Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Determining MICs
4.3. Molecular Study of Antibiotic Resistance Genes
4.4. Antibiotic Dose Optimization by Monte Carlo Simulation
4.5. Ethics Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Facility Guidance for Control of Carbapenem-Resistant Enterobacteriaceae (CRE)—November 2015 Update CRE Toolkit. Available online: https://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf (accessed on 7 June 2019).
- Soontaros, S.; Leelakanok, N. Association between carbapenem-resistant Enterobacteriaceae and death: A systematic review and meta-analysis. Am. J. Infect. 2019, 47, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, S.M.; McKinnell, J.A.; Mueller, L.E.; Miller, L.G.; Gohil, S.K.; Huang, S.S.; Lee, B.Y. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin. Microbiol. Infect. 2017, 23, 48.e9–48.e16. [Google Scholar] [CrossRef] [Green Version]
- National Antimicrobial Resistance Surveillance Center (NARST). Antimicrobial Resistance 2000–2020 (6M). Available online: http://narst.dmsc.moph.go.th/data/AMR%202000-2020-06M.pdf (accessed on 3 January 2021).
- Phodha, T.; Riewpaiboon, A.; Malathum, K.; Coyte, P.C. Excess annual economic burdens from nosocomial infections caused by multi-drug resistant bacteria in Thailand. Expert Rev. Pharmacoecon. Outcomes Res. 2019, 19, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, K.; Voor In ’t Holt, A.F.; Vos, M.C. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e01730-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Goodman, K.E.; Harris, A.D.; Tekle, T.; Roberts, A.; Taiwo, A.; Simner, P.J. Comparing the Outcomes of Patients with Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia. Clin. Infect. Dis. 2017, 64, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Fattouh, R.; Tijet, N.; McGeer, A.; Poutanen, S.M.; Melano, R.G.; Patel, S.N. What Is the Appropriate Meropenem MIC for Screening of Carbapenemase-Producing Enterobacteriaceae in Low-Prevalence Settings? Antimicrob. Agents Chemother. 2015, 60, 1556–1559. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef]
- Rimrang, B.; Chanawong, A.; Lulitanond, A.; Wilailuckana, C.; Charoensri, N.; Sribenjalux, P.; Phumsrikaew, W.; Wonglakorn, L.; Kerdsin, A.; Chetchotisakd, P. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J. Antimicrob. Chemother. 2012, 67, 2626–2630. [Google Scholar] [CrossRef] [PubMed]
- Preechachuawong, P.; Santimaleeworagun, W.; Jitwasinkul, T.; Samret, W. Detection of New Delhi Metallo-bata-lactamase-1-producing Klebsiella pneumoniae at a general hospital in Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46, 1031–1036. [Google Scholar] [PubMed]
- Netikul, T.; Kiratisin, P. Genetic Characterization of Carbapenem-Resistant Enterobacteriaceae and the Spread of Carbapenem-Resistant Klebsiella pneumonia ST340 at a University Hospital in Thailand. PLoS ONE 2015, 10, e0139116. [Google Scholar] [CrossRef] [PubMed]
- Laolerd, W.; Akeda, Y.; Preeyanon, L.; Ratthawongjirakul, P.; Santanirand, P. Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae from Bangkok, Thailand, and their Detection by the Carba NP and Modified Carbapenem Inactivation Method Tests. Microb. Drug Resist. 2018, 24, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Nasomsong, W.; Nulsopapon, P.; Changpradub, D.; Pongchaidecha, M.; Pungcharoenkijkul, S.; Juntanawiwat, P.; Simsiriporn, W.; Santimaleeworagun, W. The Potential Use of Ceftazidime-Avibactam against Carbapenem Resistant Klebsiella pneumoniae Clinical Isolates Harboring Different Carbapenemase Types in a Thai University Hospital. Drug Des. Dev. Ther. 2021, 15, 3095–3104. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Gutierrez-Gutierrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin. Infect. Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infectious Diseases Society of America (IDSA). Infectious Diseases Society of America Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Available online: https://www.idsociety.org/globalassets/idsa/practice-guidelines/amr-guidance/idsa-amr-guidance.pdf (accessed on 10 October 2020).
