Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update
Abstract
:1. Introduction
2. Vancomycin
2.1. Pediatrics
Type of Infection | Study Design (n) | Dose | Route | Blood and CSF Sampling | Plasma (mg/L) | CSF (mg/L) | PK Model | Age | Treatment Outcome/ Remarks | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Ventriculostomy access device ventriculitis | Retrospective (8 cases, 7 patients) | 3–15 mg IVT, redosage when CSF concentration < 10 mg/L, in 5 cases concomitant IV 15 mg/kg q24h (<29 weeks postmenstrual age) or q12h (29–35 weeks) | IVT (+IV) | Random CSF sampling (only in the presence of a clinical need for accessing the reservoir), 13 pre-dose CSF levels were available, no routine measuring of peak CSF, Source of CSF samples: intraventricular (Ommaya reservoir) | Ctrough = 6.1 (<2–>100) | Cmax (3 mg, 19 h) = 24.9 Cmin (3 mg, 59 h) = 3.5 Cmax (5 mg, 14 h) = 96.3 Cmin (5 mg, 43 h) = 2.5 Cmax (10 mg, 24 h) = 94 Cmin (10 mg, 62 h) = 4.2 Cmax (15 mg, 24 h) = 230.7 Cmin (15 mg, 68 h) = 44.9 | Yes [43] | GA: 25 + 4 weeks (23 + 6–27 +5 weeks) | Resolution in all patients in a median of 5.5 (2–31) days, No adverse events connected to IVT administration | [25] |
Shunt ventriculitis | Retrospective (13 cases, 10 patients) | IVT 20 mg (6 cases)IVT 10 mg (2 cases)IVT 5 mg (5 cases)Concomitant IV in 8 cases (40.5 +/− 9.2 mg/kg/day) | IVT(+IV) | CSF samples 12 to 120 h following last IVT dose when CSF was absorbed to alleviate intracranial pressure, Source of CSF samples: intraventricular (Ommaya tube/ ventriculoperitoneal shunt) | Ctrough = 12.3 ± 2.2 | C(20 mg, 24 h) = 125.0 ± 30.1C(20 mg, 78 h) = 28.8 ± 0.8 (A)C(10 mg, 12 h) = 112.8 ± 17.8 (A)C(10 mg, 84 h) =23.2C(5 mg, 24 h) = 39.3 ± 22.9 C(5 mg, 72 h) = 16.5 | No | GA: 34-week 5 day(±5 weeks 3 days) | Relapse in 2 cases (treated with 10 and 20 mg), Auditory brain response not affected by treatment | [44] |
Shunt ventriculitis | Retrospective (30) | 15 mg/kg q6h | IV | Serum samples 3 (2–5) days after initiation of treatment, only from 11 patients | 8.8 (5.4–27.7) | ND | No | 15.5 (1–192) months | No recurrent infections | [45] |
2.2. Adults
2.2.1. Vancomycin in Ventriculitis
2.2.2. Vancomycin in Meningitis
Type of Infection | Study Design (n) | Dose | Route | Blood and CSF Sampling | Plasma (mg/L) | CSF (mg/L) | CSF Penetration | PK Model | Age | Treatment Outcome/Remarks | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Proven or suspected EVD- associated ventriculitis | Prospective observational (21) | Prolonged infusion (over 4 h) median daily dose 2500 (500–4000) mg in two divided doses, targeted trough concentrations in serum 10–15 mg/L | IV | Serum and CSF both just before start of infusion (Cmin) and at end of infusion (Cmax), Source of CSF samples: intraventricular (EVD) | Cmax = 25.67 (10.60–50.78) Cmin = 9.60 (4.46–23.56) | Cmax = 0.65 (<0.24–3.83) Cmin = 0.59 (<0.24–3.95) | Cumulative AUCCSF/CumulativeAUCSerum 0.03 (0.01–0.18) | Yes | 52 (46–80) years | 30 days mortality: 0 | [36] |
EVD- associated ventriculitis | Retrospective (29) | Daily dose of 2–4 g, depending on creatinine clearance, either via continuous infusion (initial bolus of 1 g over 1 h) or as intermittent infusion (q6h over 1 h), depending on physician, Doses adjusted to TDM (target plasma trough levels of 15–20 mg/L with bolus infusions, plasma levels of 20–25 mg/L with continuous infusion) | IV | Mostly trough samples, no CSF samples for 3 patients, Source of CSF samples NS | 17.7 (IQR 13.00, 23.02) | 2.9 (IQR 1.76, 4.2) | 0.13 (IQR 0.07; 0.24) under bolus therapy 0.08 (IQR 0.05; 0.12) under continuous therapy | Yes | 52 (IQR 44; 61) years | NS | [20] |
