Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expansion of the DfrB Family
2.2. Genomic Context Analysis of DfrB12–21
2.3. The Broader DfrB Sequence Space Includes DfrB of Concern
2.4. DfrB Genes with Similar Level of Mobility Share Closer Evolutionary Relationships
3. Conclusions
4. Materials and Methods
4.1. Identification of Putative dfrB Genes
4.2. Minimal Inhibitory Concentration (MIC)
4.3. Dihydrofolate Reductase Activity Assays in E. coli Lysate
4.4. Genomic Context Analysis
4.5. Phylogenetic Tree
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huovinen, P. Trimethoprim resistance. Antimicrob. Agents Chemother. 1987, 31, 1451–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjong, E.; Dimri, M.; Mohiuddin, S.S. Biochemistry, Tetrahydrofolate. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Fleming, M.P.; Datta, N.; Grüneberg, R.N. Trimethoprim resistance determined by R factors. Br. Med. J. 1972, 1, 726–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, E.E. Searching sequence space: Two different approaches to dihydrofolate reductase catalysis. Chembiochem 2005, 6, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, G.M.; Huovinen, P. Resistance to Trimethoprim-Sulfamethoxazole. Clin. Infect. Dis. 2001, 32, 1608–1614. [Google Scholar] [CrossRef] [Green Version]
- L’Abée-Lund, T.M.; Sørum, H. Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide. Microb. Drug Resist. 2001, 7, 263–272. [Google Scholar] [CrossRef]
- Kadlec, K.; Kehrenberg, C.; Schwarz, S. Molecular basis of resistance to trimethoprim, chloramphenicol and sulphonamides in Bordetella bronchiseptica. J. Antimicrob. Chemother. 2005, 56, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Tennstedt, T.; Szczepanowski, R.; Braun, S.; Pühler, A.; Schlüter, A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol. Ecol. 2003, 45, 239–252. [Google Scholar] [CrossRef]
- Barlow, R.S.; Pemberton, J.M.; Desmarchelier, P.M.; Gobius, K.S. Isolation and characterization of integron-containing bacteria without antibiotic selection. Antimicrob. Agents Chemother. 2004, 48, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Sunde, M. Prevalence and characterization of class 1 and class 2 integrons in Escherichia coli isolated from meat and meat products of Norwegian origin. J. Antimicrob. Chemother. 2005, 56, 1019–1024. [Google Scholar] [CrossRef]
- Toulouse, J.L.; Edens, T.J.; Alejaldre, L.; Manges, A.R.; Pelletier, J.N. Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance. Antimicrob. Agents Chemother. 2017, 61, e02665-16. [Google Scholar] [CrossRef]
- Lemay-St-Denis, C.; Diwan, S.-S.; Pelletier, J.N. The Bacterial Genomic Context of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases Highlights an Emerging Threat to Public Health. Antibiotics 2021, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Toulouse, J.L.; Shi, G.; Lemay-St-Denis, C.; Ebert, M.C.C.J.C.; Deon, D.; Gagnon, M.; Ruediger, E.; Saint-Jacques, K.; Forge, D.; Vanden Eynde, J.J.; et al. Dual-Target Inhibitors of the Folate Pathway Inhibit Intrinsically Trimethoprim-Resistant DfrB Dihydrofolate Reductases. ACS Med. Chem. Lett. 2020, 11, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Brisson, N.; Hohn, T. Nucleotide sequence of the dihydrofolate-reductase gene borne by the plasmid R67 and conferring methotrexate resistance. Gene 1984, 28, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Lemay-St-Denis, C.; Alejaldre, L.; Jemouai, Z.; Lafontaine, K.; St-Aubin, M.; Hitache, K.; Valikhani, D.; Weerasinghe, N.W.; Létourneau, M.; Thibodeaux, C.J.; et al. A conserved SH3-like fold in diverse putative proteins tetramerises into an oxidoreductase providing an antimicrobial resistance phenotype. Philos. Trans. R. Soc. B Biol. Sci. 2022. [Google Scholar] [CrossRef]
- Narayana, N.; Matthews, D.A.; Howell, E.E.; Nguyen-huu, X. A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site. Nat. Struct. Biol. 1995, 2, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Krahn, J.M.; Jackson, M.R.; Derose, E.F.; Howell, E.E.; London, R.E. Crystal Structure of a Type II Dihydrofolate Reductase Catalytic Ternary Complex. Biochemistry 2007, 46, 14878–14888. [Google Scholar] [CrossRef] [Green Version]
