Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Source
2.2. PICOS Criteria and Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Summary Measures and Statistical Analysis
2.6. Subgroup Analysis
3. Results
3.1. Study Selection
3.2. Systematic Review and Characteristics of the Included Studies
3.3. Meta-Analysis
3.3.1. Clinical Cure
3.3.2. Microbiological Cure
3.3.3. Mortality Due to Treatment Failure
3.3.4. 90-day Hospital Readmission Due to Treatment Failure
3.3.5. Adverse Drug Reactions
3.4. Publication Bias for the Clinical Cure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Thwaites, G.E.; Edgeworth, J.D.; Gkrania-Klotsas, E.; Kirby, A.; Tilley, R.; Torok, M.E.; Walker, S.; Wertheim, H.F.; Wilson, P.; Llewelyn, M.J.; et al. Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect. Dis. 2011, 11, 208–222. [Google Scholar] [CrossRef]
- Jin, Y.; Zhou, W.; Zhan, Q.; Chen, Y.; Luo, Q.; Shen, P.; Xiao, Y. Genomic epidemiology and characterisation of penicillin-sensitive Staphylococcus aureus isolates from invasive bloodstream infections in China: An increasing prevalence and higher diversity in genetic typing be revealed. Emerg. Microbes Infect. 2022, 11, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Naber, C.K. Staphylococcus aureus bacteremia: Epidemiology, pathophysiology, and management strategies. Clin. Infect. Dis. 2009, 48 (Suppl. 4), S231–S237. [Google Scholar] [CrossRef]
- Holland, T.L.; Arnold, C.; Fowler, V.G., Jr. Clinical management of Staphylococcus aureus bacteremia: A review. JAMA 2014, 312, 1330–1341. [Google Scholar] [CrossRef]
- Ceftriaxone. Available online: https://www.uptodate.com/contents/search (accessed on 4 March 2022).
- Norris, A.H.; Shrestha, N.K.; Allison, G.M.; Keller, S.C.; Bhavan, K.P.; Zurlo, J.J.; Hersh, A.L.; Gorski, L.A.; Bosso, J.A.; Rathore, M.H.; et al. 2018 infectious diseases society of America clinical practice guideline for the management of outpatient parenteral antimicrobial therapy. Clin. Infect. Dis. 2019, 68, e1–e35. [Google Scholar] [CrossRef]
- Barber, K.E.; Cramer, R.A.; Bell, A.M.; Wagner, J.L.; Stover, K.R. Ceftriaxone as an alternative therapy for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia after initial clearance of bloodstream infection. Case Rep. Infect. Dis. 2021, 2021, 8884685. [Google Scholar] [CrossRef]
- Hamad, Y.; Connor, L.; Bailey, T.C.; George, I.A. Outcomes of outpatient parenteral antimicrobial therapy with ceftriaxone for methicillin-susceptible Staphylococcus aureus bloodstream infections-a single-center observational study. Open Forum Infect. Dis. 2020, 7, ofaa341. [Google Scholar] [CrossRef]
- Carr, D.R.; Stiefel, U.; Bonomo, R.A.; Burant, C.J.; Sims, S.V. A comparison of cefazolin versus ceftriaxone for the treatment of methicillin-susceptible Staphylococcus aureus Bacteremia in a tertiary care VA medical center. Open Forum Infect. Dis. 2018, 5, ofy089. [Google Scholar] [CrossRef]
- Kamfose, M.M.; Muriithi, F.G.; Knight, T.; Lasserson, D.; Hayward, G. Intravenous ceftriaxone versus multiple dosing regimes of intravenous anti-staphylococcal antibiotics for methicillin-susceptible Staphylococcus aureus (MSSA): A systematic review. Antibiotics 2020, 9, 39. [Google Scholar] [CrossRef]
- Yetmar, Z.A.; Razi, S.; Nayfeh, T.; Gerberi, D.J.; Mahmood, M.; Abu Saleh, O.M. Ceftriaxone versus antistaphylococcal antibiotics for definitive treatment of methicillin-susceptible Staphylococcus aureus infections: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2022, 59, 106486. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef]
- Wells, G.S.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 9 November 2021).