Ventriculitis | Retrospective(22 for vancomycin and meropenem) | Continuous infusion of 30 mg/kg/day after initial bolus of 30 mg/kg of adjusted body weight, Serum target concentration of 20–30 mg/L, CSF target concentration of 2 mg/L, Dosage adjusted according to TDM results | IV | Samples from 15 patients, timepoints NS, Source of CSF samples: NS | 22 ± 814 values (33%) below and two values,(5%) above the targeted concentration | 4.5 ± 2.6Above the breakpoint for susceptibility of S. aureus in 30 cases (70%), above the breakpoint for susceptibility of other Gram-positive cocci in 21 cases (49%) | 20% ± 11% (3–48%) | No | 57 ± 12 years | Death of 7 out of 22 patients, for the remaining patients GOS 2–4 | [11] |
Healthcare- associated meningitis | Retrospective (6) | 15 mg/kg loading dose, followed by continuous infusion of 60 mg/kg/day | IV | First measurements (day 1–5 of treatment); when antibiotics administration discontinuous right before following administration Second measurements (day 2–11, 4 patients), Source of CSF samples: NS | 36.1 ± 19.2 (A)(15.4–66.4) 34.9 ± 22.1 (A)(17.2–71.4) | 3 patients < 1.1,2 patients 1.5 1 patient < 1.1 3 patients: 1.2, 2.6, 2.2 | ND | No | 43.2± 13.0 (28–64) years (A) | Treatment regimen was changed to other antibiotics | [47] |
Suspected and provenbacterial meningitis | Retrospective (7) | 2–4 times/day, Dose adjusted to TDMto achieve serum trough concentrations of 15–20 mg/L | IV | Blood samples measured just before vancomycin infusion when steady-state concentrations were achieved and after at least 2 days of the dosing regimen, CSF measured retrospectively using residual CSF, Source of CSF samples: intraventricular (EVD) or lumbar, after achievement of steady-state serum concentrations | 17.6 ± 7.2 | 3.31 ± 3.14 | 0.180 ± 0.152 (0.010–0.431) | No | 41.7 ± 19.2 (17–70) years (A) | Vancomycin treatment ineffective in 2 patients, for 2 patients clinical efficacy was undeterminable | [48] |
Proven or highly suspectedpostsurgical meningitis | Prospective (22) | 500 mg over 1 h, q6h(for at least 5 days) | IV | Serum and CSF both measured 5 h after the end of infusion (Cmin) on day 3 or 4, Source of CSF samples: lumbar (puncture or drainage) | Cmin = 13.38 ± 5.36 (5.07–28.6) | Cmin = 3.63 ± 1.64 (1.44–8.51) | 0.291 ± 0.118 (0.163–0.570) | No | 52.6 ± 12.1 (25–74) years | 12 patients were cured, 10 patients improved after 3–5 days, no vancomycin-induced nephrotoxicity | [49] |
Postneuro- surgical meningitis | Randomized clinical trial (20) (10 for each infusion group) | Intermittent infusion: Initial dose of 25 mg/kg over 2 h, then 25 mg/kg over 2 h q12h Continuous infusion: Initial dose of 25 mg/kg over 2 h, then 50 mg/kg/day | IV IV | Serum samples measured 30 min before (Ctrough) and 1 h after each maintenance dose (Cpeak), CSF samples measured at days 4 and 8, concomitantly with serum trough samples, Source of CSF samples: NS “-“ | Ctrough = 17.49 ± 2.46 Cpeak = 41.33 ± 2.73 24.76 ± 2.02 | Ctrough = 4.83 ± 1.05 6.20 ± 1.31 | CSF/trough ratio 27.39% ± 2.43% 24.84% ± 3.54% | No | 49 ± 7.25 years 48 ± 8.02 years | Recovery of all patients, Therapy was well-tolerated | [50] |
