Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil
Abstract
:1. Introduction
2. Results
2.1. Descriptive Results and Spa-Typing
2.2. Overall Antimicrobial Susceptibility Testing
2.3. Antimicrobial Susceptibility Testing of Genotypic Clusters
3. Discussion
4. Materials and Methods
4.1. Staphylococcus Aureus Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Spa-Typing
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogeveen, H.; Van Der Voort, M. Assessing the economic impact of an endemic disease: The case of mastitis. Rev. Sci. Tech. 2017, 36, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keefe, G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. Food Anim. Pract. 2012, 28, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Veh, K.A.; Klein, R.C.; Ster, C.; Keefe, G.; Lacasse, P.; Scholl, D.; Roy, J.P.; Haine, D.; Dufour, S.; Talbot, B.G.; et al. Genotypic and phenotypic characterization of Staphylococcus aureus causing persistent and nonpersistent subclinical bovine intramammary infections during lactation or the dry period. J. Dairy Sci. 2015, 98, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-year review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Tomazi, T.; Ferreira, G.C.; Orsi, A.M.; Gonçalves, J.L.; Ospina, P.A.; Nydam, D.V.; Moroni, P.; Santos, M.V. Association of herd-level risk factors and incidence rate of clinical mastitis in 20 Brazilian dairy herds. Prev. Vet. Med. 2018, 161, 9–18. [Google Scholar] [CrossRef]
- Dittmann, K.K.; Chaul, L.T.; Lee, S.H.I.; Corassin, C.H.; Fernandes de Oliveira, C.A.; Pereira De Martinis, E.C.; Alves, V.F.; Gram, L.; Oxaram, V. Staphylococcus aureus in some brazilian dairy industries: Changes of contamination and diversity. Front. Microbiol. 2017, 8, 2049. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, A.A.; Rocha Christian, M.B.M.; Bruhn, F.R.P.; Custódio, D.A.C.; Braz, M.S.; Pinto, S.M.; Silva, D.B.; Costa, G.M. Staphylococcus aureus and Streptococcus agalactiae: Prevalence, resistance to antimicrobials, and their relationship with the milk quality of dairy cattle herds in Minas Gerais state, Brazil. Pesqui. Veterinária Bras. 2019, 39, 308–316. [Google Scholar] [CrossRef]
- Hallin, M.; Deplano, A.; Denis, O.; de Mendonça, R.; de Ryck, R.; Struelens, M.J. Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J. Clin. Microbiol. 2007, 45, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Strommenger, B.; Braulke, C.; Heuck, D.; Schmidt, C.; Pasemann, B.; Nübel, U.; Witte, W. Spa typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J. Clin. Microbiol. 2008, 46, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabat, A.J.; Budimir, A.; Nashev, D.; Sá-Leão, R.; van Dijl, J.M.; Laurent, F.; Grundmann, H.; Friendrich, A.W. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance 2013, 18, 20380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsaglia, E.C.R.; Silva, N.C.C.; Rossi, B.F.; Camargo, C.H.; Dantas, S.T.A.; Langoni, H.; Guimarães, F.F.; Lima, F.S.; Fritzgerald, J.R.; Fernandes Junior, A.; et al. Molecular epidemiology of methicillin-susceptible Staphylococcus aureus (MSSA) isolated from milk of cows with subclinical mastitis. Microb. Pathog. 2018, 124, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Mora-Hernández, Y.; Vera Murguía, E.; Stinenbosch, J.; Hernández Jauregui, P.; van Dijl, J.M.; Buist, G. Molecular typing and antimicrobial resistance profiling of 33 mastitis-related Staphylococcus aureus isolates from cows in the Comarca Lagunera region of Mexico. Sci. Rep. 2021, 11, 6912. [Google Scholar] [CrossRef]
