Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Literature Search
3.2. Microbiological Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Anwer, R.; Azzi, A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR). Microorganisms 2021, 9, 2104. [Google Scholar] [CrossRef] [PubMed]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Nigro, S.J. Emergence, Molecular Mechanisms and Global Spread of Carbapenem-Resistant. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Lupia, T.; Andriani, L.; Campanile, F.; Carcione, D.; Corcione, S.; De Rosa, F.G.; Luzzati, R.; Stroffolini, G.; Steyde, M.; et al. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol-An All-Inclusive Guide for Clinicians. Pharmaceuticals 2022, 15, 463. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.-F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.M.; Ehmann, D.E.; et al. Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, A.B.; Moussa, S.H.; McLeod, S.M.; Durand-Réville, T.; Miller, A.A. Durlobactam, a New Diazabicyclooctane β-Lactamase Inhibitor for the Treatment of Infections in Combination with Sulbactam. Front. Microbiol. 2021, 12, 709974. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas Maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Krizova, L.; Poirel, L.; Nordmann, P.; Nemec, A. TEM-1 β-Lactamase as a Source of Resistance to Sulbactam in Clinical Strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 2013, 68, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.-C.; Lee, Y.-T.; Yang Lauderdale, T.-L.; Huang, W.-C.; Chuang, M.-F.; Chen, C.-P.; Su, S.-C.; Lee, K.-R.; Chen, T.-L. Contribution of Acinetobacter-Derived Cephalosporinase-30 to Sulbactam Resistance in Acinetobacter baumannii. Front. Microbiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Reddy, T.; Chopra, T.; Marchaim, D.; Pogue, J.M.; Alangaden, G.; Salimnia, H.; Boikov, D.; Navon-Venezia, S.; Akins, R.; Selman, P.; et al. Trends in Antimicrobial Resistance of Acinetobacter baumannii Isolates from a Metropolitan Detroit Health System. Antimicrob. Agents Chemother. 2010, 54, 2235–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanheira, M.; Mendes, R.E.; Jones, R.N. Update on Acinetobacter Species: Mechanisms of Antimicrobial Resistance and Contemporary in Vitro Activity of Minocycline and Other Treatment Options. Clin. Infect. Dis. 2014, 59 (Suppl. S6), S367–S373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Ding, Y.; Wei, Y.; Jian, C.; Liu, J.; Zeng, Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front. Microbiol. 2022, 13, 1045206. [Google Scholar] [CrossRef] [PubMed]
- Lemos, E.V.; de la Hoz, F.P.; Einarson, T.R.; McGhan, W.F.; Quevedo, E.; Castañeda, C.; Kawai, K. Carbapenem Resistance and Mortality in Patients with Acinetobacter baumannii Infection: Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2014, 20, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segatore, B.; Piccirilli, A.; Cherubini, S.; Principe, L.; Alloggia, G.; Mezzatesta, M.L.; Salmeri, M.; Di Bella, S.; Migliavacca, R.; Piazza, A.; et al. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics 2022, 11, 1136. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; McLeod, S.M.; Miller, A.A. Activity of Sulbactam-Durlobactam against Global Isolates of—Complex Collected from 2016 to 2021. Antimicrob. Agents Chemother. 2022, 66, e0078122. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Bouvier, M.; Nordmann, P. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii and Mechanisms of Resistance. J. Glob. Antimicrob. Resist. 2022, 30, 445–450. [Google Scholar] [CrossRef]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Isolates From Greece. Front. Cell Infect. Microbiol. 2021, 11, 814530. [Google Scholar] [CrossRef]