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Paul, M.; Zemer-Wassercug, N.; Talker, O.; Lishtzinsky, Y.; Lev, B.; Samra, Z.; Leibovici, L.; Bishara, J. Are all beta-lactams similarly effective in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia? Clin. Microbiol. Infect. 2011, 17, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Hamad, Y.; Nickel, K.B.; Olsen, M.A.; George, I. Methicillin-sensitive Staphylococcus aureus (MSSA) septicemia-outcomes of ceftriaxone compared with cefazolin and oxacillin outpatient therapy from a large national sample. Open Forum Infect. Dis. 2021, 8, S213–S214. [Google Scholar] [CrossRef]
- Patel, U.C.; McKissic, E.L.; Kasper, D.; Lentino, J.R.; Pachucki, C.T.; Lee, T.; Lopansri, B.K. Outcomes of ceftriaxone use compared to standard of therapy in methicillin susceptible staphylococcal aureus (MSSA) bloodstream infections. Int. J. Clin. Pharm. 2014, 36, 1282–1289. [Google Scholar] [CrossRef]
- Snawerdt, J.; Withers, S.; Schrank, J. Ceftriaxone vs. standard of care for definitive treatment of methicillin-susceptible Staphylococcus aureus infections. Open Forum Infect. Dis. 2019, 6, S226. [Google Scholar] [CrossRef]
- Wynn, M.; Dalovisio, J.R.; Tice, A.D.; Jiang, X. Evaluation of the efficacy and safety of outpatient parenteral antimicrobial therapy for infections with methicillin-sensitive Staphylococcus aureus. South Med. J. 2005, 98, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Falsetta, K.; Lam, T.; Reidt, S.; Jancik, J. Clinical outcomes of ceftriaxone versus nafcillin or cefazolin for the treatment of methicillin-susceptible staphylococcal aureus bacteremia. Crit. Care 2017, 21, 443. [Google Scholar]
- Mohamed, A.; Bennett, N.; Ploetz, J.; Aragon, L.; Kennedy, K.; Boyd, S.E. Ceftriaxone versus cefazolin for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect. Dis. 2020, 7, S132–S133. [Google Scholar] [CrossRef]
- Bhavan, K.; Ganguly, A.; King, H.; Schmalstieg, A.; Mang, N.; Collins, R. Treatment efficacy of ceftriaxone vs. cefazolin for methicillin-susceptible staphylococcus aureus infections. Open Forum Infect. Dis. 2018, 5, S316. [Google Scholar] [CrossRef]
- Diamante, O.; Bhavan, K. A retrospective comparison of self—Administered ceftriaxone vs cefazolin for methicillin-susceptible Staphylococcus aureus bacteremia in an outpatient antibiotic therapy setting. Open Forum Infect. Dis. 2014, 1, S206. [Google Scholar] [CrossRef]
- Winans, S.A.; Luce, A.M.; Hasbun, R. Outpatient parenteral antimicrobial therapy for the treatment of methicillin-susceptible Staphylococcus aureus: A comparison of cefazolin and ceftriaxone. Infection 2013, 41, 769–774. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Ceftriaxone as Home IV for Staph Infections. Available online: https://clinicaltrials.gov/ct2/show/NCT04141787 (accessed on 27 November 2021).