- Deyno, S.; Fekadu, S.; Astatkie, A. Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: A meta-analysis. Antimicrob. Resist. Infect. Control 2017, 6, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Abreu, A.C.; Matos, L.G.; da Silva Cândido, T.J.; Barboza, G.R.; de Souza, V.V.M.A.; Munive Nuñez, K.V.; Silva, N.C.C. Antimicrobial resistance of Staphylococcus spp. isolated from organic and conventional Minas Frescal cheese producers in São Paulo, Brazil. J. Dairy Sci. 2021, 104, 4012–4022. [Google Scholar] [CrossRef]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, X.; Wang, Y.; Guo, G.; Usman, T.; Hao, D.; Tang, X.; Zhang, Y.; Yu, Y. Antimicrobial resistance and toxin gene profiles of Staphylococcus aureus strains from Holstein milk. Lett. Appl. Microbiol. 2014, 58, 527–534. [Google Scholar] [CrossRef]
- Salauddin, M.; Akter, M.R.; Hossain, M.K.; Nazir, K.H.M.N.H.; Noreddin, A.; El Zowalaty, M.E. Molecular detection of multidrug resistant Staphylococcus aureus isolated from bovine mastitis milk in Bangladesh. Vet. Sci. 2020, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Fontana, V.L.D.da.S.; Giannini, M.J.S.M.; Leite, C.Q.F.; Miranda, E.T.; Almeida, A.M.F.; Fontana, C.A.P. Etiology of bovine subclinical mastitis, susceptibility of the agents to antimicrobial drugs and detection of the gene [beta]-lactamasis in Staphylococcus aureus. Vet. Zootec. 2010, 17, 552–560. [Google Scholar]
- Tomazi, T.; dos Santos, M.V. Antimicrobial use for treatment of clinical mastitis in dairy herds from Brazil and its association with herd-level descriptors. Prev. Vet. Med. 2020, 176, 104937. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, H.; Wang, X.; Gao, Q.; Dai, Y.; Shang, J.; Li, M. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front. Cell. Infect. Microbiol. 2017, 7, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenz, J.R.; Garry, F.B.; Barrington, G.M. Comparison of disease severity scoring systems for dairy cattle with acute coliform mastitis. J. Am. Vet. Med. Assoc. 2006, 229, 259–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Approved Guideline: Document VET01-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3th ed.; Approved Guideline: Document M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Vaughn, J.M.; Abdi, R.D.; Gillespie, B.E.; Kerro Dego, O. Genetic diversity and virulence characteristics of Staphylococcus aureus isolates from cases of bovine mastitis. Microb. Pathog. 2020, 144, 104171. [Google Scholar] [CrossRef]
- Molineri, A.I.; Camussone, C.; Zbrun, M.V.; Suárez Archilla, G.; Cristiani, M.; Neder, V.; Calvinho, L.; Signorini, M. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: Systematic review and meta-analysis. Prev. Vet. Med. 2021, 188, 105261. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Zhou, X.; He, Y.; Yong, C.; Shen, M.; Szenci, O.; Han, B. Antimicrobial susceptibility, virulence genes, and randomly amplified polymorphic DNA analysis of Staphylococcus aureus recovered from bovine mastitis in Ningxia, China. J. Dairy Sci. 2016, 99, 9560–9569. [Google Scholar] [CrossRef]
- Rossi, B.F.; Bonsaglia, E.C.R.; Castilho, I.G.; Dantas, S.T.A.; Salina, A.; Langoni, H.; Pantoja, J.C.F.; Budri, P.E.; Fitzgerald-Hughes, D.; Fernandes Júnior, A.; et al. Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis. Microb. Pathog. 2019, 132, 45–50. [Google Scholar] [CrossRef]
- Abdi, R.D.; Gillespie, B.E.; Vaughn, J.; Merrill, C.; Headrick, S.I.; Ensermu, D.B.; D’Souza, D.H.; Agga, G.E.; Almeida, R.A.; Oliver, S.P.; et al. Antimicrobial resistance of Staphylococcus aureus isolates from dairy cows and genetic diversity of resistant isolates. Foodborne Pathog. Dis. 2018, 15, 449–458. [Google Scholar] [CrossRef]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm research in bovine mastitis. Front. Vet. Sci. 2021, 8, 449. [Google Scholar] [CrossRef]
