When and How to Use MIC in Clinical Practice?
Abstract
:1. Introduction
2. MIC and Its Microbiological Indications
2.1. MIC Determination Methods
2.2. Relevance and Microbiological Indication of MIC Determination
2.2.1. Agar Diffusion Method Is Inappropriate for Some Antibiotics
2.2.2. Absence of Detection of the Resistance Level to β-Lactams
2.2.3. Detection of Low-Level Antibiotic Resistance
2.2.4. MIC Creep
2.2.5. Preservation of Broad-Spectrum Antibiotics
2.2.6. Therapy for Carbapenemase-Producing Enterobacterales (CPE)-Related Infections
3. Relevance of PK/PD Indices and TDM
3.1. PK-PD Indices
3.2. Relevance of MIC Determination to Perform TDM
3.2.1. Situations at Risk of Toxicity
3.2.2. Situations at Risk of Under-Exposure
Populations at Risk of Drug Under-Exposure
Difficult-to-Reach Sites of Infections
4. Discussion
5. Current Limitations and New Challenges
5.1. Limitations Associated with TDM
5.2. Limitations of MIC Determination
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to Novel β-Lactam–β-Lactamase Inhibitor Combinations. Infect. Dis. Clin. North Am. 2020, 34, 773–819. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents. Terminology. Clin. Microbiol. Infect. 1998, 4, 291–296. [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the Treatment with Beta-Lactam Antibiotics in Critically Ill Patients—Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit. Care 2019, 23, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Landersdorfer, C.B.; Nation, R.L. Key Challenges in Providing Effective Antibiotic Therapy for Critically Ill Patients with Bacterial Sepsis and Septic Shock. Clin. Pharm. 2021, 109, 892–904. [Google Scholar] [CrossRef]
- Cabellos, C.; Guillem, L.; Pelegrin, I.; Tubau, F.; Ardanuy, C.; Gudiol, F.; Ariza, J.; Viladrich, P.F. Penicillin- and Cephalosporin-Resistant Pneumococcal Meningitis: Treatment in the Real World and in Guidelines. Antimicrob. Agents Chemother. 2022, 66, e00820-22. [Google Scholar] [CrossRef]
- Pilmis, B.; Lourtet-Hascoët, J.; Barraud, O.; Piau, C.; Isnard, C.; Hery-Arnaud, G.; Amara, M.; Merens, A.; Farfour, E.; Thomas, E.; et al. Be Careful about MICs to Amoxicillin for Patients with Streptococci-Related Infective Endocarditis. Int. J. Antimicrob. Agents 2019, 53, 850–854. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- CA-SFM/EUCAST. Comité de L’antibiogramme de La Société Française de Microbiologie Recommandations 2022; V.1.0 Mai 2022; Société Française de Microbiologie: Paris, France, 2022. [Google Scholar]
- CA-SFM/EUCAST. Haemophilus Spp. In Comité de L’antibiogramme de la Société Française de Microbiologie; V.1.0 Mai 2022; Société Française de Microbiologie: Paris, France, 2022; pp. 105–110. [Google Scholar]
- Sanbongi, Y.; Ida, T.; Ishikawa, M.; Osaki, Y.; Kataoka, H.; Suzuki, T.; Kondo, K.; Ohsawa, F.; Yonezawa, M. Complete Sequences of Six Penicillin-Binding Protein Genes from 40 Streptococcus Pneumoniae Clinical Isolates Collected in Japan. Antimicrob Agents Chemother 2004, 48, 2244–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakenbeck, R.; Brückner, R.; Denapaite, D.; Maurer, P. Molecular Mechanisms of β-Lactam Resistance in Streptococcus Pneumoniae. Future Microbiol. 