Community-acquired Meningitis Postoperative intracranial infection | Prospective (22) (10 community-acquired meningitis, 12 postoperative intracranial infection) | Initial treatment 1 g over more than 1 h, q12h; regimen adjusted according to signs and symptoms “-“ | IV IV | Serum and CSF 0.5 h before fifth dose (Ctrough) “-“ Source of CSF samples: lumbar (puncture) or intraventricular (ventricle drainage tube) | Ctrough = 9.81 ± 1.89 (6.90~13.00) Ctrough = 9.74 ± 3.04 (5.01~13.90) | Ctrough = 2.47 ± 1.15 (0.80~4.03) Ctrough = 1.90 ± 1.29 (0.42~4.40) | 0.26 ± 0.12 (0.11~0.47) 0.19 ± 0.12(0.06~0.45) | No | 36.2 ±14.3 years 51.2 ± 9.9 years | NS | [51] |
Meningitis | Case report | 1 g, q12h | IV | Blood and serum samples measured during treatment, NS, Source of CSF samples: lumbar (puncture) | Ctrough = 11–18 Cpeak(day 26) = 28.6 | Ctrough = 9.4 C(1 h after infusion) = 12.8 | ND | No | 47 years | Successfully treated | [52] |
3. Meropenem
3.1. Pediatrics
3.2. Adults
3.2.1. Meropenem in Ventriculitis
3.2.2. Meropenem in Meningitis
Main Highlights
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riddell, J.; Shuman, E.K. Epidemiology of Central Nervous System Infection. Neuroimaging Clin. N. Am. 2012, 22, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Suthar, R.; Sankhyan, N. Bacterial Infections of the Central Nervous System. Indian J. Pediatr. 2019, 86, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Roos, K.L. Bacterial Infections of the Central Nervous System. Contin. Minneap. Minn. 2015, 21, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Ziai, W.C.; Lewin, J.J. Update in the Diagnosis and Management of Central Nervous System Infections. Neurol. Clin. 2008, 26, 427–468. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.C.; Gill, A.K.; Kim, K.S. Treatment Strategies for Central Nervous System Infections: An Update. Expert Opin. Pharmacother. 2015, 16, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, J.-S.; Shin, H.-R.; Lee, H.S.; Moon, J.; Lee, S.-T.; Jung, K.-H.; Park, K.-I.; Jung, K.-Y.; Kim, M.; Lee, S.K.; et al. A Hospital-Based Study on Etiology and Prognosis of Bacterial Meningitis in Adults. Sci. Rep. 2021, 11, 6028. [Google Scholar] [CrossRef] [PubMed]
- Luque-Paz, D.; Revest, M.; Eugène, F.; Boukthir, S.; Dejoies, L.; Tattevin, P.; Le Reste, P.-J. Ventriculitis: A Severe Complication of Central Nervous System Infections. Open Forum Infect. Dis. 2021, 8, ofab216. [Google Scholar] [CrossRef]
- Humphreys, H.; Jenks, P.; Wilson, J.; Weston, V.; Bayston, R.; Waterhouse, C.; Moore, A. Healthcare Infection Society Working Party on Neurosurgical Infections Surveillance of Infection Associated with External Ventricular Drains: Proposed Methodology and Results from a Pilot Study. J. Hosp. Infect. 2017, 95, 154–160. [Google Scholar] [CrossRef]
- Chatzi, M.; Karvouniaris, M.; Makris, D.; Tsimitrea, E.; Gatos, C.; Tasiou, A.; Mantzarlis, K.; Fountas, K.N.; Zakynthinos, E. Bundle of Measures for External Cerebral Ventricular Drainage-Associated Ventriculitis. Crit. Care Med. 2014, 42, 66–73. [Google Scholar] [CrossRef]
- Beer, R.; Lackner, P.; Pfausler, B.; Schmutzhard, E. Nosocomial Ventriculitis and Meningitis in Neurocritical Care Patients. J. Neurol. 2008, 255, 1617–1624. [Google Scholar] [CrossRef]