- Pu, W.; Su, Y.; Li, J.; Li, C.; Yang, Z.; Deng, H.; Ni, C. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE 2014, 9, e88134. [Google Scholar] [CrossRef] [Green Version]
- Monistero, V.; Barberio, A.; Biscarini, F.; Cremonesi, P.; Castiglioni, B.; Graber, H.U.; Bottini, E.; Ceballos-Marques, A.; Kroemker, V.; Petzer, I.M.; et al. Different distribution of antimicrobial resistance genes and virulence profiles of Staphylococcus aureus strains isolated from clinical mastitis in six countries. J. Dairy Sci. 2020, 103, 3431–3446. [Google Scholar] [CrossRef]
- Guimarães, F.F.; Manzi, M.P.; Joaquim, S.F.; Richini-Pereira, V.B.; Langoni, H. Short communication: Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. J. Dairy Sci. 2017, 100, 726–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.; Godden, S.M.; Royster, E.E.; Crooker, B.A.; Johnson, T.J.; Smith, E.A.; Sreevatsan, S. Prevalence, antibiotic resistance, virulence and genetic diversity of Staphylococcus aureus isolated from bulk tank milk samples of U.S. dairy herds. BMC Genom. 2021, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pacha, P.A.; Munoz, M.A.; González-Rocha, G.; San Martín, I.; Quezada-Aguiluz, M.; Aguayo-Reyes, A.; Bello-Toledo, H.; Latorre, A.A. Molecular diversity of Staphylococcus aureus and the role of milking equipment adherences or biofilm as a source for bulk tank milk contamination. J. Dairy Sci. 2021, 104, 3522–3531. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.R.; Fox, L.K.; Gay, J.M.; Tyler, J.W.; Besser, T.E. Use of pulsed-field gel electrophoresis for detecting differences in Staphylococcus aureus strain populations between dairy herds with different cattle importation practices. Epidemiol. Infect. 2002, 129, 387–395. [Google Scholar] [CrossRef]
- Page, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech.-OIE 2012, 31, 145–188. [Google Scholar] [CrossRef]
- Haveri, M.; Roslöf, A.; Rantala, L.; Pyörälä, S. Virulence genes of bovine Staphylococcus aureus from persistent and nonpersistent intramammary infections with different clinical characteristics. J. Appl. Microbiol. 2007, 103, 993–1000. [Google Scholar] [CrossRef]
- NMC. Laboratory Handbook on Bovine Mastitis; National Mastitis Council: Madison, WI, USA, 2017; 148p. [Google Scholar]
- Tomazi, T.; Freu, G.; Alves, B.G.; de Souza Filho, A.F.; Heinemann, M.B.; Veiga dos Santos, M. Genotyping and antimicrobial resistance of Streptococcus uberis isolated from bovine clinical mastitis. PLoS ONE 2019, 14, e0223719. [Google Scholar] [CrossRef]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [Green Version]
Variable | Categories | I | II | III | IV | Spa-Type t037 | Unclassified 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | n | % | ||
Herd | B (n = 15) | 12 | 80.0 | 2 | 13.3 | - | - | 1 | 6.7 | - | - | - | - |
C (n = 2) | 1 | 50.0 | 1 | 50.0 | - | - | - | - | - | - | - | - | |
E (n = 12) | 7 | 58.3 | 4 | 33.3 | 1.0 | 8.4 | - | - | - | - | - | - | |
F (n = 5) | 3 | 60.0 | 1 | 20.0 | - | - | - | - | - | - | 1 | 20.0 | |
G (n = 2) | 2 | 100.0 | - | - | - | - | - | - | - | - | - | - | |
H (n = 5) | - | - | 5 | 100.0 | - | - | - | - | - | - | - | - | |
I (n = 1) | - | - | - | - | - | - | - | - | 1 | 100.0 | - | - | |
J (n = 1) | - | - | 1 | 100.0 | - | - | - | - | - | - | - | - | |
K (n = 3) | - | - | 3 | 100.0 | - | - | - | - | - | - | - | - | |
M (n = 25) | 4 | 16.0 | 13 | 52.0 | - | - | 1 | 4.0 | - | - | 7 | 28.0 | |
O (n = 6) | - | - | 6 | 100.0 | - | - | - | - | - | - | - | - | |