2012, 7, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Ubukata, K.; Shibasaki, Y.; Yamamoto, K.; Chiba, N.; Hasegawa, K.; Takeuchi, Y.; Sunakawa, K.; Inoue, M.; Konno, M. Association of Amino Acid Substitutions in Penicillin-Binding Protein 3 with Beta-Lactam Resistance in Beta-Lactamase-Negative Ampicillin-Resistant Haemophilus Influenzae. Antimicrob Agents Chemother 2001, 45, 1693–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ubukata, K.; Chiba, N.; Hasegawa, K.; Shibasaki, Y.; Sunakawa, K.; Nonoyama, M.; Iwata, S.; Konno, M. Differentiation of Beta-Lactamase-Negative Ampicillin-Resistant Haemophilus Influenzae from Other H. Influenzae Strains by a Disc Method. J. Infect Chemother 2002, 8, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.M.; Threlfall, E. Antimicrobial Resistance in Typhoidal and Nontyphoidal Salmonellae. Curr. Opin. Infect. Dis. 2008, 21, 531–538. [Google Scholar] [CrossRef]
- Crump, J.A.; Barrett, T.J.; Nelson, J.T.; Angulo, F.J. Reevaluating Fluoroquinolone Breakpoints for Salmonella Enterica Serotype Typhi and for Non-Typhi Salmonellae. Clin. Infect. Dis. 2003, 37, 75–81. [Google Scholar] [CrossRef]
- Cavaco, L.M.; Aarestrup, F.M. Evaluation of Quinolones for Use in Detection of Determinants of Acquired Quinolone Resistance, Including the New Transmissible Resistance Mechanisms QnrA, QnrB, QnrS and Aac (6′) Ib-Cr, in Escherichia Coli and Salmonella Enterica and Determinations of Wild-Type Distributions. J. Clin. Microbiol. 2009, 47, 2751–2758. [Google Scholar] [CrossRef] [Green Version]
- Moise-Broder, P.A.; Forrest, A.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of Vancomycin and Other Antimicrobials in Patients with Staphylococcus Aureus Lower Respiratory Tract Infections. Clin. Pharm. 2004, 43, 925–942. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus Aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [Green Version]
- Kullar, R.; Davis, S.L.; Levine, D.P.; Rybak, M.J. Impact of Vancomycin Exposure on Outcomes in Patients With Methicillin-Resistant Staphylococcus Aureus Bacteremia: Support for Consensus Guidelines Suggested Targets. Clin. Infect. Dis. 2011, 52, 975–981. [Google Scholar] [CrossRef]
- Dhand, A.; Sakoulas, G. Reduced Vancomycin Susceptibility among Clinical Staphylococcus Aureus Isolates (‘the MIC Creep’): Implications for Therapy. F1000 Med. Rep. 2012, 4. [Google Scholar] [CrossRef]
- CASFM/EUCAST. Staphylococcus Spp. In Comité de L’antibiogramme de La Société Française de Microbiologie Recommandations 2022; V.1.0 Mai 2022; Société Française de Microbiologie: Paris, France, 2022; pp. 71–78. [Google Scholar]
- Nicolau, D.P. Carbapenems: A Potent Class of Antibiotics. Expert Opin. Pharmacother. 2008, 9, 23–37. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol Rev 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armand-Lefèvre, L.; Angebault, C.; Barbier, F.; Hamelet, E.; Defrance, G.; Ruppé, E.; Bronchard, R.; Lepeule, R.; Lucet, J.-C.; El Mniai, A.; et al. Emergence of Imipenem-Resistant Gram-Negative Bacilli in Intestinal Flora of Intensive Care Patients. Antimicrob Agents Chemother 2013, 57, 1488–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, M.; Advincula, M.R.; Malczynski, M.; Qi, C.; Bolon, M.; Scheetz, M.H. Correlations of Antibiotic Use and Carbapenem Resistance in Enterobacteriaceae. Antimicrob Agents Chemother 2013, 57, 5131–5133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CA-SFM/EUCAST. Enterobacterales. In Comité de L’antibiogramme de La Société Française de Microbiologie Recommandations 2022; V.1.0 Mai 2022; Société Française de Microbiologie: Paris, France, 2022; pp. 46–56. [Google Scholar]
