Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [Green Version]
- Zumla, A. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Lancet Infect. Dis. 2010, 10, 303–304. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Carbapenem-Resistant Enterobacteriaceae, Second Update—26 September 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/carbapenem-resistant-enterobacteriaceae-risk-assessment-rev-2.pdf (accessed on 10 February 2022).
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf (accessed on 10 February 2022).
- Baughman, R.P. The use of carbapenems in the treatment of serious infections. J. Intensive Care Med. 2009, 24, 230–241. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities. Available online: https://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178-eng.pdf?sequence=1&isAllowed=y (accessed on 10 February 2022).
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [Green Version]
- Livorsi, D.J.; Chorazy, M.L.; Schweizer, M.L.; Balkenende, E.C.; Blevins, A.E.; Nair, R.; Samore, M.H.; Nelson, R.E.; Khader, K.; Perencevich, E.N. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob. Resist. Infect. Control 2018, 7, 55. [Google Scholar] [CrossRef]
- Kehl, K.; Schallenberg, A.; Szekat, C.; Albert, C.; Sib, E.; Exner, M.; Zacharias, N.; Schreiber, C.; Parčina, M.; Bierbaum, G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment. Sci. Total Environ. 2022, 806, 151339. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Hellmark, B.; Ehricht, R.; Söderquist, B.; Jass, J. Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2241–2251. [Google Scholar] [CrossRef] [Green Version]
- Lepuschitz, S.; Schill, S.; Stoeger, A.; Pekard-Amenitsch, S.; Huhulescu, S.; Inreiter, N.; Hartl, R.; Kerschner, H.; Sorschag, S.; Springer, B.; et al. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Sci. Total Environ. 2019, 662, 227–235. [Google Scholar] [CrossRef]
- Bleichenbacher, S.; Stevens, M.J.A.; Zurfluh, K.; Perreten, V.; Endimiani, A.; Stephan, R.; Nüesch-Inderbinen, M. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. Environ. Pollut. 2020, 265, 115081. [Google Scholar] [CrossRef]
- Teban-Man, A.; Farkas, A.; Baricz, A.; Hegedus, A.; Szekeres, E.; Pârvu, M.; Coman, C. Wastewaters, with or without Hospital Contribution, Harbour MDR, Carbapenemase-Producing, but Not Hypervirulent Klebsiella pneumoniae. Antibiotics 2021, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. Available online: https://www.fao.org/3/i6209e/i6209e.pdf (accessed on 10 February 2022).
- The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [CrossRef]
- Hamza, E.; Dorgham, S.M.; Hamza, D.A. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J. Glob. Antimicrob. Resist. 2016, 7, 8–10. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, Y.; Sun, L.; Pang, M.; Zhang, L.; Wang, R. Occurrence and characterization of blaNDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. J. Antimicrob. Chemother. 2017, 72, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diab, M.; Hamze, M.; Bonnet, R.; Saras, E.; Madec, J.-Y.; Haenni, M. OXA-48 and CTX-M-15 extended-spectrum beta-lactamases in raw milk in Lebanon: Epidemic spread of dominant Klebsiella pneumoniae clones. J. Med. Microbiol. 2017, 66, 1688–1691. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Reuland, E.A.; Wintermans, B.B.; Al Naiemi, N.; Koek, A.; Abdelwahab, A.M.; Ammar, A.M.; Mohamed, A.A.; Vandenbroucke-Grauls, C.M.J.E. Extended-Spectrum β-Lactamases and/or Carbapenemases-Producing Enterobacteriaceae Isolated from Retail Chicken Meat in Zagazig, Egypt. PLoS ONE 2015, 10, e0136052. [Google Scholar] [CrossRef] [Green Version]
- Wielders, C.C.H.; van Hoek, A.H.A.M.; Hengeveld, P.D.; Veenman, C.; Dierikx, C.M.; Zomer, T.P.; Smit, L.A.M.; van der Hoek, W.; Heederik, D.J.; de Greeff, S.C.; et al. Extended-spectrum β-lactamase- and pAmpC-producing Enterobacteriaceae among the general population in a livestock-dense area. Clin. Microbiol. Infect. 2017, 23, 120.e1–120.e8. [Google Scholar] [CrossRef] [Green Version]