- Nodari, C.S.; Santos, F.F.; Kurihara, M.N.L.; Valiatti, T.B.; Cayô, R.; Gales, A.C. In Vitro Activity of Sulbactam/durlobactam against Extensively Drug-Resistant Acinetobacter baumannii Isolates Belonging to South American Major Clones. J. Glob. Antimicrob. Resist. 2021, 25, 363–366. [Google Scholar] [CrossRef]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In Vitro Activity of Sulbactam/durlobactam against Global Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Y.; Jia, P.; Zhu, Y.; Zhang, J.; Zhang, G.; Deng, J.; Hackel, M.; Bradford, P.A.; Reinhart, H. In Vitro Activity of Sulbactam/durlobactam against Clinical Isolates of Acinetobacter baumannii Collected in China. J. Antimicrob. Chemother. 2020, 75, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. Activity of Sulbactam-Durlobactam against Acinetobacter baumannii—Complex Isolates Collected Globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64, e02534-19. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Kumar, V.; Bethel, C.R.; Moussa, S.H.; O’Donnell, J.; Rutter, J.D.; Good, C.E.; Hujer, K.M.; Hujer, A.M.; Marshall, S.H.; et al. Targeting Multidrug-Resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent. MBio 2019, 10, e00159-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.; Hackel, M.; Bouchillon, S.; Dejonge, B.; Tommasi, R.; Mueller, J. Global Surveillance of the Activity of Sulbactam Combined with the Novel β-Lactamase Inhibitor ETX2514 against Clinical Isolates of Acinetobacter baumannii from 2014. Open Forum Infect. Dis. 2016, 3, S599. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam Following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef]
Ref. | Region/Country or Type of Collection, Collection Period | Bacterial Species | Carbapenem- R (%) | SUL/DUR-R Determinants | MIC Range, MIC50, MIC90 (mg/L) | Highly Susceptible Isolates (%) (MIC ≤ 0.5) | Susceptible Isolates (%) (MIC ≤ 4) | SUL/DUR-R Isolates (%) | Colistin-R (%) | Notes |
---|---|---|---|---|---|---|---|---|---|---|
[15] | Italy Multicentric (6 centres) (2004–2021) | A. baumannii complex | 141 (100%) | Substitutions in PBP3 | 0.06–>128 MIC50: 0.5 MIC90: 4 | 80/141 (57%) | 130/141 (92%) | 11 (7.8%) | 55 (39%) | 2 colistin-R isolates were also SUL/DUR-R. All SUL/DUR-R isolates had PBP3 substitutions |
[16] | 33 countries across the Asia/South Pacific region, Europe, Latin America, the Middle East, and North America (2016–2021) | A. baumannii-calcoaceticus complex: 80.2% A. baumannii, 12.7% A. pittii, 5.9% A. nosocomialis, 1.1% A. calcoaceticus | 2488 (49.4%) | N/A | ≤0.03–>64 MIC_50: 1 MIC_90: 2 | N/A | 4948/5032 (98.3%) | 84 (1.7%) 79 A. baumannii 4 A. pittii 1 A. nosocomialis | 204 (40.5%) | 84 CRAB were SUL/DUR-R; 4 colistin-R isolates were R also to SUL/DUR |
[17] | Worldwide (N/A) | A. baumannii complex | 100 (100%) | Substitutions in PBP (PBP1a, PBP1b, PBP2, and PBP3), NDM | 0.06–64 | N/A | 71/100 (71%) | 29 (29%) 14 isolates with PBP3 substitutions 5 NDM-producing isolates | 9 (9%) | 5 colistin-R isolates were also R to SUL/DUR; 73 OXA-23, 10 OXA-72, 6 OXA-40, 5 OXA-58, 5 NDM, 1 OXA-24 |