- Peterson, L.R. Antibiotic Policy and Prescribing Strategies for Therapy of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: The Role of Piperacillin–Tazobactam. Clin. Microbiol. Infect. 2008, 14, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Perez, F.; Bonomo, R.A. Can We Really Use SS-Lactam/ß-Lactam Inhibitor Combinations for the Treatment of Infections Caused by Extended-Spectrum ß-Lactamase-Producing Bacteria? Clin. Infect. Dis. 2012, 54, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Bano, J.; Navarro, M.D.; Retamar, P.; Picon, E.; Pascual, A. The Extended-Spectrum Beta-Lactamases-Red Espanola de Investigacion en Patologia Infecciosa/Grupo de Estudio de Infeccion Hospitalaria Group -Lactam/ -Lactam Inhibitor Combinations for the Treatment of Bacteremia Due to Extended-Spectrum -Lactamase-Producing Escherichia Coli: A Post Hoc Analysis of Prospective Cohorts. Clin. Infect. Dis. 2012, 54, 167–174. [Google Scholar] [CrossRef]
- Retamar, P.; López-Cerero, L.; Muniain, M.A.; Pascual, Á.; Rodríguez-Baño, J. The ESBL-REIPI/GEIH Group Impact of the MIC of Piperacillin-Tazobactam on the Outcome of Patients with Bacteremia Due to Extended-Spectrum-β-Lactamase-Producing Escherichia Coli. Antimicrob. Agents Chemother. 2013, 57, 3402–3404. [Google Scholar] [CrossRef]
- Andes, D.; Craig, W.A. Treatment of Infections with ESBL-Producing Organisms: Pharmacokinetic and Pharmacodynamic Considerations. Clin. Microbiol. Infect. 2005, 11 (Suppl. 6), 10–17. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus Combination Therapy for Multidrug-Resistant Gram-Negative Infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [Green Version]
- Soriano, A.; Carmeli, Y.; Omrani, A.S.; Moore, L.S.P.; Tawadrous, M.; Irani, P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect. Dis. 2021, 10, 1989–2034. [Google Scholar] [CrossRef] [PubMed]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T.; Dortet, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Taccone, F.S.; Roberts, J.A. Therapeutic Drug Monitoring of Anti-Infective Agents in Critically Ill Patients. Expert. Rev. Clin. Pharm. 2016, 9, 961–979. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin. Infect. Dis. 1998, 26, 1–10; quiz 11–12. [Google Scholar] [CrossRef]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of Pharmacokinetic/Pharmacodynamic (PK/PD) Terminology for Anti-Infective Drugs: An Update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Lamoth, F.; Buclin, T.; Pascual, A.; Vora, S.; Bolay, S.; Decosterd, L.A.; Calandra, T.; Marchetti, O. High Cefepime Plasma Concentrations and Neurological Toxicity in Febrile Neutropenic Patients with Mild Impairment of Renal Function. Antimicrob. Agents Chemother. 2010, 54, 4360–4367. [Google Scholar] [CrossRef]
- Huwyler, T.; Lenggenhager, L.; Abbas, M.; Ing Lorenzini, K.; Hughes, S.; Huttner, B.; Karmime, A.; Uçkay, I.; von Dach, E.; Lescuyer, P.; et al. Cefepime Plasma Concentrations and Clinical Toxicity: A Retrospective Cohort Study. Clin. Microbiol. Infect. 2017, 23, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too Much of a Good Thing: A Retrospective Study of β-Lactam Concentration-Toxicity Relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinton, M.-C.; Bodeau, S.; Kontar, L.; Zerbib, Y.; Maizel, J.; Slama, M.; Masmoudi, K.; Lemaire-Hurtel, A.-S.; Bennis, Y. Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e00654-17. [Google Scholar] [CrossRef] [Green Version]