- Tangden, T.; Ramos Martin, V.; Felton, T.W.; Nielsen, E.I.; Marchand, S.; Bruggemann, R.J.; Bulitta, J.B.; Bassetti, M.; Theuretzbacher, U.; Tsuji, B.T.; et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Gutierrez-Gutierrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Pano-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Canton, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Thongkoom, P.; Kanchanahareutai, S.; Chantrakooptungkul, S.; Rahule, S.; Pupan, M.; Tuntrakul, P.; Masan, N.; Teammongkolrat, L. Carbapenem-Resistant Enterobacteriaceae at Rajavithi Hospital: Results of a Microbiology Laboratory Program (2009–2015). J. Med. Assoc. Thail. 2017, 100, S212–S221. [Google Scholar]
- National Antimicrobial Resistance Surveillance Center (NARST). Antibiogram 2020 (Jan–Jun). Available online: http://narst.dmsc.moph.go.th/antibiograms/2020/6/Jan-Jun2020-All.pdf (accessed on 25 January 2020).
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabaci, C.; Dal, T.; Basyigit, T.; Genisel, N.; Durmaz, R. Investigation of carbapenemase and mcr-1 genes in carbapenem-resistant Klebsiella pneumoniae isolates. J. Infect. Dev. Ctries. 2019, 13, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Mmatli, M.; Mbelle, N.M.; Maningi, N.E.; Osei Sekyere, J. Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: A Systematic Review of Current Reports. mSystems 2020, 5, e00783-20. [Google Scholar] [CrossRef]
- Jitaree, K.; Sathirakul, K.; Houngsaitong, J.; Asuphon, O.; Saelim, W.; Thamlikitkul, V.; Montakantikul, P. Pharmacokinetic/Pharmacodynamic (PK/PD) Simulation for Dosage Optimization of Colistin Against Carbapenem-Resistant Klebsiella pneumoniae and Carbapenem-Resistant Escherichia coli. Antibiotics 2019, 8, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santimaleeworagun, W.; Thunyaharn, S.; Juntanawiwat, P.; Thongnoy, N.; Harindhanavudhi, S.; Nakeesathit, S.; Teschumroon, S. The prevalence of colistin-resistant Gram-negative bacteria isolated from hospitalized patients with bacteremia. J. Appl. Pharm. Sci. 2020, 10, 56–59. [Google Scholar]
- Ni, W.; Li, G.; Zhao, J.; Cui, J.; Wang, R.; Gao, Z.; Liu, Y. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect. Dis. 2018, 50, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Han, Y.; Liu, J.; Wei, C.; Zhao, J.; Cui, J.; Wang, R.; Liu, Y. Tigecycline Treatment for Carbapenem-Resistant Enterobacteriaceae Infections: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e3126. [Google Scholar] [CrossRef]
- Thaden, J.T.; Pogue, J.M.; Kaye, K.S. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 2017, 8, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, E.; Guzvinec, M.; Butic, I.; Kresic, S.; Crnek, S.S.; Tambic, A.; Cornaglia, G.; Mazzariol, A. blaNDM-1 Carriage on IncR Plasmid in Enterobacteriaceae Strains. Microb. Drug Resist. 2016, 22, 123–128. [Google Scholar] [CrossRef]
- Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-beta-lactamase (NDM): A threat to public health. BMC Microbiol. 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Aryal, P.U.; Thamjarungwong, B.; Singkhamanan, K.; Thongsuksai, P.; Ingviya, N.; Laohaprertthisan, V.; Darayon, R.; Yingkajorn, M. Emergence of Carbapenem-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Southern Thailand. Walailak J. Sci. Technol. (WJST) 2020, 17, 1139–1148. [Google Scholar] [CrossRef]
- Gamal, D.; Fernandez-Martinez, M.; Salem, D.; El-Defrawy, I.; Montes, L.A.; Ocampo-Sosa, A.A.; Martinez-Martinez, L. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int. J. Infect. Dis. 2016, 43, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prawang, A.; Santimaleeworagun, W.; Changpradub, D.; Thunyaharn, S.; Puttilerpong, C. In vitro antibiotic synergy colistin-resistance Klebsiella pneumoniae. Southeast Asian J. Trop. Med. Public Health 2019, 50, 703–707. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 29 April 2021).