[18] | Greece (2015) | A. baumannii complex | 190 (100%) | Substitutions in PBP3, NDM | 0.06–64 MIC50: 4 MIC90: 8 | 2/190 (1%) | 167/190 (87.9%) | 23 (12.1%) | 61 (32.1%) | 5 colistin-R isolates were also SUL/DUR-R; all R isolates harbored OXA-23 and OXA-66, with PBP3 substitutions; 1 NDM isolate |
[19] | South America (N/A) | A. baumannii complex | 112 (100%) | No resistant isolates | 0.25–4 MIC50: 1 MIC90: 4 | N/A | 112/112 (100%) | 0 (0%) | 21 (18.7%) | 34 OXA-23, 48 OXA 24/40, 10 OXA-143, 1 OXA-58, 17 OXA-23 + OXA-72 |
[20] | Global, 37 countries and six world regions (2012–2016) | A. baumannii complex | 246 (100%) | NDM-1 | 0.25–128 MIC50: 0.25 MIC90: 1 | 63/246 (25.6%) | 237/246 (96.3%) | 9 (3.7%) | 10 (4.1%) | Colistin-R isolates were all susceptible to SUL/DUR; 4 SUL/DUR-R isolates harbored NDM-1. For 5 SUL/DUR-R isolates resistance determinants not assessed |
[21] | China 22 sites, IAI, LRTI, SSTI, UTI (2016–2018) | A. baumannii complex | 831 (84.6%) | N/A | ≤0.03–>64 MIC50: 1 MIC90: 2 | N/A | 961/982 (97.9%) | 21 (21.4%) | 10 (1%) | 2 colistin-R isolates were also R to SUL/DUR |
[22] | Global: 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East and North America. BSI, IAI, LRTI, SSTI, UTI (2016 -2017) | A. baumannii-calcoaceticus complex: A. baumannii (82.5%) A. pittii (13.5%) A. nosocomialis (3.5%) A. calcoaceticus (0.6%) | 930 (54%) | NDM-1, substitutions in PBP3 (but also in PBP1, PBP2, PBP6), efflux/porin variants | ≤0.03–>64 MIC50: 1 MIC90: 2 | 723/1722 (42%) | 1683/1722 (97.7%) | 39 (2.3%) | 81 (4.7%) | SUL/DUR-R isolates were carbapenem-R, 1 colistin-R isolate was also R to SUL/DUR; 11 harbored NDM-1, 21 had PBP3 substitutions, 16 had efflux/porin variants |
[23] | United States (N/A) | A. baumannii complex | 43 (43.9%) | b-lactamases, substitutions in PBP, and efflux pumps (mutations) | 0.25–64 MIC50: 1 MIC90: 2 | 26/98 (26.5%) | 94/98 (95.9%) | 4 (4.1%) | N/A | All SUL/DUR-R isolates presented mutated adeJ efflux component, 2 of them also had PBP3 substitutions |
[24] | Worldwide, 38 countries; IAI, UTI, SSTI, BSI, LRTI (2014) | A. baumannii complex | 731 (64.6%) | NDM-1 | ≤0.06–32 MIC50: 1 MIC90: 4 | 315/1131 (27.9%) | 1127/1131 (99.6%) | 4 (0.4%) | 56 (4.9%) | 99.6% of SUL/DUR-R isolates were CRAB, none of them were colistin-R; 1 of them was NDM-1 |
Isolates Characteristics | Susceptible to SUL/DUR (%) | Resistant to SUL/DUR (%) |
---|---|---|
A. baumannii complex (n = 9754) | 9530 (97.7%) | 224 (2.3%) |
CRAB (n = 5812) | 5614 (96.6%) | 198 (3.4%) |
Colistin-resistant (n = 507) | 488 (96.2%) | 19 (3.7%) |
NDM-1 producers (n = 28) | 0 (0%) | 28 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. https://doi.org/10.3390/antibiotics11121793
Principe L, Di Bella S, Conti J, Perilli M, Piccirilli A, Mussini C, Decorti G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics. 2022; 11(12):1793. https://doi.org/10.3390/antibiotics11121793
Chicago/Turabian StylePrincipe, Luigi, Stefano Di Bella, Jacopo Conti, Mariagrazia Perilli, Alessandra Piccirilli, Cristina Mussini, and Giuliana Decorti. 2022. "Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review" Antibiotics 11, no. 12: 1793. https://doi.org/10.3390/antibiotics11121793