- Forrest, A.; Nix, D.E.; Ballow, C.H.; Goss, T.F.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of Intravenous Ciprofloxacin in Seriously Ill Patients. Antimicrob. Agents Chemother. 1993, 37, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Preston, S.L.; Drusano, G.L.; Berman, A.L.; Fowler, C.L.; Chow, A.T.; Dornseif, B.; Reichl, V.; Natarajan, J.; Corrado, M. Pharmacodynamics of Levofloxacin: A New Paradigm for Early Clinical Trials. JAMA 1998, 279, 125–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.D.; Lietman, P.S.; Smith, C.R. Clinical Response to Aminoglycoside Therapy: Importance of the Ratio of Peak Concentration to Minimal Inhibitory Concentration. J. Infect. Dis. 1987, 155, 93–99. [Google Scholar] [CrossRef]
- Lacy, M.K.; Nicolau, D.P.; Nightingale, C.H.; Quintiliani, R. The Pharmacodynamics of Aminoglycosides. Clin. Infect. Dis. 1998, 27, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Duszynska, W.; Taccone, F.S.; Hurkacz, M.; Kowalska-Krochmal, B.; Wiela-Hojeńska, A.; Kübler, A. Therapeutic Drug Monitoring of Amikacin in Septic Patients. Crit Care 2013, 17, R165. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, T.P.; Kotapati, C.; Roberts, M.J.; Rowland, J.; Lipman, J.; Roberts, J.A.; Udy, A. Factors Associated with Vancomycin Nephrotoxicity in the Critically Ill. Anaesth Intensive Care 2015, 43, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Ingram, P.R.; Lye, D.C.; Tambyah, P.A.; Goh, W.P.; Tam, V.H.; Fisher, D.A. Risk Factors for Nephrotoxicity Associated with Continuous Vancomycin Infusion in Outpatient Parenteral Antibiotic Therapy. J. Antimicrob. Chemother. 2008, 62, 168–171. [Google Scholar] [CrossRef]
- Rayner, C.R.; Forrest, A.; Meagher, A.K.; Birmingham, M.C.; Schentag, J.J. Clinical Pharmacodynamics of Linezolid in Seriously Ill Patients Treated in a Compassionate Use Programme. Clin. Pharm. 2003, 42, 1411–1423. [Google Scholar] [CrossRef]
- Gregoire, N.; Chauzy, A.; Buyck, J.; Rammaert, B.; Couet, W.; Marchand, S. Clinical Pharmacokinetics of Daptomycin. Clin. Pharm. 2021, 60, 271–281. [Google Scholar] [CrossRef]
- Sorlí, L.; Luque, S.; Grau, S.; Berenguer, N.; Segura, C.; Montero, M.M.; Alvarez-Lerma, F.; Knobel, H.; Benito, N.; Horcajada, J.P. Trough Colistin Plasma Level Is an Independent Risk Factor for Nephrotoxicity: A Prospective Observational Cohort Study. BMC Infect. Dis. 2013, 13, 380. [Google Scholar] [CrossRef] [Green Version]
- Tabah, A.; Lipman, J.; Barbier, F.; Buetti, N.; Timsit, J.-F. on behalf of the ESCMID Study Group for Infections in Critically Ill Patients—ESGCIP. Use of Antimicrobials for Bloodstream Infections in the Intensive Care Unit, a Clinically Oriented Review. Antibiot 2022, 11, 362. [Google Scholar] [CrossRef]
- Butterfield, J.M.; Lodise, T.P.; Beegle, S.; Rosen, J.; Farkas, J.; Pai, M.P. Pharmacokinetics and Pharmacodynamics of Extended-Infusion Piperacillin/Tazobactam in Adult Patients with Cystic Fibrosis-Related Acute Pulmonary Exacerbations. J. Antimicrob. Chemother. 2014, 69, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Guet-Revillet, H.; Tomini, E.; Emirian, A.; Join-Lambert, O.; Lécuyer, H.; Zahar, J.-R.; Jullien, V. Piperacillin/Tazobactam as an Alternative Antibiotic Therapy to Carbapenems in the Treatment of Urinary Tract Infections Due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: An in Silico Pharmacokinetic Study. Int. J. Antimicrob. Agents 2017, 49, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Alshaer, M.H.; Barlow, B.; Maranchick, N.; Moser, M.; Gramss, L.; Burgmann, H.; Jalali, V.A.; Wölfl-Duchek, M.; Jäger, W.; Poschner, S.; et al. Meropenem Population Pharmacokinetics and Simulations in Plasma, Cerebrospinal Fluid, and Brain Tissue. Antimicrob. Agents Chemother. 2022, 66, e0043822. [Google Scholar] [CrossRef]