- Mader, M.M.-D.; Czorlich, P.; König, C.; Fuhrmann, V.; Kluge, S.; Westphal, M.; Grensemann, J. Intrathecal Penetration of Meropenem and Vancomycin Administered by Continuous Infusion in Patients Suffering from Ventriculitis-a Retrospective Analysis. Acta Neurochir. 2018, 160, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Giovane, R.A.; Lavender, P.D. Central Nervous System Infections. Prim. Care 2018, 45, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Proulx, N.; Fréchette, D.; Toye, B.; Chan, J.; Kravcik, S. Delays in the Administration of Antibiotics Are Associated with Mortality from Adult Acute Bacterial Meningitis. QJM Mon. J. Assoc. Physicians 2005, 98, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunkel, A.R.; Hasbun, R.; Bhimraj, A.; Byers, K.; Kaplan, S.L.; Scheld, W.M.; van de Beek, D.; Bleck, T.P.; Garton, H.J.L.; Zunt, J.R. 2017 Infectious Diseases Society of America’s Clinical Practice Guidelines for Healthcare-Associated Ventriculitis and Meningitis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64, e34–e65. [Google Scholar] [CrossRef] [PubMed]
- Sullins, A.K.; Abdel-Rahman, S.M. Pharmacokinetics of Antibacterial Agents in the CSF of Children and Adolescents. Paediatr. Drugs 2013, 15, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, A.; Gori, G.; Tascini, C.; Danesi, R.; Del Tacca, M. Clinical Pharmacokinetics of Antibacterials in Cerebrospinal Fluid. Clin. Pharmacokinet. 2013, 52, 511–542. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of Drugs through the Blood-Cerebrospinal Fluid/Blood-Brain Barrier for Treatment of Central Nervous System Infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [Green Version]
- Albanèse, J.; Léone, M.; Bruguerolle, B.; Ayem, M.L.; Lacarelle, B.; Martin, C. Cerebrospinal Fluid Penetration and Pharmacokinetics of Vancomycin Administered by Continuous Infusion to Mechanically Ventilated Patients in an Intensive Care Unit. Antimicrob. Agents Chemother. 2000, 44, 1356–1358. [Google Scholar] [CrossRef] [Green Version]
- Bilbao-Meseguer, I.; Rodríguez-Gascón, A.; Barrasa, H.; Isla, A.; Solinís, M.Á. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clin. Pharmacokinet. 2018, 57, 1107–1121. [Google Scholar] [CrossRef]
- Jalusic, K.O.; Hempel, G.; Arnemann, P.-H.; Spiekermann, C.; Kampmeier, T.-G.; Ertmer, C.; Gastine, S.; Hessler, M. Population Pharmacokinetics of Vancomycin in Patients with External Ventricular Drain-Associated Ventriculitis. Br. J. Clin. Pharmacol. 2021, 87, 2502–2510. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Wang, Q.; Zhao, Z. Population Pharmacokinetics of Combined Intravenous and Local Intrathecal Administration of Meropenem in Aneurysm Patients with Suspected Intracranial Infections After Craniotomy. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, Y.; Chen, M.; Zhong, P.; Chen, Y.; Yu, J.; Wu, X.; Wu, J.; Zhang, J. Population Pharmacokinetics and Dosing Regimen Optimization of Meropenem in Cerebrospinal Fluid and Plasma in Patients with Meningitis after Neurosurgery. Antimicrob. Agents Chemother. 2016, 60, 6619–6625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujal, M.; Soy, D.; Codina, C.; Ribas, J. Are Higher Vancomycin Doses Needed in Ventricle-External Shunted Patients? Pharm. World Sci. PWS 2006, 28, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, S.; Ling, X.; Chen, K.; Wang, Q.; Zhao, Z. Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Vancomycin in Postoperative Neurosurgical Patients after Combined Intravenous and Intraventricular Administration. Eur. J. Clin. Pharmacol. 2017, 73, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, J.M.; Albur, M.; Fellows, G.; Heep, A. Monitoring Intraventricular Vancomycin for Ventriculostomy Access Device Infection in Preterm Infants. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2018, 34, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Mrowczynski, O.D.; Langan, S.T.; Rizk, E.B. Intra-Cerebrospinal Fluid Antibiotics to Treat Central Nervous System Infections: A Review and Update. Clin. Neurol. Neurosurg. 2018, 170, 140–158. [Google Scholar] [CrossRef]
