Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review
Abstract
:1. Introduction
2. Bacterial Infections in Cirrhotic Patients
2.1. Spontaneous Bacterial Peritonitis
2.2. Urinary Tract Infections
2.3. Pneumonia
2.4. Skin and Soft Tissue Infections (SSTIs)
3. Multi-Drug-Resistant Organisms (MDROs): Mechanisms of Resistance and Prevalence in Cirrhotic Patients
3.1. Gram-Positive Bacteria Infections in Cirrhotic Patients
3.1.1. Staphylococcus aureus
3.1.2. Enterococcus spp.
3.2. Gram-Negative Bacteria Infections in Cirrhotic Patients
Enterobacteriaceae
3.3. Nonfermenting Gram-Negative Bacteria
4. Risk Factors Associated with MDRO Infections
5. Principles of Antimicrobial Treatment
6. Empirical Antimicrobial Schedules
7. Pharmacokinetic Considerations in Cirrhotic Patients
8. De-Escalation Policies and Duration of Treatments
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nahon, P.; Lescat, M.; Layese, R.; Bourcier, V.; Talmat, N.; Allam, S.; Marcellin, P.; Guyader, D.; Pol, S.; Larrey, D.; et al. Bacterial infection in compensated viral cirrhosis impairs 5-year survival (ANRS CO12 CirVir prospective cohort). Gut 2017, 66, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Kamath, P.S.; Reddy, K.R. The Evolving Challenge of Infections in Cirrhosis. N. Engl. J. Med. 2021, 384, 2317–2330. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; O’Leary, J.G.; Tandon, P.; Wong, F.; Garcia-Tsao, G.; Kamath, P.S.; Biggins, S.W.; Lai, J.C.; Vargas, H.E.; Maliakkal, B.; et al. Nosocomial Infections Are Frequent and Negatively Impact Outcomes in Hospitalized Patients with Cirrhosis. Am. J. Gastroenterol. 2019, 114, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Kim, W.R.; Moriarty, J.P.; Shah, N.D.; Larson, J.J.; Kamath, P.S. Time trends in the health care burden and mortality of acute on chronic liver failure in the United States. Hepatology 2016, 64, 2165–2172. [Google Scholar] [CrossRef]
- Villanueva, C.; Albillos, A.; Genescà, J.; Garcia-Pagan, J.C.; Brujats, A.; Calleja, J.L.; Aracil, C.; Bañares, R.; Morillas, R.M.; Poca, M.; et al. Bacterial infections adversely influence the risk of decompensation and survival in compensated cirrhosis. J. Hepatol. 2021, 75, 589–599. [Google Scholar] [CrossRef]
- Fernández, J.; Prado, V.; Trebicka, J.; Amoros, A.; Gustot, T.; Wiest, R.; Deulofeu, C.; Garcia, E.; Acevedo, J.; Fuhrmann, V.; et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J. Hepatol. 2019, 70, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Singh, V.; Caraceni, P.; Maiwall, R.; Alessandria, C.; Fernandez, J.; Soares, E.C.; Kim, D.J.; Kim, S.E.; Marino, M.; et al. Epidemiology and Effects of Bacterial Infections in Patients With Cirrhosis Worldwide. Gastroenterology 2019, 156, 1368–1380. [Google Scholar] [CrossRef] [Green Version]
- Bartoletti, M.; Giannella, M.; Lewis, R.; Caraceni, P.; Tedeschi, S.; Paul, M.; Schramm, C.; Bruns, T.; Merli, M.; Cobos-Trigueros, N.; et al. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin. Microbiol. Infect. 2018, 24, 546e1–546.e8. [Google Scholar] [CrossRef] [Green Version]
- Singal, A.K.; Salameh, H.; Kamath, P.S. Prevalence and in-hospital mortality trends of infections among patients with cirrhosis: A nationwide study of hospitalised patients in the United States. Aliment. Pharmacol. Ther. 2014, 40, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Facciorusso, A.; Antonino, M.; Orsitto, E.; Sacco, R. Primary and secondary prophylaxis of spontaneous bacterial peritonitis: Current state of the art. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 751–759. [Google Scholar] [CrossRef]
- Bajaj, J.S.; O’Leary, J.G.; Reddy, K.R.; Wong, F.; Biggins, S.W.; Patton, H.; Fallon, M.B.; Garcia-Tsao, G.; Maliakkal, B.; Malik, R.; et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014, 60, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, J.; Gustot, T. Management of bacterial infections in cirrhosis. J. Hepatol. 2012, 56 (Suppl. 1), S101–S117. [Google Scholar] [CrossRef]