- Dreesen, E.; Gijsen, M.; Elkayal, O.; Annaert, P.; Debaveye, Y.; Wauters, J.; Karlsson, M.O.; Spriet, I. Ceftriaxone Dosing Based on the Predicted Probability of Augmented Renal Clearance in Critically Ill Patients with Pneumonia. J. Antimicrob. Chemother. 2022, 77, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- El-Haffaf, I.; Guilhaumou, R.; Velly, L.; Marsot, A. Using a Validated Population Pharmacokinetic Model for Dosing Recommendations of Continuous Infusion Piperacillin for Critically Ill Adult Patients. Clin. Pharm. 2022, 61, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, F.; Fily, F.; Foulquier, J.-B.; Revest, M.; Jullien, V.; Petitcollin, A.; Tattevin, P.; Tron, C.; Polard, J.-L.; Verdier, M.-C.; et al. Development of a Dosing-Adjustment Tool for Fluoroquinolones in Osteoarticular Infections: The Fluo-Pop Study. Biomed. Pharm. 2021, 142, 112053. [Google Scholar] [CrossRef] [PubMed]
- Hodiamont, C.J.; van den Broek, A.K.; de Vroom, S.L.; Prins, J.M.; Mathôt, R.A.A.; van Hest, R.M. Clinical Pharmacokinetics of Gentamicin in Various Patient Populations and Consequences for Optimal Dosing for Gram-Negative Infections: An Updated Review. Clin. Pharm. 2022, 61, 1075–1094. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-Infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Bilbao-Meseguer, I.; Rodríguez-Gascón, A.; Barrasa, H.; Isla, A.; Solinís, M.Á. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clin. Pharm. 2018, 57, 1107–1121. [Google Scholar] [CrossRef] [PubMed]
- Dhaese, S.A.M.; Roberts, J.A.; Carlier, M.; Verstraete, A.G.; Stove, V.; De Waele, J.J. Population Pharmacokinetics of Continuous Infusion of Piperacillin in Critically Ill Patients. Int. J. Antimicrob. Agents 2018, 51, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finazzi, S.; Luci, G.; Olivieri, C.; Langer, M.; Mandelli, G.; Corona, A.; Viaggi, B.; Di Paolo, A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part I. Antibiotics 2022, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Viaggi, B.; Cangialosi, A.; Langer, M.; Olivieri, C.; Gori, A.; Corona, A.; Finazzi, S.; Di Paolo, A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics 2022, 11, 1193. [Google Scholar] [CrossRef]
- Seguin, P.; Verdier, M.C.; Chanavaz, C.; Engrand, C.; Laviolle, B.; Donnio, P.-Y.; Mallédant, Y. Plasma and Peritoneal Concentration Following Continuous Infusion of Cefotaxime in Patients with Secondary Peritonitis. J. Antimicrob. Chemother. 2009, 63, 564–567. [Google Scholar] [CrossRef] [Green Version]
- Ferry, T.; Desmarchelier, R.; Magréault, S.; Valour, F. Lyon BJI Study group Gentamicin-Vancomycin-Colistin Local Antibiotherapy in a Cement Spacer in a 54-Year-Old Haemophilic Patient with Relapsing Plurimicrobial Severe Prosthetic Joint Infection. BMJ Case Rep. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Taccone, F.S.; Laterre, P.-F.; Dugernier, T.; Spapen, H.; Delattre, I.; Wittebole, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.-L.; et al. Insufficient β-Lactam Concentrations in the Early Phase of Severe Sepsis and Septic Shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef]