- Nau, R.; Blei, C.; Eiffert, H. Intrathecal Antibacterial and Antifungal Therapies. Clin. Microbiol. Rev. 2020, 33, e00190-19. [Google Scholar] [CrossRef]
- Khan, S.A.; Waqas, M.; Siddiqui, U.T.; Shamim, M.S.; Nathani, K.R.; Jooma, R.; Mehmood, F. Intrathecal and Intraventricular Antibiotics for Postoperative Gram-Negative Meningitis and Ventriculitis. Surg. Neurol. Int. 2017, 8, 226. [Google Scholar] [CrossRef]
- Le, J.; Bradley, J.S. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J. Clin. Pharmacol. 2018, 58, S108–S122. [Google Scholar] [CrossRef] [Green Version]
- He, C.-Y.; Ye, P.-P.; Liu, B.; Song, L.; van den Anker, J.; Zhao, W. Population Pharmacokinetics and Dosing Optimization of Vancomycin in Infants, Children, and Adolescents with Augmented Renal Clearance. Antimicrob. Agents Chemother. 2021, 65, e0089721. [Google Scholar] [CrossRef]
- Khare, M.; Azim, A.; Kneese, G.; Haag, M.; Weinstein, K.; Rhee, K.E.; Foster, B.A. Vancomycin Dosing in Children with Overweight or Obesity: A Systematic Review and Meta-Analysis. Hosp. Pediatr. 2020, 10, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Standing, J.F. Understanding and Applying Pharmacometric Modelling and Simulation in Clinical Practice and Research. Br. J. Clin. Pharmacol. 2017, 83, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Rowland-Yeo, K. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery, and Development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 63. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, A.; Mahabadi, N. Volume of Distribution. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Blassmann, U.; Roehr, A.C.; Frey, O.R.; Vetter-Kerkhoff, C.; Thon, N.; Hope, W.; Briegel, J.; Huge, V. Cerebrospinal Fluid Penetration of Meropenem in Neurocritical Care Patients with Proven or Suspected Ventriculitis: A Prospective Observational Study. Crit. Care Lond. Engl. 2016, 20, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blassmann, U.; Hope, W.; Roehr, A.C.; Frey, O.R.; Vetter-Kerkhoff, C.; Thon, N.; Briegel, J.; Huge, V. CSF Penetration of Vancomycin in Critical Care Patients with Proven or Suspected Ventriculitis: A Prospective Observational Study. J. Antimicrob. Chemother. 2019, 74, 991–996. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wu, Y.; Sun, S.; Chen, K.; Lu, Y.; Wang, Q.; Zhao, Z. Plasma and Cerebrospinal Fluid Population Pharmacokinetic Modeling and Simulation of Meropenem after Intravenous and Intrathecal Administration in Postoperative Neurosurgical Patients. Diagn. Microbiol. Infect. Dis. 2019, 93, 386–392. [Google Scholar] [CrossRef]
- Álvarez, R.; López Cortés, L.E.; Molina, J.; Cisneros, J.M.; Pachón, J. Optimizing the Clinical Use of Vancomycin. Antimicrob. Agents Chemother. 2016, 60, 2601–2609. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, E.; Keynan, Y. Vancomycin Revisited—60 Years Later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.J. The Pharmacokinetic and Pharmacodynamic Properties of Vancomycin. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 42, 3–39. [Google Scholar] [CrossRef]
- Kumta, N.; Roberts, J.A.; Lipman, J.; Cotta, M.O. Antibiotic Distribution into Cerebrospinal Fluid: Can Dosing Safely Account for Drug and Disease Factors in the Treatment of Ventriculostomy-Associated Infections? Clin. Pharmacokinet. 2018, 57, 439–454. [Google Scholar] [CrossRef]