- Nulsopapon, P.; Nasomsong, W.; Pongchaidecha, M.; Changpradub, D.; Juntanawiwat, P.; Santimaleeworagun, W. The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates. Antibiotics 2021, 10, 736. [Google Scholar] [CrossRef]
- Jaruratanasirikul, S.; Thengyai, S.; Wongpoowarak, W.; Wattanavijitkul, T.; Tangkitwanitjaroen, K.; Sukarnjanaset, W.; Jullangkoon, M.; Samaeng, M. Population pharmacokinetics and Monte Carlo dosing simulations of meropenem during the early phase of severe sepsis and septic shock in critically ill patients in intensive care units. Antimicrob. Agents Chemother. 2015, 59, 2995–3001. [Google Scholar] [CrossRef] [Green Version]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit. Care 2019, 23, 104. [Google Scholar]
- Jaruratanasirikul, S.; Aeinlang, N.; Jullangkoon, M.; Wongpoowarak, W. Pharmacodynamics of imipenem in critically ill patients with ventilator-associated pneumonia. J. Med. Assoc. Thangphae 2013, 96, 551–557. [Google Scholar]
- Delattre, I.K.; Musuamba, F.T.; Nyberg, J.; Taccone, F.S.; Laterre, P.F.; Verbeeck, R.K.; Jacobs, F.; Wallemacq, P.E. Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther. Drug Monit. 2010, 32, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Rea, R.S.; Capitano, B.; Bies, R.; Bigos, K.L.; Smith, R.; Lee, H. Suboptimal aminoglycoside dosing in critically ill patients. Ther. Drug Monit. 2008, 30, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Optimizing aminoglycoside use. Crit. Care Clin. 2011, 27, 107–121. [Google Scholar] [CrossRef]
- Borsuk-De Moor, A.; Rypulak, E.; Potrec, B.; Piwowarczyk, P.; Borys, M.; Sysiak, J.; Onichimowski, D.; Raszewski, G.; Czuczwar, M.; Wiczling, P. Population Pharmacokinetics of High-Dose Tigecycline in Patients with Sepsis or Septic Shock. Antimicrob. Agents Chemother. 2018, 62, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavnani, S.M.; Rubino, C.M.; Hammel, J.P.; Forrest, A.; Dartois, N.; Cooper, C.A.; Korth-Bradley, J.; Ambrose, P.G. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob. Agents Chemother. 2012, 56, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Nation, R.L.; Garonzik, S.M.; Thamlikitkul, V.; Giamarellos-Bourboulis, E.J.; Forrest, A.; Paterson, D.L.; Li, J.; Silveira, F.P. Dosing guidance for intravenous colistin in critically-ill patients. Clin. Infect. Dis. 2017, 64, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Tsala, M.; Vourli, S.; Georgiou, P.-C.; Pournaras, S.; Tsakris, A.; Daikos, G.L.; Mouton, J.W.; Meletiadis, J. Exploring colistin pharmacodynamics against Klebsiella pneumoniae: A need to revise current susceptibility breakpoints. J. Antimicrob. Chemother. 2018, 73, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and Pharmacodynamic Analysis of Ceftazidime/Avibactam in Critically Ill Patients. Surg Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef]