- Ekpanyapong, S.; Reddy, K.R. Infections in Cirrhosis. Curr. Treat. Options Gastroenterol. 2019, 17, 254–270. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.H.; Tseng, C.W.; Hsieh, Y.H.; Tseng, K.C.; Tsai, C.C.; Tsai, C.C. High mortality of pneumonia in cirrhotic patients with ascites. BMC Gastroenterol. 2013, 13, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viasus, D.; Garcia-Vidal, C.; Castellote, J.; Adamuz, J.; Verdaguer, R.; Dorca, J.; Manresa, F.; Gudiol, F.; Carratalà, J. Community-acquired pneumonia in patients with liver cirrhosis: Clinical features, outcomes, and usefulness of severity scores. Medicine 2011, 90, 110–118. [Google Scholar] [CrossRef]
- Malani, A.N.; Kerr, L.E.; Kauffman, C.A. Voriconazole: How to Use This Antifungal Agent and What to Expect. Semin. Respir. Crit. Care Med. 2015, 36, 786–795. [Google Scholar]
- Lee, C.C.; Chi, C.H.; Lee, N.Y.; Lee, H.C.; Chen, C.L.; Chen, P.L.; Chang, C.M.; Wu, C.J.; Ko, N.Y.; Tsai, M.C.; et al. Necrotizing fasciitis in patients with liver cirrhosis: Predominance of monomicrobial Gram-negative bacillary infections. Diagn. Microbiol. Infect. Dis. 2008, 62, 219–225. [Google Scholar] [CrossRef]
- Jalan, R.; Fernandez, J.; Wiest, R.; Schnabl, B.; Moreau, R.; Angeli, P.; Stadlbauer, V.; Gustot, T.; Bernardi, M.; Canton, R.; et al. Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013. J. Hepatol. 2014, 60, 1310–1324. [Google Scholar] [CrossRef]
- Miranda-Zazueta, G.; de León-Garduño, L.A.P.; Aguirre-Valadez, J.; Torre-Delgadillo, A. Bacterial infections in cirrhosis: Current treatment. Ann. Hepatol. 2020, 19, 238–244. [Google Scholar] [CrossRef]
- Fernández, J.; Acevedo, J.; Castro, M.; Garcia, O.; Rodríguez de Lope, C.; Roca, D.; Pavesi, M.; Sola, E.; Moreira, L.; Silva, A.; et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: A prospective study. Hepatology 2012, 55, 1551–1561. [Google Scholar] [CrossRef]
- Bartoletti, M.; Giannella, M.; Caraceni, P.; Domenicali, M.; Ambretti, S.; Tedeschi, S.; Verucchi, G.; Badia, L.; Lewis, R.E.; Bernardi, M.; et al. Epidemiology and outcomes of bloodstream infection in patients with cirrhosis. J. Hepatol. 2014, 61, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Allaire, M.; Cadranel, J.F.; Nguyen, T.T.N.; Garioud, A.; Zougmore, H.; Heng, R.; Perignon, C.; Ollivier-Hourmand, I.; Dao, T. Management of infections in patients with cirrhosis in the context of increasing therapeutic resistance: A systematic review. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020, 25, 2888. [Google Scholar] [CrossRef]
- Fernández, J.; Piano, S.; Bartoletti, M.; Wey, E.Q. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J. Hepatol. 2021, 75, S101–S117. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Bonomo, R.A. β-Lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Bradford, P.A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of infections caused by extended-spectrum-beta-lactamase-, ampC-, and carbapenemase-producing enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naas, T.; Dortet, L.; Iorga, B.I. Structural and Functional Aspects of Class A Carbapenemases. Curr. Drug Targets 2016, 17, 1006–1028. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-lactam–β-lactamase inhibitor combinations. Clin. Microbiol. Rev. 2021, 34, e115–e120. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.F.; Williams, B.J.; Blackwell, T.S.; Xie, C.M. Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Barre, N.; Poole, K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2000, 46, 885–893. [Google Scholar] [CrossRef]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Cabot, G.; Bruchmann, S.; Mulet, X.; Zamorano, L.; Moyá, B.; Juan, C.; Haussler, S.; Olivera, A. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of ampc. Antimicrob. Agents Chemother. 2014, 58, 3091–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyá, B.; Beceiro, A.; Cabot, G.; Juan, C.; Zamorano, L.; Alberti, S.; Oliver, A. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: Molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob. Agents Chemother. 2012, 56, 4771–4778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruchmann, S.; Dötsch, A.; Nouri, B.; Chaberny, I.F.; Häussler, S. Quantitative contributions of target alteration and decreased drug accumulation to pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob. Agents Chemother. 2013, 57, 1361–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Gheorghe, I.; Czobor, I.B.; Chifiriuc, M.C. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms 2020, 8, 935. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. V Antimicrobials: Access and sustainable effectiveness 2. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet Infect. Dis. 2016, 387, 176–187. [Google Scholar]
