Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review
Abstract
1. Introduction
2. Methods
3. Results
3.1. Literature Search
3.2. Microbiological Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Anwer, R.; Azzi, A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR). Microorganisms 2021, 9, 2104. [Google Scholar] [CrossRef] [PubMed]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Nigro, S.J. Emergence, Molecular Mechanisms and Global Spread of Carbapenem-Resistant. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Lupia, T.; Andriani, L.; Campanile, F.; Carcione, D.; Corcione, S.; De Rosa, F.G.; Luzzati, R.; Stroffolini, G.; Steyde, M.; et al. Microbiological, Clinical, and PK/PD Features of the New Anti-Gram-Negative Antibiotics: β-Lactam/β-Lactamase Inhibitors in Combination and Cefiderocol-An All-Inclusive Guide for Clinicians. Pharmaceuticals 2022, 15, 463. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.-F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.M.; Ehmann, D.E.; et al. Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.B.; Moussa, S.H.; McLeod, S.M.; Durand-Réville, T.; Miller, A.A. Durlobactam, a New Diazabicyclooctane β-Lactamase Inhibitor for the Treatment of Infections in Combination with Sulbactam. Front. Microbiol. 2021, 12, 709974. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas Maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Krizova, L.; Poirel, L.; Nordmann, P.; Nemec, A. TEM-1 β-Lactamase as a Source of Resistance to Sulbactam in Clinical Strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 2013, 68, 2786–2791. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Lee, Y.-T.; Yang Lauderdale, T.-L.; Huang, W.-C.; Chuang, M.-F.; Chen, C.-P.; Su, S.-C.; Lee, K.-R.; Chen, T.-L. Contribution of Acinetobacter-Derived Cephalosporinase-30 to Sulbactam Resistance in Acinetobacter baumannii. Front. Microbiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Reddy, T.; Chopra, T.; Marchaim, D.; Pogue, J.M.; Alangaden, G.; Salimnia, H.; Boikov, D.; Navon-Venezia, S.; Akins, R.; Selman, P.; et al. Trends in Antimicrobial Resistance of Acinetobacter baumannii Isolates from a Metropolitan Detroit Health System. Antimicrob. Agents Chemother. 2010, 54, 2235–2238. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Mendes, R.E.; Jones, R.N. Update on Acinetobacter Species: Mechanisms of Antimicrobial Resistance and Contemporary in Vitro Activity of Minocycline and Other Treatment Options. Clin. Infect. Dis. 2014, 59 (Suppl. S6), S367–S373. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ding, Y.; Wei, Y.; Jian, C.; Liu, J.; Zeng, Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front. Microbiol. 2022, 13, 1045206. [Google Scholar] [CrossRef] [PubMed]
- Lemos, E.V.; de la Hoz, F.P.; Einarson, T.R.; McGhan, W.F.; Quevedo, E.; Castañeda, C.; Kawai, K. Carbapenem Resistance and Mortality in Patients with Acinetobacter baumannii Infection: Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2014, 20, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Segatore, B.; Piccirilli, A.; Cherubini, S.; Principe, L.; Alloggia, G.; Mezzatesta, M.L.; Salmeri, M.; Di Bella, S.; Migliavacca, R.; Piazza, A.; et al. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics 2022, 11, 1136. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; McLeod, S.M.; Miller, A.A. Activity of Sulbactam-Durlobactam against Global Isolates of—Complex Collected from 2016 to 2021. Antimicrob. Agents Chemother. 2022, 66, e0078122. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Bouvier, M.; Nordmann, P. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii and Mechanisms of Resistance. J. Glob. Antimicrob. Resist. 2022, 30, 445–450. [Google Scholar] [CrossRef]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Isolates From Greece. Front. Cell Infect. Microbiol. 2021, 11, 814530. [Google Scholar] [CrossRef]