Type of CRE | Hospital Levels | Total Isolates | MEM | IMP | ERT | AMK | GEN | COL $ | TGC | CZA | ATM |
---|---|---|---|---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | A | 65 | 10 (15.38%) | 11 (16.92%) | 0 (0%) | 52 (80%) | 44 (67.69%) | 39 (60%) | 31 (47.69%) | 26 (40%) | 2 (3.08%) |
S | 37 | 1 (2.7%) | 1 (2.7%) | 0 (0%) | 36 (97.3%) | 34 (91.89%) | 22 (59.46%) | 16 (43.24%) | 4 (10.81%) | 0 (0%) | |
M1 | 12 | 0 (0%) | 0 (0%) | 0 (0%) | 11 (91.67%) | 10 (83.33%) | 10 (83.33%) | 6 (50%) | 2 (16.67%) | 0 (0%) | |
Total | 114 | 11 (9.65%) | 12 (10.53%) | 0 (0%) | 99 (86.85%) | 88 (77.2%) | 71 (62.29%) | 53 (46.5%) | 32 (28.08%) | 2 (1.76%) | |
MIC 50 | >16 | 16 | >2 | 8 | 1 | 1 | 1 | >16/4 | >32 | ||
MIC 90 | >16 | >16 | >2 | >32 | >8 | >8 | 2 | >16/4 | >32 | ||
MIC range | 0.5–>16 | ≤0.5–>16 | NR | ≤4–>32 | ≤0.5–>8 | 0.5–>8 | ≤0.25–>4 | ≤0.5/4–>16/4 | ≤0.5–>32 | ||
Escherichia coli | A | 7 | 0 (0%) | 1 (14.29%) | 0 (0%) | 6 (85.71%) | 2 (28.57%) | 7 (100%) | 6 (85.71%) | 0 (0%) | 2 (28.57%) |
S | 15 | 1 (6.67%) | 1 (6.67%) | 0 (0%) | 15 (100%) | 3 (20%) | 14 (93.33%) | 14 (93.33%) | 1 (6.67%) | 1 (6.67%) | |
M1 | 11 | 2 (18.18%) | 1 (9.09%) | 1 (9.09%) | 8 (72.73%) | 3 (27.27%) | 8 (72.73%) | 11 (100%) | 2 (18.18%) | 1 (9.09%) | |
Total | 33 | 3 (9.09%) | 3 (9.09%) | 1 (3.03%) | 29 (87.88%) | 8 (24.24%) | 29 (87.88%) | 31 (93.94%) | 3 (9.09%) | 4 (12.12%) | |
MIC 50 | >16 | 16 | >2 | ≤4 | >8 | 1 | ≤0.25 | >16/4 | >32 | ||
MIC 90 | >16 | >16 | >2 | 32 | >8 | 4 | 0.5 | >16/4 | >32 | ||
MIC range | ≤0.125–>16 | ≤0.5–>16 | ≤0.125–>2 | ≤4–>32 | ≤0.5–>8 | 1–8 | ≤0.25–1 | ≤0.5/4–>16/4 | 2–>32 | ||
Enterobacter cloacae | A | 0 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
S | 2 | 1 (50%) | 1 (50%) | 0 (0%) | 2 (100%) | 1 (50%) | 2 (100%) | 1 (50%) | 1 (50%) | 0 (0%) | |
M1 | 1 | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | |
Total | 3 | 1 (33.33%) | 2 (66.67%) | 0 (0%) | 2 (66.67%) | 1 (33.33%) | 3 (100%) | 1 (33.33%) | 2 (66.67%) | 0 (0%) | |
MIC 50 | >16 | ≤0.5 | >2 | ≤4 | >8 | 1 | 1 | 1/4 | >32 | ||
MIC 90 | >16 | >16 | >2 | >32 | >8 | 1 | 1 | >16/4 | >32 | ||
MIC range | ≤0.125–>16 | ≤0.5–>16 | 2–>2 | ≤4–>32 | ≤0.5–>8 | NR | 0.5–1 | 1/4–>16/4 | NR | ||
Total | A | 72 | 10 (13.89%) | 12 (16.67%) | 0 (0%) | 58 (80.56%) | 46 (63.89%) | 46 (63.89%) | 37 (51.39%) | 26 (36.11%) | 4 (5.56%) |
S | 54 | 3 (5.56%) | 3 (5.56%) | 0 (0%) | 53 (98.15%) | 38 (70.37%) | 38 (70.37%) | 31 (57.41%) | 6 (11.11%) | 1 (1.85%) | |
M1 | 24 | 2 (8.33%) | 2 (8.33%) | 1 (4.17%) | 19 (79.17%) | 13 (54.17%) | 19 (79.17%) | 17 (70.83%) | 5 (20.83%) | 1 (4.17%) | |
Total | 150 | 15 (10%) | 17 (11.33%) | 1 (0.67%) | 130 (86.67%) | 97 (64.67%) | 103 (68.67%) | 85 (56.67%) | 37 (24.67%) | 6 (4%) | |
MIC 50 | >16 | 16 | >2 | 8 | 1 | 0.5 | 0.5 | >16/4 | >32 | ||
MIC 90 | >16 | >16 | >2 | >32 | >8 | >8 | 2 | >16/4 | >32 | ||
MIC range | ≤0.125–>16 | ≤0.5–>16 | ≤0.125–>2 | ≤4–>32 | ≤0.5–>8 | 0.5–>8 | ≤0.25–>4 | ≤0.5/4–>16/4 | ≤0.5–>32 |