- Wieland, B.W.; Marcantoni, J.R.; Bommarito, K.M.; Warren, D.K.; Marschall, J. A retrospective comparison of ceftriaxone versus oxacillin for osteoarticular infections due to methicillin-susceptible Staphylococcus aureus. Clin. Infect. Dis. 2012, 54, 585–590. [Google Scholar] [CrossRef]
- Albarellos, G.A.; Kreil, V.E.; Landoni, M.F. Pharmacokinetics of ceftriaxone after intravenous, intramuscular and subcutaneous administration to domestic cats. J. Vet. Pharmacol. Ther. 2007, 30, 345–352. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Lim, S.M.S.; Adiraju, S.; Wallis, S.C.; Lipman, J.; Grant, G.D.; Roberts, J.A. Pharmacodynamics of ceftriaxone for the treatment of methicillin-susceptible Staphylococcus aureus: Is it a viable treatment option? Int. J. Antimicrob. Agents 2022, 59, 106537. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American heart association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.D.; Showler, A.; Burry, L.; Steinberg, M.; Ricciuto, D.R.; Fernandes, T.; Chiu, A.; Raybardhan, S.; Science, M.; Fernando, E.; et al. Impact of infectious disease consultation on quality of care, mortality, and length of stay in Staphylococcus aureus bacteremia: Results From a Large Multicenter Cohort Study. Clin. Infect. Dis. 2015, 60, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
Author | Region and Date of the Study | Age Distribution (Years) | Treatment Setting and Sample Size (N) | Suspected Sources of MSSA BSIs ¥ | Ceftriaxone Regimens | SOC Regimens | NOS * |
---|---|---|---|---|---|---|---|
Paul et al. (2011) [20] | Israel, 1988–1994 and 1999–2007 | Mean = 69 (SD: 16.8) | Rabin Medical Center, (N = 489) | Unknown = 147 (27.2%), SSTIs = 83 (15.3%), CRIs = 63 (11.6%), RTIs = 54 (10%), SSIs = 49 (9.1%), other endovascular infections = 41 (7.6%), infective endocarditis = 25 (6.5%), and OAIs = 27 (5%) | Ceftriaxone and cefotaxime (ceftriaxone = 176 and cefotaxime = 18) ± | Cloxacillin or cefazolin | 9 |
Patel et al. (2014) [22] | U.S., January 2000–September 2009 | Ceftriaxone: mean = 63 (SD: 12.6) and SOC: mean = 68 (SD: 12.5) | Edward Hines, Jr. VA Hospital, (N = 93) | Unknown = 22 (23.6%), OAIs = 22 (23.6%), CRIs = 20 (21.5%), SSTIs = 15 (16.1%), infective endocarditis = 8 (8.6%), UTIs = 4 (4.3%), and RTIs = 2 (2.1%) | Ceftriaxone 2g Q 24 hr for 14 days for uncomplicated BSIs, and 28 days for complicated BSIs ¶ | Nafcillin or cefazolin for 14 days for uncomplicated BSIs, and 28 days for complicated BSIs §¶ | 9 |
Carr et al. (2018) [10] | U.S., January 2009–August 2014 | Ceftriaxone: mean = 64 (SD: 13.6) and SOC: mean = 63 (SD: 10.7) | Louis Stokes Cleveland Department of VA Medical Center, (N = 71) | OAIs = 28 (39.4%), endovascular infections = 17 (23.9%), SSTIs = 14 (19.7%), unknown = 9 (12.6%), infective endocarditis = 7 (9.9%), and UTIs = 3 (4.2%) | Ceftriaxone for 14 days ¶ | Cefazolin for 14 days ¶ | 8 |
Hamad et al. (2020) [9] | U.S., December 1, 2014–April 30, 2019 | Median = 59.6 (IQR: 47.8–70) | Discharged from Barnes-Jewish Hospital on OPAT, (N = 243) | Infective endocarditis = 83 (34.2%), CRIs = 70 (28.8%), OAIs = 68 (28%), unknown = 40 (16.5%), SSTIs = 33 (13.6%), prosthetic material infections = 26 (10.7%), SSIs = 16 (6.6%), and CNS = 13 (5.4%) | Ceftriaxone 2–4 g Q 24 hr for at least 7 days | Oxacillin 2g Q 4 hr or cefazolin 2g Q 8 hr for at least 7 days | 9 |