- Nodari, C.S.; Santos, F.F.; Kurihara, M.N.L.; Valiatti, T.B.; Cayô, R.; Gales, A.C. In Vitro Activity of Sulbactam/durlobactam against Extensively Drug-Resistant Acinetobacter baumannii Isolates Belonging to South American Major Clones. J. Glob. Antimicrob. Resist. 2021, 25, 363–366. [Google Scholar] [CrossRef]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In Vitro Activity of Sulbactam/durlobactam against Global Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Y.; Jia, P.; Zhu, Y.; Zhang, J.; Zhang, G.; Deng, J.; Hackel, M.; Bradford, P.A.; Reinhart, H. In Vitro Activity of Sulbactam/durlobactam against Clinical Isolates of Acinetobacter baumannii Collected in China. J. Antimicrob. Chemother. 2020, 75, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. Activity of Sulbactam-Durlobactam against Acinetobacter baumannii—Complex Isolates Collected Globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64, e02534-19. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Kumar, V.; Bethel, C.R.; Moussa, S.H.; O’Donnell, J.; Rutter, J.D.; Good, C.E.; Hujer, K.M.; Hujer, A.M.; Marshall, S.H.; et al. Targeting Multidrug-Resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent. MBio 2019, 10, e00159-19. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Hackel, M.; Bouchillon, S.; Dejonge, B.; Tommasi, R.; Mueller, J. Global Surveillance of the Activity of Sulbactam Combined with the Novel β-Lactamase Inhibitor ETX2514 against Clinical Isolates of Acinetobacter baumannii from 2014. Open Forum Infect. Dis. 2016, 3, S599. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam Following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef]
Ref. | Region/Country or Type of Collection, Collection Period | Bacterial Species | Carbapenem- R (%) | SUL/DUR-R Determinants | MIC Range, MIC50, MIC90 (mg/L) | Highly Susceptible Isolates (%) (MIC ≤ 0.5) | Susceptible Isolates (%) (MIC ≤ 4) | SUL/DUR-R Isolates (%) | Colistin-R (%) | Notes |
---|---|---|---|---|---|---|---|---|---|---|
[15] | Italy Multicentric (6 centres) (2004–2021) | A. baumannii complex | 141 (100%) | Substitutions in PBP3 | 0.06–>128 MIC50: 0.5 MIC90: 4 | 80/141 (57%) | 130/141 (92%) | 11 (7.8%) | 55 (39%) | 2 colistin-R isolates were also SUL/DUR-R. All SUL/DUR-R isolates had PBP3 substitutions |
[16] | 33 countries across the Asia/South Pacific region, Europe, Latin America, the Middle East, and North America (2016–2021) | A. baumannii-calcoaceticus complex: 80.2% A. baumannii, 12.7% A. pittii, 5.9% A. nosocomialis, 1.1% A. calcoaceticus | 2488 (49.4%) | N/A | ≤0.03–>64 MIC_50: 1 MIC_90: 2 | N/A | 4948/5032 (98.3%) | 84 (1.7%) 79 A. baumannii 4 A. pittii 1 A. nosocomialis | 204 (40.5%) | 84 CRAB were SUL/DUR-R; 4 colistin-R isolates were R also to SUL/DUR |
[17] | Worldwide (N/A) | A. baumannii complex | 100 (100%) | Substitutions in PBP (PBP1a, PBP1b, PBP2, and PBP3), NDM | 0.06–64 | N/A | 71/100 (71%) | 29 (29%) 14 isolates with PBP3 substitutions 5 NDM-producing isolates | 9 (9%) | 5 colistin-R isolates were also R to SUL/DUR; 73 OXA-23, 10 OXA-72, 6 OXA-40, 5 OXA-58, 5 NDM, 1 OXA-24 |