Type of CRE | Hospital Levels | Total Number of Isolates | blaNDM | blaOXA-48 | blaNDM Plus blaOXA-48 | No Carbapenemase Genes | mcr-1 |
---|---|---|---|---|---|---|---|
Klebsiella pneumoniae | A | 65 | 20 (30.77%) | 40 (61.54%) | 5 (7.69%) | 0 (0%) | 5 (7.69%) |
S | 37 | 18 (48.65%) | 14 (37.84%) | 4 (10.81%) | 1 (2.7%) | 0 (0%) | |
M1 | 12 | 5 (41.67%) | 6 (50%) | 0 (0%) | 1 (8.33%) | 0 (0%) | |
Total | 114 | 43 (37.72%) | 60 (52.63%) | 9 (7.89%) | 2 (1.75%) | 0 (0%) | |
Escherichia coli | A | 7 | 6 (85.71%) | 1 (14.29%) | 0 (0%) | 0 (0%) | 0 (0%) |
S | 15 | 12 (80%) | 2 (13.33%) | 1 (6.67%) | 0 (0%) | 0 (0%) | |
M1 | 11 | 9 (81.82%) | 2 (18.18%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Total | 33 | 27 (81.82%) | 5 (15.15%) | 1 (3.03%) | 0 (0%) | 0 (0%) | |
Enterobacter cloacae | A | NR | NR | NR | NR | NR | NR |
S | 2 | 1 (50%) | 0 (0%) | 0 (0%) | 1 (50%) | 0 (0%) | |
M1 | 1 | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | |
Total | 3 | 1 (33.33%) | 0 (0%) | 0 (0%) | 2 (66.67%) | 0 (0%) | |
Total | A | 72 | 26 (36.11%) | 41 (56.94%) | 5 (6.94%) | 0 (0%) | 5 (6.94%) |
S | 54 | 31 (57.41%) | 16 (29.63%) | 5 (9.26%) | 2 (3.7%) | 0 (0%) | |
M1 | 24 | 14 (58.33%) | 8 (33.33%) | 0 (0%) | 2 (8.33%) | 0 (0%) | |
Total | 150 | 71 (47.33%) | 65 (43.33%) | 10 (6.67%) | 4 (2.67%) | 5 (3.33%) |
Carbapenemase Genes | blaNDM (n = 71) | blaOXA-48 (n = 65) | blaNDM Plus blaOXA-48 (n = 10) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics | MIC Range | MIC 50 | MIC 90 | %S | MIC Range | MIC 50 | MIC 90 | %S | MIC Range | MIC 50 | MIC 90 | %S |
MEM | 1–>16 | >16 | >16 | 2.82 | ≤0.125–>16 | >16 | >16 | 16.92 | 1–>16 | >16 | >16 | 10.00 |
IMP | ≤0.5–>16 | 16 | >16 | 2.82 | ≤0.5–>16 | 16 | >16 | 16.92 | ≤0.5–>16 | >16 | >16 | 10.00 |
ERT | 2–>2 | >2 | >2 | 0 | ≤0.125–>2 | >2 | >2 | 1.54 | >2 | >2 | >2 | 0 |
AMK | ≤4–>32 | ≤4 | 32 | 88.73 | ≤4–>32 | 8 | >32 | 86.15 | ≤4–>32 | 8 | 8 | 80.00 |
GEN | ≤0.5–>8 | 2 | >8 | 54.93 | ≤0.5–>8 | 2 | >8 | 73.85 | ≤0.5–>8 | 1 | 2 | 80.00 |
COL $ | 1–>8 | 1 | 8 | 85.92 | ≤0.5–>8 | 8 | 16 | 52.31 | 1–>8 | 4 | >8 | 40.00 |
TGC | ≤0.25–>4 | 0.5 | 1 | 73.24 | ≤0.25–>4 | 1 | 2 | 43.08 | ≤0.25–2 | 1 | 1 | 40.00 |
CZA | ≤0.5/4–>16/4 | >16/4 | >16/4 | 2.82 | ≤0.5/4–>16/4 | >16/4 | >16/4 | 46.15 | 1/4–>16/4 | >16/4 | >16/4 | 20.00 |
ATM | ≤0.5–>32 | >32 | >32 | 7.04 | 4–>32 | >32 | >32 | 1.54 | >32 | >32 | >32 | 0 |
Antibiotics | LD | MD | Infusion Time | % CFR | |||
---|---|---|---|---|---|---|---|
K. pneumoniae | E. coli | E. cloacae | All | ||||
MEM | 2 g | 1 g inf q 8 h | 0.5 h | 16.78 | 14.45 | 34.40 | 16.62 |
2 g | 1 g inf q 6 h | 0.5 h | 25.66 | 23.20 | 41.26 | 25.43 | |
2 g | 1 g inf q 8 h | 3 h | 20.30 | 17.60 | 37.23 | 20.04 | |
2 g | 1 g inf q 6 h | 3 h | 32.00 | 29.48 | 45.72 | 31.72 | |
IMP | 1 g | 0.5 g inf q 6 h | 2 h | 7.36 | 5.39 | 48.47 | 7.75 |