Barber et al. (2021) [8] | U.S., February 1, 2015–January 21, 2016 | Ceftriaxone: median = 43.5 (IQR: 35.2–57.5) and SOC: median = 45 (IQR: 36–55) | University of Mississippi Medical Center, (N = 43) | OAIs = 11 (25.6%), CRIs = 9 (20.9%), SSTIs = 7 (16.3%), unknown = 4 (9.3%), RTIs = 3 (7%), SSIs = 2 (4.7%), CNS = 1 (2.3%), and infective endocarditis = 1 (2.3%) | Ceftriaxone for at least 2 days ¶ | Nafcillin, oxacillin, or cefazolin for at least 2 days | 8 |
Snawerdt et al. (2019) [23] | U.S., February 2016–February 2018 | NA | Multi-centers, (N = 222, 107 patients with BSIs) | NA | Ceftriaxone ¶ | Cefazolin or nafcillin ¶ | 7 |
Diamante et al. (2014) [28] | U.S., January 2011–December 2013 | NA | Parkland Hospital OPAT clinic, (N = 46) | OAIs = 26 (56%), SSTIs = 7 (15%), CRIs = 7 (15%), and infective endocarditis = 6 (13%) | Ceftriaxone ¶ | Cefazolin ¶ | 7 |
Hamad et al. (2021) [21] | U.S., 2010–2018 | NA | Barnes-Jewish Hospital OPAT, (N = 1895) | SSTIs = 757 (40%), OAIs = 745 (39.3%), SSIs = 558 (29.4%), RTIs = 356 (18.8%), infective endocarditis = 276 (14.6%), CNS = 200 (10.6%), device related infections = 192 (10.1%), and CRIs = 175 (9.2%) | Ceftriaxone ¶ | Cefazolin or oxacillin ¶ | 9 |
Wynn et al. (2005) [24] | U.S., 1996–August 2001 | NA | OPAT registry, (N = 1252; 54 patients with BSIs) | NA | Ceftriaxone 1–6 g/day ¶ | Cefazolin 1.5–12 g/day, oxacillin 2–48 g/day, or nafcillin 0.8–24 g/day €¶ | 7 |
Falsetta et al. (2017) [25] | U.S., January 2012–September 2016 | NA | Acute care, (N = 51) | NA | Ceftriaxone for at least 14 days ¶ | Cefazolin or nafcillin for at least 14 days ¶ | 7 |
Mohamed et al. (2020) [26] | U.S. | Ceftriaxone: mean = 57.4 (SD: 16.8) and SOC: mean = 61 (SD: 15.9) | Saint Luke’s Health System, (N = 248) | Unknown = 75 (30.2%), OAIs = 53 (21.4%), SSTIs = 51 (20.6%), RTIs = 21 (8.5%), device related infections = 11 (4.4%), CNS = 11 (4.4%), infective endocarditis = 9 (3.6%), and UTIs = 4 (1.6%) | Ceftriaxone ¶ | Cefazolin ¶ | 7 |
Bhavan et al. (2018) [27] | U.S. | NA | Parkland Hospital OPAT clinic, (N = 258, 135 patients with BSIs) | NA | Ceftriaxone ¶ | Cefazolin ¶ | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsowaida, Y.S.; Benitez, G.; Bin Saleh, K.; Almangour, T.A.; Shehadeh, F.; Mylonakis, E. Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 375. https://doi.org/10.3390/antibiotics11030375
Alsowaida YS, Benitez G, Bin Saleh K, Almangour TA, Shehadeh F, Mylonakis E. Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis. Antibiotics. 2022; 11(3):375. https://doi.org/10.3390/antibiotics11030375
Chicago/Turabian StyleAlsowaida, Yazed Saleh, Gregorio Benitez, Khalid Bin Saleh, Thamer A. Almangour, Fadi Shehadeh, and Eleftherios Mylonakis. 2022. "Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis" Antibiotics 11, no. 3: 375. https://doi.org/10.3390/antibiotics11030375
APA StyleAlsowaida, Y. S., Benitez, G., Bin Saleh, K., Almangour, T. A., Shehadeh, F., & Mylonakis, E. (2022). Effectiveness and Safety of Ceftriaxone Compared to Standard of Care for Treatment of Bloodstream Infections Due to Methicillin-Susceptible Staphylococcus aureus: A Systematic Review and Meta-Analysis. Antibiotics, 11(3), 375. https://doi.org/10.3390/antibiotics11030375