- Angeli, P.; Bernardi, M.; Villanueva, C.; Francoz, C.; Mookerjee, R.P.; Trebicka, J.; Krag, A.; Laleman, W.; Gines, P. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Gentile, I.; Maraolo, A.E.; Leone, S.; Simeon, V.; Chiodini, P.; Pace, M.C.; Gustot, T.; Taccone, F.S. Are third-generation cephalosporins still the empirical antibiotic treatment of community-Acquired spontaneous bacterial peritonitis? A systematic review and meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Piano, S.; Fasolato, S.; Salinas, F.; Romano, A.; Tonon, M.; Morando, F.; Cavallin, M.; Gola, E.; Sticca, A.; Loregian, A.; et al. The empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis: Results of a randomized, controlled clinical trial. Hepatology 2016, 63, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Babiker, A.; Li, X.; Lai, Y.L.; Strich, J.R.; Warner, S.; Sarzynski, S.; Dekker, J.P.; Danner, R.L.; Kadri, S.S. Effectiveness of adjunctive clindamycin in β-lactam antibiotic-treated patients with invasive β-haemolytic streptococcal infections in US hospitals: A retrospective multicentre cohort study. Lancet Infect. Dis. 2021, 21, 697–710. [Google Scholar] [CrossRef]
- Westphal, J.F.; Jehl, F.; Vetter, D. Pharmacological, toxicologic, and microbiological considerations in the choice of initial antibiotic therapy for serious infections in patients with cirrhosis of the liver. Clin. Infect. Dis. 1994, 18, 324–335. [Google Scholar] [CrossRef]
- Pena, M.A.; Horga, J.F.; Zapater, P. Variations of pharmacokinetics of drugs in patients with cirrhosis. Expert Rev. Clin. Pharmacol. 2016, 9, 441–458. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Dhaese, S.; Heffernan, A.; Liu, D.; Abdul-Aziz, M.H.; Stove, V.; Tam, V.H.; Lipman, J.; Roberts, J.A.; De Waele, J.J. Prolonged Versus Intermittent Infusion of β-Lactam Antibiotics: A Systematic Review and Meta-Regression of Bacterial Killing in Preclinical Infection Models. Clin. Pharmacokinet. 2020, 59, 1237–1250. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent β-lactam infusion in severe sepsis: A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Bartoletti, M.; Giannella, M.; Lewis, R.E.; Caraceni, P.; Tedeschi, S.; Paul, M.; Schramm, C.; Bruns, T.; Merli, M.; Cobos-Trigueros, N.; et al. Extended infusion of β-lactams for bloodstream infection in patients with liver cirrhosis: An observational multicenter study. Clin. Infect. Dis. 2019, 69, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Bastida, C.; Hernández-Tejero, M.; Aziz, F.; Espinosa, C.; Sanz, M.; Brunet, M.; López, E.; Fernández, J.; Soy, D. Meropenem population pharmacokinetics in patients with decompensated cirrhosis and severe infections. J. Antimicrob. Chemother. 2020, 75, 3619–3624. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2020, 71, 1361–1364. [Google Scholar] [PubMed]
- Regal, R.E.; Ren, S.P.; Paige, G.; Alaniz, C. Evaluation of Vancomycin Dosing in Patients With Cirrhosis: Beginning De-Liver-ations about a New Nomogram. Hosp. Pharm. 2019, 54, 125–129. [Google Scholar] [CrossRef]
- Luque, S.; Muñoz-Bermudez, R.; Echeverría-Esnal, D.; Sorli, L.; Campillo, N.; Martínez-Casanova, J.; González-Colominas, E.; Álvarez-Lerma, F.; Horcajada, J.P.; Grau, S.; et al. Linezolid Dosing in Patients With Liver Cirrhosis: Standard Dosing Risk Toxicity. Ther. Drug Monit. 2019, 41, 732–739. [Google Scholar] [CrossRef]
- Paul, M.; Dickstein, Y.; Raz-Pasteur, A. Antibiotic de-escalation for bloodstream infections and pneumonia: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2016, 22, 960–967. [Google Scholar] [CrossRef]