- Beach, J.E.; Perrott, J.; Turgeon, R.D.; Ensom, M.H.H. Penetration of Vancomycin into the Cerebrospinal Fluid: A Systematic Review. Clin. Pharmacokinet. 2017, 56, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, J.M.; Kloprogge, F.; Standing, J.F.; Albur, M.; Heep, A. Population Pharmacokinetics of Intraventricular Vancomycin in Neonatal Ventriculitis, A Preterm Pilot Study. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2021, 158, 105643. [Google Scholar] [CrossRef]
- Matsunaga, N.; Hisata, K.; Shimizu, T. An Investigation into the Vancomycin Concentration in the Cerebrospinal Fluid Due to Vancomycin Intraventricular Administration in Newborns: A Study of 13 Cases. Medicine 2015, 94, e922. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.; Kaplan, S.L.; Vallejo, J.G. Impact of Serum Vancomycin Trough Levels in the Treatment of Central Nervous System Shunt Infections Caused by Coagulase-Negative Staphylococci. Pediatr. Neurosurg. 2018, 53, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, T.P.; Harlow, G.; Hutchinson, J.; Dulhunty, J.M.; Lipman, J.; Whitehouse, T.; Roberts, J.A. Vancomycin-Associated Nephrotoxicity in the Critically Ill: A Retrospective Multivariate Regression Analysis. Crit. Care Med. 2014, 42, 2527–2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounier, R.; Lobo, D.; Hulin, A.; Nebbad, B.; Cook, F.; Dhonneur, G. Is First-Line Vancomycin Still the Best Option to Treat Staphylococcus Health Care-Associated Meningitis? World Neurosurg. 2017, 99, 812.e1–812.e5. [Google Scholar] [CrossRef]
- Ishikawa, M.; Yamazaki, S.; Suzuki, T.; Uchida, M.; Iwadate, Y.; Ishii, I. Correlation between Vancomycin Penetration into Cerebrospinal Fluid and Protein Concentration in Cerebrospinal Fluid/Serum Albumin Ratio. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2019, 25, 124–128. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Zhou, Y.-G.; Xu, P.; Liu, Y.-P.; Cai, H.-L.; Chen, H.; Luo, Z.; Banh, H.L. Association Between Vancomycin Blood Brain Barrier Penetration and Clinical Response in Postsurgical Meningitis. J. Pharm. Pharm. Sci. 2017, 20, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.; Dadashzadeh, S.; Shokouhi, S.; Ebrahimzadeh, K.; Sadeghi, M.; Sahraei, Z. Administration of Vancomycin at High Doses in Patients with Post Neurosurgical Meningitis: A Comprehensive Comparison between Continuous Infusion and Intermittent Infusion. Iran. J. Pharm. Res. IJPR 2018, 17, 195–205. [Google Scholar]
- Cai, Y.; Zhou, L.; Wang, H.; Zhang, L.; Wang, J.; Zhang, K. Comparation of Vancomycin Penetration into Cerebrospinal Fluid in Postoperative Intracranial Infection and Community-Acquired Meningitis Patients. J. Clin. Pharm. Ther. 2019, 44, 216–219. [Google Scholar] [CrossRef]
- Noguchi, T.; Nagao, M.; Yamamoto, M.; Matsumura, Y.; Kitano, T.; Takaori-Kondo, A.; Ichiyama, S. Staphylococcus Epidermidis Meningitis in the Absence of a Neurosurgical Device Secondary to Catheter-Related Bloodstream Infection: A Case Report and Review of the Literature. J. Med. Case Rep. 2018, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.M.; Lyseng-Williamson, K.A.; Keam, S.J. Meropenem: A Review of Its Use in the Treatment of Serious Bacterial Infections. Drugs 2008, 68, 803–838. [Google Scholar] [CrossRef] [PubMed]
- Mattoes, H.M.; Kuti, J.L.; Drusano, G.L.; Nicolau, D.P. Optimizing Antimicrobial Pharmacodynamics: Dosage Strategies for Meropenem. Clin. Ther. 2004, 26, 1187–1198. [Google Scholar] [CrossRef]