- Gorham, J.; Taccone, F.S.; Hites, M. Ensuring Target Concentrations of Antibiotics in Critically Ill Patients through Dose Adjustment. Expert Opin. Drug Metab. Toxicol. 2022, 18, 177–187. [Google Scholar] [CrossRef] [PubMed]
- de Montmollin, E.; Bouadma, L.; Gault, N.; Mourvillier, B.; Mariotte, E.; Chemam, S.; Massias, L.; Papy, E.; Tubach, F.; Wolff, M.; et al. Predictors of Insufficient Amikacin Peak Concentration in Critically Ill Patients Receiving a 25 Mg/Kg Total Body Weight Regimen. Intensive Care Med. 2014, 40, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Putcha, N.; Suh, Y.D.; Van Arendonk, K.J.; Rinke, M.L. Does Prolonged β-Lactam Infusions Improve Clinical Outcomes Compared to Intermittent Infusions? A Meta-Analysis and Systematic Review of Randomized, Controlled Trials. BMC Infect. Dis. 2011, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, M.; Nelson, D.; O’Neal, M.; Gould, A.P.; Bouchard, J.; Nicolau, D.; Justo, J.A.; Hucks, J.; Bookstaver, P.B. Use of Continuous-Infusion Ceftolozane/Tazobactam for Resistant Gram-Negative Bacterial Infections: A Retrospective Analysis and Brief Review of the Literature. Int. J. Antimicrob. Agents 2020, 56, 106158. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.T.; Kourtis, A.P. Treatment of Meningitis Caused by Methicillin-Resistant Staphylococcus Aureus with Linezolid. Infection 2007, 35, 271–274. [Google Scholar] [CrossRef]
- Young, N.; Thomas, M. Meningitis in Adults: Diagnosis and Management. Intern. Med. J. 2018, 48, 1294–1307. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y.; Seki, S.; Yasuda, T.; Nakamura, Y.; Nakano, M.; Kimura, T. Postoperative Meningitis in Patients with Cervical Cord Tumor: A Case Report. Asian Spine J. 2010, 4, 136. [Google Scholar] [CrossRef]
- Azimi, T.; Mirzadeh, M.; Sabour, S.; Nasser, A.; Fallah, F.; Pourmand, M.R. Coagulase-Negative Staphylococci (CoNS) Meningitis: A Narrative Review of the Literature from 2000 to 2020. New Microbes New Infect. 2020, 37, 100755. [Google Scholar] [CrossRef]
- Macheda, G.; El Helali, N.; Péan de Ponfilly, G.; Kloeckner, M.; Garçon, P.; Maillet, M.; Tolsma, V.; Mory, C.; Le Monnier, A.; Pilmis, B. Impact of Therapeutic Drug Monitoring of Antibiotics in the Management of Infective Endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1183–1190. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Y.; Wang, P.; Ren, J. Diagnosis and Treatment of Retroperitoneal Infection. Surg. Infect. 2021, 22, 477–484. [Google Scholar] [CrossRef]
- Cattaneo, D.; Falcone, M.; Gervasoni, C.; Marriott, D.J.E. Therapeutic Drug Monitoring of Antibiotics in the Elderly: A Narrative Review. Drug Monit. 2022, 44, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Akkerman-Nijland, A.M.; Akkerman, O.W.; Grasmeijer, F.; Hagedoorn, P.; Frijlink, H.W.; Rottier, B.L.; Koppelman, G.H.; Touw, D.J. The Pharmacokinetics of Antibiotics in Cystic Fibrosis. Expert Opin. Drug Metab. Toxicol. 2021, 17, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Guillot, E.; Sermet, I.; Ferroni, A.; Chhun, S.; Pons, G.; Zahar, J.-R.; Jullien, V. Suboptimal Ciprofloxacin Dosing as a Potential Cause of Decreased Pseudomonas Aeruginosa Susceptibility in Children with Cystic Fibrosis. Pharmacotherapy 2010, 30, 1252–1258. [Google Scholar] [CrossRef] [PubMed]