- Tabah, A.; Bassetti, M.; Kollef, M.H.; Zahar, J.R.; Paiva, J.A.; Timsit, J.F.; Roberts, J.A.; Schouten, J.; Giamarellou, H.; Rello, J.; et al. Antimicrobial de-escalation in critically ill patients: A position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensiv. Care Med. 2020, 46, 245–265. [Google Scholar]
First Name, Year (Ref.) | N. Patients | Country | Study Design | Enrollment Period | Males (n, %) | Mean Age (SD) | Site of infection (n, %) | MDROs (n/N, %) | MRSA (n, %) | E. faecium (n, %) | ESBL-Producing Enterobacteriaceae (n, %) | CRE (n, %) | MDR Nonfermenting Gram- Negative (n, %) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fernandez, 2012 [20] | 343 | Spain | Prospective cohort | 2005–2007; * 2010–2011 ** | 147 (63) * | 60 (13) * | SBP: 159 (46.3); UTI: 139 (40.5) SSTI: 86 (25.1) Pneumonia: 69 (20.1) PB: 45 (13.1) Others 111 (32.4) | 98/316 (31) * 40/140 (28.6) ** | 14 (35) * 6 (35.3) ** | 14 (31.1) * 11 (39.3) ** | 46 (32.4) * 12 (21.8) ** | 0 (0) | 23 (92) * |
Bartoletti, 2014 [21] | 162 | Italy | Retrospective cohort | 2008–2012 | 104 (64) | 62 (11) | SBP: 13 (8) UTI: 11 (6.8) Pneumonia: 16 (9) PB: 116 (71.6) Others: 6 (3.7) | 57/166 (34.3) | 6 (28.6) | 12 (44.4) | 24 (31.2) | 14 (18.2) | NR |
Bartoletti, 2018 [8] | 312 | Italy, Spain, Israel, Croatia, Germany | Prospective cohort | 2014–2015 | 204 (65) | 61 (12) | SBP: 50 (16) UTI: 35 (11) Pneumonia: 19 (6) PB: 99 (32) Intra-abdominal: 49 (15.7) Others: 60 (19.2) | 26/310 (26.1) | 12 (27.9) | 22 (53.7) | 38 (27.9) | 9 (6.6) | NR |
Fernandez, 2019 [6] | 739 | 13 European Countries | Prospective cohort | 2011; 2017–2018 | NR | NR | SBP: 130 (25) * UTI: 111 (21.4) * Pneumonia: 85 (16.4) * PB: 28 (5.4) * SSTI: 44 (8.5) * Intra-abdominal: 21 (4.0) * Others: 101 (19.4) * | 176/483 (36.4) * | 12/30 (40) * | 15/44 (34.1) * | 36/135 (26.7) * | 2/135 (1.5) * | 12/13 (92) * |
Piano, 2019 [7] | 1302 | 46 centers in Asia, Europe, North and South America | Prospective cohort | 2015–2016 | 898 (69) | 57 (13) | SBP: 354 (27) UTI: 289 (23) Pneumonia: 242 (19) PB: 100 (8) SSTI: 101 (8) Others: 216 (17) | 322/921 (35.0) | 14 (24) | 53 (58.2) | 131 (35) | 35 (9) | NR |
Community-Acquired Infections | Nosocomial Infections | |
---|---|---|
Spontaneous bacterial peritonitis | Ceftriaxone or cefotaxime or amoxicillin–clavulanate or ampicillin–sulbactam | Piperacillin–tazobactam or carbapenem * + anti-MRSA agent ** |
Urinary tract infections | Uncomplicated: Fosfomycin or trimethoprim–sulfamethoxazole Complicated: Amoxicillin–clavulanate or ampicillin–sulbactam | Uncomplicated: Fosfomycin or nitrofurantoin Complicated: Piperacillin–tazobactam or carbapenem |
Pneumonia | Amoxicillin–clavulanate + clarithromycin or azithromycin | Antipseudomonal β-lactam ° + (a fluoroquinolone or an aminoglycoside or colistin) + vancomycin or linezolid (see Refs. [45,46]) |
Skin and soft tissue infections | Non-necrotizing infections Amoxicillin–clavulanate + (doxycycline or trimethoprim–sulfamethoxazole or clindamycin) Necrotizing fasciitis: Piperacillin–tazobactam or carbapenem + linezolid or (vancomycin or daptomycin + clindamycin) | Piperacillin–tazobactam or carbapenem * + linezolid or (vancomycin or daptomycin + clindamycin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onorato, L.; Monari, C.; Capuano, S.; Grimaldi, P.; Coppola, N. Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review. Antibiotics 2022, 11, 232. https://doi.org/10.3390/antibiotics11020232
Onorato L, Monari C, Capuano S, Grimaldi P, Coppola N. Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review. Antibiotics. 2022; 11(2):232. https://doi.org/10.3390/antibiotics11020232
Chicago/Turabian StyleOnorato, Lorenzo, Caterina Monari, Salvatore Capuano, Pierantonio Grimaldi, and Nicola Coppola. 2022. "Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review" Antibiotics 11, no. 2: 232. https://doi.org/10.3390/antibiotics11020232
APA StyleOnorato, L., Monari, C., Capuano, S., Grimaldi, P., & Coppola, N. (2022). Prevalence and Therapeutic Management of Infections by Multi-Drug-Resistant Organisms (MDROs) in Patients with Liver Cirrhosis: A Narrative Review. Antibiotics, 11(2), 232. https://doi.org/10.3390/antibiotics11020232