P (n = 2) | - | - | 1 | 50.0 | 1.0 | 50.0 | - | - | - | - | - | - | |
T (n = 5) | 3 | 60.0 | 2 | 40.0 | - | - | - | - | - | - | - | - | |
Housing 2 | CBPB 3 (n = 22) | 15 | 68.1 | 5 | 22.7 | - | - | 1 | 4.6 | 1 | 4.6 | - | - |
Freestall (n = 28) | 4 | 14.3 | 16 | 57.1 | - | - | 1 | 3.6 | - | - | 7 | 25.0 | |
Paddocks (n = 34) | 13 | 38.3 | 18 | 52.9 | 2 | 5.9 | - | - | - | - | 1 | 2.9 | |
Season | Rainy (n = 53) | 18 | 34.0 | 27 | 50.9 | 1 | 1.9 | 2 | 3.8 | - | - | 5 | 9.4 |
Dry (n = 31) | 14 | 45.2 | 12 | 38.7 | 1 | 3.2 | - | - | 1 | 3.2 | 3 | 9.7 | |
CM severity 4 | Mild (n = 58) | 23 | 39.7 | 25 | 43.1 | 1 | 1.7 | 2 | 3.5 | - | - | 7 | 12.0 |
Moderate (n = 22) | 7 | 31.8 | 12 | 54.5 | 1 | 4.6 | - | - | 1 | 4.6 | 1 | 4.5 | |
Severe (n = 1) | - | - | 1 | 100.0 | - | - | - | - | - | - | - | - | |
No severity 5 (n = 3) | 2 | 66.7 | 1 | 33.3 | - | - | - | - | - | - | - | - |
Antimicrobial | Frequency (%) of Staph. aureus Isolates at Each Indicated MIC (μg/mL) 1 | MIC50 2 | MIC90 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | |||
Ampicillin | 44.1 | 7.1 | 17.9 | 11.9 | 8.3 | 3.6 | 7.1 | - | - | - | - | - | 0.25 | 4 |
Ceftiofur | - | - | 11.9 | 32.1 | 25.0 | 31.0 | - | - | - | - | - | - | 2 | 4 |
Cephalothin | - | - | - | - | 52.4 | 14.3 | 10.7 | 22.6 | - | - | - | - | 2 | 16 |
Erythromycin | - | 44.0 | 1.2 | 9.5 | 2.4 | 42.9 | - | - | - | - | - | - | 1 | 4 |
Oxacillin | - | - | - | - | 88.1 | 11.9 | - | - | - | - | - | - | 2 | 4 |
Penic + Novob | - | - | - | 60.7 | 3.6 | 2.4 | 33.3 | - | - | - | - | - | 1 | 8 |
Penicillin | 39.3 | 8.3 | 14.3 | 12.0 | 10.7 | 7.1 | 8.3 | - | - | - | - | - | 0.5 | 4 |
Pirlimycin | - | - | 48.8 | 9.5 | 3.6 | 38.1 | - | - | - | - | - | - | 1 | 4 |
Sulphadimet. | - | - | - | - | - | - | - | - | 1.2 | 0.0 | 1.2 | 97.6 | 256 | 256 |
Tetracycline | - | - | - | 16.7 | 21.4 | 13.1 | 48.8 | - | - | - | - | - | 4 | 8 |
Antimicrobial | Resistance 1 (LSM 2, %) | Odds Ratio (95% CI 3) | p-Value | MIC50 4 | MIC90 5 | |||
---|---|---|---|---|---|---|---|---|
Cluster I | Cluster II | Cluster I | Cluster II | Cluster I | Cluster II | |||
Ampicillin | 57.4 | 26.8 | 0.27 (0.09, 0.87) | 0.03 | 0.5 | 0.12 | 4 | 4 |
Ceftiofur | 44.9 | 28.4 | 0.49 (0.17, 1.41) | 0.18 | 1 | 2 | 4 | 4 |
Cephalothin | 13.2 | 29.9 | 2.80 (0.82, 9.56) | 0.09 | 2 | 4 | 16 | 16 |
Erythromycin | 58.5 | 52.6 | 0.79 (0.26, 2.36) | 0.67 | 1 | 1 | 4 | 4 |
Oxacillin | 9.4 | 7.7 | 0.81 (0.15, 4.45) | 0.80 | 2 | 2 | 2 | 2 |
Penicillin | 75.2 | 49.3 | 0.32 (0.09, 1.11) | 0.07 | 2 | 1 | 8 | 8 |
Penic + Novob | 50.2 | 32.8 | 0.48 (0.18, 1.31) | 0.15 | 0.5 | 0.25 | 4 | 8 |
Pirlimycin | 45.8 | 38.4 | 0.74 (0.25, 2.17) | 0.57 | 2 | 1 | 4 | 4 |
Sulfadimethoxine | 92.3 | 95.5 | 1.78 (0.21, 15.27) | 0.59 | 256 | 256 | 256 | 256 |
Tetracycline | 56.3 | 52.2 | 0.85 (0.29, 2.43) | 0.75 | 8 | 4 | 8 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freu, G.; Tomazi, T.; Filho, A.F.S.; Heinemann, M.B.; dos Santos, M.V. Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics 2022, 11, 424. https://doi.org/10.3390/antibiotics11040424
Freu G, Tomazi T, Filho AFS, Heinemann MB, dos Santos MV. Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics. 2022; 11(4):424. https://doi.org/10.3390/antibiotics11040424
Chicago/Turabian StyleFreu, Gustavo, Tiago Tomazi, Antonio F. S. Filho, Marcos B. Heinemann, and Marcos V. dos Santos. 2022. "Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil" Antibiotics 11, no. 4: 424. https://doi.org/10.3390/antibiotics11040424
APA StyleFreu, G., Tomazi, T., Filho, A. F. S., Heinemann, M. B., & dos Santos, M. V. (2022). Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics, 11(4), 424. https://doi.org/10.3390/antibiotics11040424