- Germovsek, E.; Lutsar, I.; Kipper, K.; Karlsson, M.O.; Planche, T.; Chazallon, C.; Meyer, L.; Trafojer, U.M.T.; Metsvaht, T.; Fournier, I.; et al. Plasma and CSF Pharmacokinetics of Meropenem in Neonates and Young Infants: Results from the NeoMero Studies. J. Antimicrob. Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef] [Green Version]
- Ohata, Y.; Tomita, Y.; Sunakawa, K.; Drusano, G.L.; Tanigawara, Y. Cerebrospinal Pharmacokinetic and Pharmacodynamic Analysis of Efficacy of Meropenem in Paediatric Patients with Bacterial Meningitis. Int. J. Antimicrob. Agents 2019, 54, 292–300. [Google Scholar] [CrossRef]
- Verscheijden, L.F.M.; Koenderink, J.B.; de Wildt, S.N.; Russel, F.G.M. Development of a Physiologically-Based Pharmacokinetic Pediatric Brain Model for Prediction of Cerebrospinal Fluid Drug Concentrations and the Influence of Meningitis. PLoS Comput. Biol. 2019, 15, e1007117. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore, W.S.; Calaman, S.; Brown, M.; Narayan, P.; Parker, J.; Chopra, A. Pharmacokinetics of Continuous-Infusion Meropenem for the Treatment of Serratia Marcescens Ventriculitis in a Pediatric Patient. Pharmacotherapy 2015, 35, 32–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Chen, Y.; Yu, J.; Cao, G.; Wu, X.; Chen, M.; Wu, J.; Zhao, X. Evaluation of Meropenem Penetration into Cerebrospinal Fluid in Patients with Meningitis After Neurosurgery. World Neurosurg. 2017, 98, 525–531. [Google Scholar] [CrossRef]
Type of Infection | Study Design (n) | Dose | Route | Blood and CSF Sampling | Plasma (mg/L) | CSF (mg/L) | CSF Penetration | PK Model | Age | Treatment Outcome/ Remarks | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Meningitis Late-onset sepsis | Prospective (49) (123) (167) Combined | 40 mg/kg, q12h in patients with <32 weeks GA and <2 weeks PNA, q8h in all other patients, infused over 30 min 20 mg/kg, q12h in patients with <32 weeks GA and <2 weeks PNA, q8h in all other patients, infused over 30 min | IV IV | Plasma samples: immediately at the end of infusion, 5–6 h post-dose for q8h or 7–8 h post-dose for q12h, immediately before dosing in majority of patients, or only trough samples CSF samples measured opportunistically 5.27 (0–12.0) h post-dose in 56 patients, Source CSF samples: lumbar (puncture) “-“ | 12.4 (0.1–139.0) 5.27 (0.01–147.7) 7.94 (0.01–147.7) | 1.90 (0.05–35.4) 1.23 (0.04–7.34) 1.58 (0.04–35.4) | ND ND model-based typical estimate 8.4% | Yes | GA: 37.1 (23.4–41.9) weeks PNA: 9 (1–90) days; PMA: 38.8 (24.9–51.1) weeks GA: 31.9 (22.6–41.3) Weeks PNA: 15 (3–83) days PMA: 36.0 (23.7–51.3) weeks GA: 33.3 (22.6–41.9) Weeks PNA: 13 (1–90) days PMA: 37.4 (23.7– 51.3) weeks | NS discussed for 24 LOS patients, 12 patients successfully treated with meropenem | [55] |
Meningitis and otherinfections | Meta-Analysis of three clinical studies (154 children,5 adults included) | Children: 10, 20 or 40 mg/kg q8h, depending on study and disease severity, infused over ≥0.5 h Adults: 2 g, q8h, over ≥0.5 h | IV | Serum samples from patients with various infections, CSF samples from patients with bacterial meningitis, Blood and CSF samples collected after more than three doses. During or after completion of infusion (up to 6.5 h), Source of CSF samples: lumbar (puncture) | 28.7 ± 29.1 | 1.82 ± 2.7 | Estimated population mean CSF/plasma AUC ratio 0.146 | Yes | 30.6 ± 34.4 months, 60.6 ± 15.9 years | Clinical outcomes reported for 117 bacterial meningitis patients: 58 patients cured without sequelae, 56 with mild or severe sequelae, and 3 reported deaths | [56] |