- Kois, A.K.; Gluck, J.A.; Nicolau, D.P.; Kuti, J.L. Pharmacokinetics and Time above the MIC Exposure of Cefepime in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation (ECMO). Int. J. Antimicrob. Agents 2022, 60, 106603. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, J.; Carrié, C.; d’Houdain, N.; Djabarouti, S.; Petit, L.; Xuereb, F.; Legeron, R.; Biais, M.; Breilh, D. Are Standard Dosing Regimens of Ceftriaxone Adapted for Critically Ill Patients with Augmented Creatinine Clearance? Antimicrob. Agents Chemother. 2019, 63, e02134-18. [Google Scholar] [CrossRef] [Green Version]
- Chabert, P.; Provoost, J.; Cohen, S.; Dupieux-Chabert, C.; Bitker, L.; Ferry, T.; Goutelle, S.; Richard, J.-C. Pharmacokinetics, Efficacy and Tolerance of Cefoxitin in the Treatment of Cefoxitin-Susceptible Extended-Spectrum Beta-Lactamase Producing Enterobacterales Infections in Critically Ill Patients: A Retrospective Single-Center Study. Ann. Intensive Care 2022, 12, 90. [Google Scholar] [CrossRef]
- Zha, L.; Li, X.; Ren, Z.; Zhang, D.; Zou, Y.; Pan, L.; Li, S.; Chen, S.; Tefsen, B. Pragmatic Comparison of Piperacillin/Tazobactam versus Carbapenems in Treating Patients with Nosocomial Pneumonia Caused by Extended-Spectrum β-Lactamase-Producing Klebsiella Pneumoniae. Antibiotics 2022, 11, 1384. [Google Scholar] [CrossRef]
- Henderson, A.; Paterson, D.L.; Chatfield, M.D.; Tambyah, P.A.; Lye, D.C.; De, P.P.; Lin, R.T.P.; Chew, K.L.; Yin, M.; Lee, T.H.; et al. Association Between Minimum Inhibitory Concentration, Beta-Lactamase Genes and Mortality for Patients Treated With Piperacillin/Tazobactam or Meropenem From the MERINO Study. Clin. Infect. Dis. 2021, 73, e3842–e3850. [Google Scholar] [CrossRef]
- Caro, Y.S.; Cámara, M.S.; De Zan, M.M. A Review of Bioanalytical Methods for the Therapeutic Drug Monitoring of β-Lactam Antibiotics in Critically Ill Patients: Evaluation of the Approaches Used to Develop and Validate Quality Attributes. Talanta 2020, 210, 120619. [Google Scholar] [CrossRef]
- Mortensen, J.S.; Jensen, B.P.; Doogue, M. Pre-Analytical Stability of Flucloxacillin, Piperacillin, Tazobactam, Meropenem, Cefalexin, Cefazolin, and Ceftazidime in Therapeutic Drug Monitoring: A Structured Review. Drug Monit. 2022. [Google Scholar] [CrossRef]
- Martens-Lobenhoffer, J.; Kielstein, J.T.; Oye, C.; Bode-Böger, S.M. Validated High Performance Liquid Chromatography-UV Detection Method for the Determination of Daptomycin in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Jongedijk, E.M.; Hu, Y.; Kuhlin, J.; Zheng, R.; Niward, K.; Paues, J.; Xu, B.; Davies Forsman, L.; Schön, T.; et al. Development and Validation of a Simple LC-MS/MS Method for Simultaneous Determination of Moxifloxacin, Levofloxacin, Prothionamide, Pyrazinamide and Ethambutol in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1158, 122397. [Google Scholar] [CrossRef] [PubMed]
- Jager, N.G.L.; Chai, M.G.; van Hest, R.M.; Lipman, J.; Roberts, J.A.; Cotta, M.O. Precision Dosing Software to Optimize Antimicrobial Dosing: A Systematic Search and Follow-up Survey of Available Programs. Clin. Microbiol. Infect. 2022, 28, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Burgard, M.; Stacey, S.; Sandaradura, I.; Lai, T.; Coorey, C.; Cincunegui, M.; Staatz, C.E.; Hennig, S. An Evaluation of the User-Friendliness of Bayesian Forecasting Programs in a Clinical Setting. Br. J. Clin. Pharmacol. 2019, 85, 2436–2441. [Google Scholar] [CrossRef]