- West, F.W.; Seo, H.-S.; Bradrick, T.D.; Howell, E.E. Effects of Single-Tryptophan Mutations on R67 Dihydrofolate Reductase. Biochemistry 2000, 39, 3678–3689. [Google Scholar] [CrossRef]
- Kneis, D.; Berendonk, T.U.; Forslund, S.K.; Hess, S. Antibiotic Resistance Genes in River Biofilms: A Metagenomic Approach toward the Identification of Sources and Candidate Hosts. Environ. Sci. Technol. 2022, 56, 14913–14922. [Google Scholar] [CrossRef]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.H.; Gützkow, T.; Eichler, W.; Pühler, A.; Schlüter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Ebmeyer, S.; Kristiansson, E.; Larsson, D.G.J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. 2021, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, I.V.; Nordberg, H.; Shabalov, I.; Aerts, A.; Cantor, M.; Goodstein, D.; Kuo, A.; Minovitsky, S.; Nikitin, R.; Ohm, R.A.; et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 2012, 40, D26–D32. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Bradrick, T.D.; Howell, E.E. A glutamine 67--> histidine mutation in homotetrameric R67 dihydrofolate reductase results in four mutations per single active site pore and causes substantial substrate and cofactor inhibition. Protein Eng. 1997, 10, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, J.L.; Coque, T.M.; Baquero, F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat. Rev. Microbiol. 2015, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Pradier, L.; Tissot, T.; Fiston-Lavier, A.S.; Bedhomme, S. PlasForest: A homology-based random forest classifier for plasmid detection in genomic datasets. BMC Bioinform. 2021, 22, 349. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, P.S.; Lipinski, L.; Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018, 46, e35. [Google Scholar] [CrossRef] [Green Version]
- Néron, B.; Littner, E.; Haudiquet, M.; Perrin, A.; Cury, J.; Rocha, E.P.C. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 2022, 10, 700. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [Green Version]
- Cury, J.; Jové, T.; Touchon, M.; Néron, B.; Rocha, E.P. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016, 44, 4539–4550. [Google Scholar] [CrossRef] [Green Version]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Pruden, A.; Virta, M.; Zhang, T. Editorial: Antibiotic Resistance in Aquatic Systems. Front. Microbiol. 2017, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riesenfeld, C.S.; Goodman, R.M.; Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 2004, 6, 981–989. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 1996, 178, 5853–5859. [Google Scholar] [CrossRef] [Green Version]
- Abella, J.; Fahy, A.; Duran, R.; Cagnon, C. Integron diversity in bacterial communities of freshwater sediments at different contamination levels. FEMS Microbiol. Ecol. 2015, 91, fiv140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaly, T.M.; Gillings, M.R.; Penesyan, A.; Qi, Q.; Rajabal, V.; Tetu, S.G. The Natural History of Integrons. Microorganisms 2021, 9, 2212. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Imhoff, J.F. The Phototrophic Beta-Proteobacteria. In The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 593–601. [Google Scholar]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Gobeil, S.M.C.; Gagné, D.; Doucet, N.; Pelletier, J.N. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant. Biomol. NMR Assign. 2016, 10, 93–99. [Google Scholar] [CrossRef]
- Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
Name and Position a | Genomic Context Length (bp) b | Environment a | Host Strain a | Integron c | Insertion Sequences d | Antibiotic Resistance Genes e |
---|---|---|---|---|---|---|
dfrB12 (317..553) | 743 | Soil, Arlington Agricultural Research Station | E. coli | CALIN (2..676) | None | None |
dfrB13 (10..246) | 540 | Soil, Arlington Agricultural Research Station | Proteobacteria | None | None | None |
dfrB14 (97..333) | 450 | Freshwater sediment, Lake Washington | E. coli | None | None | None |
dfrB15 (93..329) | 562 | Wastewater effluent | Proteobacteria | None | None | None |