Sepsis/ bacterial meningitis | PK study | Simulated AUCCSF/AUC Serum 0.09–0.12 | Yes | NS | [57] | ||||||
EVD- related ventriculitis | Case report | 40 mg/kg over 0.5 h, q6h Hospital day 27: 200 mg/kg/day | IV | Serum and CSF measured simultaneously 2 and 4 h after infusion, Source of CSF samples: NS NS | C(2 h) = 12 C(4 h) = UD C(day 33) = 13 C(day 37) = 15 | C(2 h) = 1 C(4 h) = 0.5 C(day 33) = 0.5 C(day 37) = 0.5 | 3% | No | 2 years | Successfully treated | [58] |
Type of Infection | Study Design (N) | Dose | Route | Blood and CSF Sampling | Plasma (mg/L) | CSF (mg/L) | CSF Penetration | PK Model | Age | Treatment Outcome/ Remarks | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Proven or suspected ventriculitis | Prospective observational (21) | 1 g q8h (adverse drug effects/renal impairment) or 2 g q8h, both over 4 h | IV | Plasma and CSF samples measured just before the start of infusion and after the end of infusion, Source of CSF samples: intraventricular (intraventricular catheter) | Cmin = 2.54 (0.00–31.40) Cmax = 20.16 (4.40–69.00) | Ctrough = 1.28 (0.00–4.10) C(after 4 h) = 1.20 (0.00–6.20) | Cumulative AUCCSF/ CumulativeAUCSerum 0.09 (0.03–0.16) | Yes | 52 (46–80) years | 30 days mortality: 0 | [35] |
Ventriculitis | Retrospective (22, for both vancomycin and meropenem) | Continuous infusion 6 g/day after initial bolus of 1 g over 30 min Serum target concentration of 16–32 mg/L CSF target concentration of 2 mg/L Dosages adjusted according to TDM results | IV | Samples from 20 patients, timepoints NS, Source of CSF samples: NS | 30.7 ± 14.9 mg/L two values (6%) below and nine values (25%) above target concentration | 5.5 ± 5.2 mg/L above the break- point of susceptibility for Gram-negative rods in 24 cases (78%) | 18% ± 12% (2–40%) | No | 57 ± 12 years | Death of 7 out of 22 patients, the remaining patients GOS 2–4 | [11] |
Post-neurosurgical meningitis | Prospective (82) | 2 g q8h, 1 g q8h, or 1 g q6h depending on their baseline conditions Infusion rate 1 g/h | IV | Blood and CSF samples collected simultaneously after the fourth meropenem dose at different time points ranging from during the infusion to immediately before administration of next dose, Source of CSF samples: lumbar (drainage) or intraventricular (EVD) | 2 g q8h: Cpeak = 43.2 ± 5.3 1 g q8h: Cpeak = 28.9 ± 2.7 1 g q6h: Cpeak = 31.5 ± 3.4 | 2 g q8h: Cpeak = 2.4 ± 0.3 1 g q8h: Cpeak = 1.2 ± 0.2 1 g q6h: Cpeak = 1.6 ± 0.2 | 2 g q8h: Pmax = 17.6% ± 7.3% 1 g q8h: Pmax = 14.3% ± 1.7% 1 g q6h: Pmax = 30.9% ± 24.2% | Yes [22] | 43.4 ±13.1 (19–77) years | 2 g q8h: favorable treatment response in 76.1% of patients, 1 g q8h: 88.1%, 1 g q6h: 94.7%, One possibly related adverse event in one patient (skin rash) | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, F.; Gessner, A.; El-Najjar, N. Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics 2022, 11, 173. https://doi.org/10.3390/antibiotics11020173
Schneider F, Gessner A, El-Najjar N. Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics. 2022; 11(2):173. https://doi.org/10.3390/antibiotics11020173
Chicago/Turabian StyleSchneider, Franziska, André Gessner, and Nahed El-Najjar. 2022. "Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update" Antibiotics 11, no. 2: 173. https://doi.org/10.3390/antibiotics11020173
APA StyleSchneider, F., Gessner, A., & El-Najjar, N. (2022). Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics, 11(2), 173. https://doi.org/10.3390/antibiotics11020173