1 g | 0.5 g inf q 6 h | 3 h | 9.33 | 7.07 | 56.86 | 9.77 | |
1 g | 1 g inf q 6 h | 2 h | 11.25 | 8.68 | 59.01 | 11.63 | |
1 g | 1 g inf q 6 h | 3 h | 13.30 | 10.37 | 63.83 | 13.66 | |
AMK | 25 mg/kg | 15 mg/kg q 24 h | 0.5 h | 21.63 | 39.93 | 38.18 | 25.98 |
25 mg/kg | 20 mg/kg q 24 h | 0.5 h | 28.05 | 51.59 | 49.25 | 33.65 | |
30 mg/kg | 15 mg/kg q 24 h | 0.5 h | 22.75 | 41.96 | 40.10 | 27.32 | |
30 mg/kg | 20 mg/kg q 24 h | 0.5 h | 28.58 | 52.51 | 50.11 | 34.27 | |
GEN | 7 mg/kg | 5 mg/kg q 24 h | 0.5 h | 60.71 | 15.73 | 33.33 | 50.27 |
7 mg/kg | 6 mg/kg q 24 h | 0.5 h | 60.68 | 15.72 | 33.33 | 50.24 | |
8 mg/kg | 5 mg/kg q 24 h | 0.5 h | 60.79 | 15.77 | 33.32 | 50.34 | |
8 mg/kg | 6 mg/kg q 24 h | 0.5 h | 63.58 | 16.99 | 33.33 | 52.73 | |
8 mg/kg | 7 mg/kg q 24 h | 0.5 h | 65.32 | 17.82 | 33.33 | 54.23 | |
COL | 300 mg | 150 mg q 12 h | 0.5 h | 48.28 | 66.42 | 74.75 | 52.81 |
300 mg | 150 mg q 8 h | 0.5 h | 59.06 | 77.44 | 84.20 | 63.61 | |
300 mg | 180 mg q 12 h | 0.5 h | 48.20 | 66.21 | 74.60 | 52.69 | |
300 mg | 180 mg q 8 h | 0.5 h | 58.95 | 77.81 | 84.75 | 63.62 | |
TGC | 200 mg | 100 mg q 12 h | 0.5 h | 84.31 | 100.00 | 100.00 | 88.07 |
200 mg | 100 mg q 24 h | 0.5 h | 62.27 | 97.24 | 69.67 | 70.11 | |
400 mg | 100 mg q 12 h | 0.5 h | 84.67 | 100.00 | 100.00 | 88.34 | |
400 mg | 100 mg q 24 h | 0.5 h | 62.35 | 97.26 | 69.86 | 70.18 | |
400 mg | 200 mg q 12 h | 0.5 h | 94.00 | 100.00 | 100.00 | 95.44 | |
400 mg | 200 mg q 24 h | 0.5 h | 84.59 | 100.00 | 100.00 | 88.28 | |
CZA | - | 2.5 g q 8 h | 0.5 h | 72.76 | 40.79 | 77.00 | 50.45 |
- | 2.5 g q 8 h | 1 h | 73.50 | 41.70 | 77.34 | 51.22 | |
- | 2.5 g q 8 h | 2 h | 76.66 | 44.45 | 79.00 | 53.74 | |
- | 2.5 g q 8 h | 3 h | 78.94 | 48.15 | 80.34 | 56.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nulsopapon, P.; Pongchaidecha, M.; Nasomsong, W.; Polwichai, P.; Suphankong, S.; Sirichote, P.; Chaisomboonpan, S.; Santimaleeworagun, W. Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics 2022, 11, 355. https://doi.org/10.3390/antibiotics11030355
Nulsopapon P, Pongchaidecha M, Nasomsong W, Polwichai P, Suphankong S, Sirichote P, Chaisomboonpan S, Santimaleeworagun W. Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics. 2022; 11(3):355. https://doi.org/10.3390/antibiotics11030355
Chicago/Turabian StyleNulsopapon, Parnrada, Manat Pongchaidecha, Worapong Nasomsong, Pitimon Polwichai, Sirilada Suphankong, Pantip Sirichote, Siriwan Chaisomboonpan, and Wichai Santimaleeworagun. 2022. "Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand" Antibiotics 11, no. 3: 355. https://doi.org/10.3390/antibiotics11030355
APA StyleNulsopapon, P., Pongchaidecha, M., Nasomsong, W., Polwichai, P., Suphankong, S., Sirichote, P., Chaisomboonpan, S., & Santimaleeworagun, W. (2022). Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics, 11(3), 355. https://doi.org/10.3390/antibiotics11030355