) | 5.88 (3) | |
MDR 27-29 | H526Y | No mutation | No mutation | 5.88 (3) |
MDR 31-35 | S315T | No mutation | 11.76 (5) | |
MDR 36 | No mutation | −15 (C>T) | 1.96 (1) | |
MDR 37-41 | H526D | S315T | No mutation | 9.80 (5) |
MDR 42 | No mutation | −15 (C>T) | 1.96 (1) | |
MDR 43-44 | D516V | S315T | No mutation | 3.92 (2) |
MDR 45 | No mutation | −9 (T>C) | 1.96 (1) | |
MDR 46 | S522L | S315T | −17 (G>T) | 1.96 (1) |
MDR 47 | H526R | S315T | −15 (C>T) | 1.96 (1) |
MDR 48 | Q513P | No mutation | No mutation | 1.96 (1) |
MDR 49 | H526C | S315T | No mutation | 1.96 (1) |
MDR 50 | H526P | S315T | No mutation | 1.96 (1) |
MDR 51 | No mutation | S315T | No mutation | 1.96 (1) |
Characteristics (n) | MDR-TB (n = 42) | DS-TB (n = 68) | p-Value 1 |
---|---|---|---|
Gender | |||
Male (78) | 27 (64.29%) | 51 (75.0%) | 0.229 |
Female (32) | 15 (35.71%) | 17 (25.0%) | |
Age, Mean ± S.D. (minimum-maximum) | 48.3 ± 15.6 (23–89) | 52.95 ±17.38 (17–84) | |
<60 years (73) | 34 (80.95%) | 39 (57.35%) | 0.011* |
≥60 years (37) | 8 (19.05%) | 29 (42.65%) | |
Nationality | |||
Thai (102) | 38 (37.25%) | 64 (90.12%) | 0.478 |
Other (8) | 4 (9.52%) | 4 (5.88%) | |
Province of residence | |||
Chiang Mai (35) | 10 (23.81%) | 25 (36.76%) | 0.156 |
Other provinces (75) | 32 (76.19%) | 43 (63.24%) | |
AFB smear 2 | |||
Positive (83) | 32 (84.21%) | 51 (76.12%) | 0.328 |
Negative (22) | 6 (15.79%) | 16 (23.88%) | |
Drug susceptibility testing | |||
Ethambutol | |||
Resistant (2) | 2 (4.76%%) | - | 0.144 |
Susceptible (108) | 40 (95.24%) | 68 (100%) | |
Streptomycin | |||
Resistant (9) | 9 (21.24%) | - | 1.000 |
Susceptible (101) | 33 (78.57%) | 68 (100%) |
Characteristics (n) | The rpoB Gene Mutation | p-Value 1 | |
---|---|---|---|
S531L MDR-TB (n = 22) | Non-S531L MDR-TB (n = 20) | ||
Gender | |||
Male (27) | 17 (77.27%) | 10 (50.0%) | 0.107 |
Female (15) | 5 (22.73%) | 10 (50.0%) | |
Age | (44.8 ± 13.95) (24–75) | (52.2 ± 16.82) (23–89) | |
<60 years (34) | 20 (90.91%) | 14 (70.0%) | 0.123 |
≥60 years (8) | 2 (9.09%) | 6 (30.0%) | |
Nationality | 0.608 | ||
Thai (38) | 19 (86.36%) | 19 (95.0%) | |
Other (4) | 3 (13.64%) | 1 (5.0%) | |
Province of Residence | 0.721 | ||
Chiang Rai (18) | 10 (45.45%) | 8 (40.0%) | |
Other provinces (24) | 12 (54.55%) | 12 (60.0%) | |
Acid fast bacilli (AFB) 2 | 0.868 | ||
Positive (32) | 16 (80.0%) | 16 (88.89%) | |
Negative (6) | 4 (20.0%) | 2 (11.11%) | |
Drug susceptibility testing | |||
Ethambutol | |||
Resistant (2) | 1 (4.55%) | 1 (5.0%) | 0.945 |
Susceptible (40) | 21 (95.45%) | 19 (95.0%) | |
Streptomycin | |||
Resistant (9) | 5 (22.73%) | 4 (20.0%) | 0.830 |
Susceptible (33) | 17 (77.27%) | 16 (80.0%) |
Characteristics (n) | The katG Gene and inhA Promoter Mutation | p-Value 1 | |
---|---|---|---|
S315T MDR-TB (n =22) | Non-S315T MDR-TB (n =20) | ||
Gender | |||
Male (27) | 14 (63.64%) | 13 (65.0%) | 0.927 |
Female (15) | 8 (36.36%) | 7 (35.0%) | |
Age | (54.3 ± 16.4) (24–89) | (41.7 ± 11.9) (23–70) | |
<60 years (34) | 15 (68.18%) | 19 (95.0%) | 0.047 * |
≥60 years (8) | 7 (31.82%) | 1 (5.0%) | |
Nationality | |||
Thai (38) | 20 (90.91%) | 18 (90.0%) | 1.000 |
Other (4) | 2 (9.09%) | 2 (10.0%) | |
Province of residence | |||
Chiang Rai (18) | 11 (50.0%) | 7 (35.0%) | 0.366 |
Other provinces (24) | 11 (50.0%) | 13 (65.0%) | |
Acid fast bacilli (AFB) 2 | |||
Positive (32) | 16 (84.21%) | 16 (84.21%) | 0.635 |
Negative (6) | 3 (15.79%) | 3 (15.79%) | |
Drug susceptibility testing | |||
Ethambutol | |||
Resistant (2) | 1 (4.55%) | 1 (5.0%) | 0.945 |
Susceptible (40) | 21 (95.45%) | 19 (95.0%) | |
Streptomycin | |||
Resistant (9) | 7 (77.8%) | 2 (10.0%) | 0.135 |
Susceptible (33) | 15 (57.7%) | 18 (90.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saikaew, S.; Thongprachum, A.; Pongsararuk, R.; Thanraka, A.; Kunyanone, N.; Chaiyasirinroje, B.; Luangsook, P.; Butr-Indr, B.; Phunpae, P.; Wattananandkul, U. Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand. Antibiotics 2022, 11, 1733. https://doi.org/10.3390/antibiotics11121733
Saikaew S, Thongprachum A, Pongsararuk R, Thanraka A, Kunyanone N, Chaiyasirinroje B, Luangsook P, Butr-Indr B, Phunpae P, Wattananandkul U. Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand. Antibiotics. 2022; 11(12):1733. https://doi.org/10.3390/antibiotics11121733
Chicago/Turabian StyleSaikaew, Sukanya, Aksara Thongprachum, Rodjana Pongsararuk, Aungkana Thanraka, Naowarat Kunyanone, Boonchai Chaiyasirinroje, Praphan Luangsook, Bordin Butr-Indr, Ponrut Phunpae, and Usanee Wattananandkul. 2022. "Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand" Antibiotics 11, no. 12: 1733. https://doi.org/10.3390/antibiotics11121733
APA StyleSaikaew, S., Thongprachum, A., Pongsararuk, R., Thanraka, A., Kunyanone, N., Chaiyasirinroje, B., Luangsook, P., Butr-Indr, B., Phunpae, P., & Wattananandkul, U. (2022). Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand. Antibiotics, 11(12), 1733. https://doi.org/10.3390/antibiotics11121733