dfrB16 (191..427) | 596 | Populus sp. Microbial communities, riparian zone | E. hormaechei | None | None | None |
dfrB17 (1065..1301) | 1715 | Desert sand, soil crust | Proteobacteria | None | None | None |
dfrB18 (11..247) | 359 | Barbacenia macratha root associated microbial communities | E. hormaechei | None | None | None |
dfrB19 (702..938) | 1077 | Fen, Stordalen Mire | E. hormaechei | CALIN (103..1001) | None | None |
dfrB20 (9332..9568) | 9717 | Populus trichocarpa microbial communities, riparian zone | Proteobacteria | CALIN (1..9097) | None | None |
dfrB21 (288..524) | 625 | Uranium-contaminated sediment slurry | Proteobacteria | None | None | None |
Name and Position a | Genomic Context Length (bp) b | Environment c | Integron d | Insertion Sequences e | Organization f | Antibiotic Resistance Genes g |
---|---|---|---|---|---|---|
B1 (1..251) | 1890 | Polluted river sediment | Complete (3…1890) | Tn3 transposase (1051...1890) | Chromosomal | arr2 |
B2 (2467710..2467946) | 4,664,715 | Wastewater | Complete (2462823...2469276) | None | Chromosomal | aadA16, catB3, OXA-21, AAC(6′)-IIa |
B3 (270150..270386) | 341,798 | Groundwater (48 m deep), Hainich Critical Zone Exploratory | None | None | Chromosomal | FosX, ParS, mtrA |
B4 (1436..1672) | 3039 | Soil, Usan-dong village | CALIN (1...2856) | None | Chromosomal | None |
B5 (1695128..1695367) | 4,457,823 | Clinical, human sample | Complete (1692032...1696644) | TnAs3 transposase (1679393...1683642) | Chromosomal | aadA, cmlA6 |
B6 (2901..3137) | 14,187 | Activated sludge, wastewater treatment plant | None | None | Chromosomal | baeS |
B7 (175053..175289) | 844,006 | Groundwater (<100 m deep) | None | None | Chromosomal | None |
B8 (802..1038) | 4,496,947 | River, hydroelectric dam | None | None | Chromosomal | None |
B9 (1026..1262) | 41,160 | Activated sludge, wastewater treatment plant | None | None | Chromosomal | None |
B10 (19507..19743) | 82,085 | Forest acidic soil | None | ISNCY transposase (13699...15117) | Chromosomal | None |
C1 (3299..3535) | 23,478 | Freshwater, Lake Lanier | Complete (868...7457) | None | Chromosomal | None |
C2 (498..734) | 5709 | Freshwater, selected watersheds (little to no prior anthropogenic activities) | None | None | Chromosomal | None |
C3 (3371..3607) | 4299 | Soil, wildlife refuge | None | None | Chromosomal | AAC(6′)-Iak |
C4 (3287..3523) | 3806 | Soil, Bohemian Forest Mountain range (1170–1200 m altitude) | None | ISCARN35 transposase (3725...3806) | Chromosomal | OmpA |
C5 (1221..1457) | 2462 | Soil, coastal freshwater wetland | None | None | Chromosomal | None |
C6 (1262..1498) | 2430 | Soil, coastal reserve | None | None | Chromosomal | None |
C7 (1466..1702) | 2288 | Biofilm, wastewater treatment plant | None | None | Chromosomal | None |
C8 (1246..1482) | 2134 | Miscanthus sp. rhizosphere | None | None | Chromosomal | None |
C9 (511..747) | 2075 | Populus trichocarpa ectomycorrhiza | None | None | Chromosomal | None |
C10 (694..930) | 1938 | Sugarcane root | None | None | Chromosomal | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cellier-Goetghebeur, S.; Lafontaine, K.; Lemay-St-Denis, C.; Tsamo, P.; Bonneau-Burke, A.; Copp, J.N.; Pelletier, J.N. Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance. Antibiotics 2022, 11, 1768. https://doi.org/10.3390/antibiotics11121768
Cellier-Goetghebeur S, Lafontaine K, Lemay-St-Denis C, Tsamo P, Bonneau-Burke A, Copp JN, Pelletier JN. Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance. Antibiotics. 2022; 11(12):1768. https://doi.org/10.3390/antibiotics11121768
Chicago/Turabian StyleCellier-Goetghebeur, Stella, Kiana Lafontaine, Claudèle Lemay-St-Denis, Princesse Tsamo, Alexis Bonneau-Burke, Janine N. Copp, and Joelle N. Pelletier. 2022. "Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance" Antibiotics 11, no. 12: 1768. https://doi.org/10.3390/antibiotics11121768
APA StyleCellier-Goetghebeur, S., Lafontaine, K., Lemay-St-Denis, C., Tsamo, P., Bonneau-Burke, A., Copp, J. N., & Pelletier, J. N. (2022). Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance. Antibiotics, 11(12), 1768. https://doi.org/10.3390/antibiotics11121768