- Fratoni, A.J.; Nicolau, D.P.; Kuti, J.L. A Guide to Therapeutic Drug Monitoring of β-Lactam Antibiotics. Pharmacotherapy 2021, 41, 220–233. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of Inappropriate Antimicrobial Therapy Results in a Fivefold Reduction of Survival in Human Septic Shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Tibbetts, R.; George, S.; Burwell, R.; Rajeev, L.; Rhodes, P.A.; Singh, P.; Samuel, L. Performance of the Reveal Rapid Antibiotic Susceptibility Testing System on Gram-Negative Blood Cultures at a Large Urban Hospital. J. Clin. Microbiol. 2022, 60, e00098-22. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Bulman, Z.P. Inoculum Effect of β-Lactam Antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
Microbiological Determinants | Bacteria of Concern | Antibiotic of Concern |
---|---|---|
Agar diffusion method as inappropriate for some antibiotics | Gram-positive bacteria Staphylococcus spp. Enterobacterales, P. aeruginosa, A. baumannii | Daptomycin Dalbavancin Oritavancin Telavancin Vancomycin Teicoplanin Fosfomycin iv Colistin |
Absence of detection of the resistance level to β-lactams | Streptococcus pneumoniae (reduced susceptibility to penicillin strains) Haemophilus influenzae (BLNAR * strains) | β-Lactams |
Detection of low-level antibiotic resistance | Salmonella sp. | Ciprofloxacin |
MIC creep | Staphylococcus aureus | Vancomycin |
Preserve broad-spectrum antibiotics | Enterobacterales | Piperacillin/tazobactam Cephalosporins |
PK/PD Index | PK/PD Threshold for Efficacy | PK Threshold for Toxicity | ||
---|---|---|---|---|
β-Lactams | %fT>MIC | 100% fT>4x MIC | Neurotoxicity: Cefepim: Cmin > 22 mg/L Css > 35 mg/L Meropenem: Cmin > 64 mg/L Piperacillin: Css > 157 mg/L $ Css > 360 mg/L Nephrotoxicity: Meropenem: Cmin > 44.5 mg/L Piperacillin: Cmin > 453 mg/L | [6,44,45,46,47] |
Fluoroquinolones | fAUC0–24/MIC | AUC0-24/MIC > 125 Cmax/MIC > 10–12 | [48,49] | |
Aminoglycosides | Cmax/MIC | Cmax/MIC > 8–10 | Oto- and Nephrotoxicity: Gentamicin, tobramycin: Cmin > 1 mg/L Amikacin: Cmin > 5 mg/L | [50,51,52] |
Vancomycin | fAUC0–24/MIC | AUC0-24/MIC > 400 | Nephrotoxicity: Cmin > 20 mg/L Css > 25 mg/L | [20,21,53,54] |
Linezolid | fAUC0–24/MIC %fT>MIC | AUC0-24/MIC > 100 85% fT > MIC | Hematotoxicity: Cmin > 6 mg/L | [55] |
Daptomycin | fAUC0–24/MIC | AUC0-24/MIC > 666 | Myotoxicity: Cmin > 24 mg/L | [56] |
Colistin | fAUC0–24/MIC | Unclear | Nephrotoxicity: Cmin > 2.4 mg/L | [57] |
Bacterial resistance | Whenever an alternative to the reference treatment is used |
|
Infection site | When antibiotics with limited diffusion are used. |
|
Patient characteristics | When the population is at risk of under-exposure |
|
Patient outcome | When the outcome is not favorable |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magréault, S.; Jauréguy, F.; Carbonnelle, E.; Zahar, J.-R. When and How to Use MIC in Clinical Practice? Antibiotics 2022, 11, 1748. https://doi.org/10.3390/antibiotics11121748
Magréault S, Jauréguy F, Carbonnelle E, Zahar J-R. When and How to Use MIC in Clinical Practice? Antibiotics. 2022; 11(12):1748. https://doi.org/10.3390/antibiotics11121748
Chicago/Turabian StyleMagréault, Sophie, Françoise Jauréguy, Etienne Carbonnelle, and Jean-Ralph Zahar. 2022. "When and How to Use MIC in Clinical Practice?" Antibiotics 11, no. 12: 1748. https://doi.org/10.3390/antibiotics11121748
APA StyleMagréault, S., Jauréguy, F., Carbonnelle, E., & Zahar, J.-R. (2022). When and How to Use MIC in Clinical Practice? Antibiotics, 11(12), 1748. https://doi.org/10.3390/antibiotics11121748