[18] | Greece (2015) | A. baumannii complex | 190 (100%) | Substitutions in PBP3, NDM | 0.06–64 MIC50: 4 MIC90: 8 | 2/190 (1%) | 167/190 (87.9%) | 23 (12.1%) | 61 (32.1%) | 5 colistin-R isolates were also SUL/DUR-R; all R isolates harbored OXA-23 and OXA-66, with PBP3 substitutions; 1 NDM isolate |
[19] | South America (N/A) | A. baumannii complex | 112 (100%) | No resistant isolates | 0.25–4 MIC50: 1 MIC90: 4 | N/A | 112/112 (100%) | 0 (0%) | 21 (18.7%) | 34 OXA-23, 48 OXA 24/40, 10 OXA-143, 1 OXA-58, 17 OXA-23 + OXA-72 |
[20] | Global, 37 countries and six world regions (2012–2016) | A. baumannii complex | 246 (100%) | NDM-1 | 0.25–128 MIC50: 0.25 MIC90: 1 | 63/246 (25.6%) | 237/246 (96.3%) | 9 (3.7%) | 10 (4.1%) | Colistin-R isolates were all susceptible to SUL/DUR; 4 SUL/DUR-R isolates harbored NDM-1. For 5 SUL/DUR-R isolates resistance determinants not assessed |
[21] | China 22 sites, IAI, LRTI, SSTI, UTI (2016–2018) | A. baumannii complex | 831 (84.6%) | N/A | ≤0.03–>64 MIC50: 1 MIC90: 2 | N/A | 961/982 (97.9%) | 21 (21.4%) | 10 (1%) | 2 colistin-R isolates were also R to SUL/DUR |
[22] | Global: 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East and North America. BSI, IAI, LRTI, SSTI, UTI (2016 -2017) | A. baumannii-calcoaceticus complex: A. baumannii (82.5%) A. pittii (13.5%) A. nosocomialis (3.5%) A. calcoaceticus (0.6%) | 930 (54%) | NDM-1, substitutions in PBP3 (but also in PBP1, PBP2, PBP6), efflux/porin variants | ≤0.03–>64 MIC50: 1 MIC90: 2 | 723/1722 (42%) | 1683/1722 (97.7%) | 39 (2.3%) | 81 (4.7%) | SUL/DUR-R isolates were carbapenem-R, 1 colistin-R isolate was also R to SUL/DUR; 11 harbored NDM-1, 21 had PBP3 substitutions, 16 had efflux/porin variants |
[23] | United States (N/A) | A. baumannii complex | 43 (43.9%) | b-lactamases, substitutions in PBP, and efflux pumps (mutations) | 0.25–64 MIC50: 1 MIC90: 2 | 26/98 (26.5%) | 94/98 (95.9%) | 4 (4.1%) | N/A | All SUL/DUR-R isolates presented mutated adeJ efflux component, 2 of them also had PBP3 substitutions |
[24] | Worldwide, 38 countries; IAI, UTI, SSTI, BSI, LRTI (2014) | A. baumannii complex | 731 (64.6%) | NDM-1 | ≤0.06–32 MIC50: 1 MIC90: 4 | 315/1131 (27.9%) | 1127/1131 (99.6%) | 4 (0.4%) | 56 (4.9%) | 99.6% of SUL/DUR-R isolates were CRAB, none of them were colistin-R; 1 of them was NDM-1 |
Isolates Characteristics | Susceptible to SUL/DUR (%) | Resistant to SUL/DUR (%) |
---|---|---|
A. baumannii complex (n = 9754) | 9530 (97.7%) | 224 (2.3%) |
CRAB (n = 5812) | 5614 (96.6%) | 198 (3.4%) |
Colistin-resistant (n = 507) | 488 (96.2%) | 19 (3.7%) |
NDM-1 producers (n = 28) | 0 (0%) | 28 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. https://doi.org/10.3390/antibiotics11121793
Principe L, Di Bella S, Conti J, Perilli M, Piccirilli A, Mussini C, Decorti G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics. 2022; 11(12):1793. https://doi.org/10.3390/antibiotics11121793
Chicago/Turabian StylePrincipe, Luigi, Stefano Di Bella, Jacopo Conti, Mariagrazia Perilli, Alessandra Piccirilli, Cristina Mussini, and Giuliana Decorti. 2022. "Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review" Antibiotics 11, no. 12: 1793. https://doi.org/10.3390/antibiotics11121793
APA StylePrincipe, L., Di Bella, S., Conti, J., Perilli, M., Piccirilli, A., Mussini, C., & Decorti, G. (2022). Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics, 11(12), 1793. https://doi.org/10.3390/antibiotics11121793