- Meijs, A.P.; Gijsbers, E.F.; Hengeveld, P.D.; Dierikx, C.M.; De Greeff, S.C.; van Duijkeren, E. ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae carriage among veterinary healthcare workers in the Netherlands. Antimicrob. Resist. Infect. Control 2021, 10, 147. [Google Scholar] [CrossRef]
- Müller, H.; Sib, E.; Gajdiss, M.; Klanke, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol. Ecol. 2018, 94, fiy057. [Google Scholar] [CrossRef] [PubMed]
- Kizny Gordon, A.E.; Mathers, A.J.; Cheong, E.Y.L.; Gottlieb, T.; Kotay, S.; Walker, A.S.; Peto, T.E.A.; Crook, D.W.; Stoesser, N. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature. Clin. Infect. Dis. 2017, 64, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Surleac, M.; Czobor Barbu, I.; Paraschiv, S.; Popa, L.I.; Gheorghe, I.; Marutescu, L.; Popa, M.; Sarbu, I.; Talapan, D.; Nita, M.; et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS ONE 2020, 15, e0228079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherak, Z.; Loucif, L.; Moussi, A.; Rolain, J.-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. J. Glob. Antimicrob. Resist. 2021, 25, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Ferreira, C.; Mil-Homens, D.; Busquets, A.; Fialho, A.M.; Henriques, I.; Gomila, M.; Manaia, C.M. Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: What do they have in common? BMC Genom. 2022, 23, 72. [Google Scholar] [CrossRef]
- WHO Advisory Group on Integrated Surveillance. Critically Important Antimicrobials for Human Medicine: 6th Revision 2018. Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use. Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 10 February 2022).
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, A.T.M.; Mason, J.; Roberts, P.; Parry, C.M.; Corless, C.; van Aartsen, J.; Howard, A.; Bulgasim, I.; Fraser, A.J.; Adams, E.R.; et al. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of blaTEM-1B. Nat. Commun. 2020, 11, 4915. [Google Scholar] [CrossRef]
- Livermore, D.M.; Day, M.; Cleary, P.; Hopkins, K.L.; Toleman, M.A.; Wareham, D.W.; Wiuff, C.; Doumith, M.; Woodford, N. OXA-1 β-lactamase and non-susceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia coli. J. Antimicrob. Chemother. 2019, 74, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Antunes, N.T.; Fisher, J.F. Acquired Class D β-Lactamases. Antibiotics 2014, 3, 398–434. [Google Scholar] [CrossRef]
- Kotsakis, S.D.; Flach, C.-F.; Razavi, M.; Larsson, D.G.J. Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob. Agents Chemother. 2019, 63, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Maurya, A.P.; Dhar, D.; Basumatary, M.K.; Paul, D.; Ingti, B.; Choudhury, D.; Talukdar, A.D.; Chakravarty, A.; Mishra, S.; Bhattacharjee, A. Expansion of highly stable bla OXA-10 β-lactamase family within diverse host range among nosocomial isolates of Gram-negative bacilli within a tertiary referral hospital of Northeast India. BMC Res. Notes 2017, 10, 145. [Google Scholar] [CrossRef]
- Arca-Suárez, J.; Lasarte-Monterrubio, C.; Rodiño-Janeiro, B.-K.; Cabot, G.; Vázquez-Ucha, J.C.; Rodríguez-Iglesias, M.; Galán-Sánchez, F.; Beceiro, A.; González-Bello, C.; Oliver, A.; et al. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections. J. Antimicrob. Chemother. 2021, 76, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Heiden, S.E.; Hübner, N.-O.; Bohnert, J.A.; Heidecke, C.-D.; Kramer, A.; Balau, V.; Gierer, W.; Schaefer, S.; Eckmanns, T.; Gatermann, S.; et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Bathoorn, E.; Rossen, J.W.; Lokate, M.; Friedrich, A.W.; Hammerum, A.M. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015. Euro Surveill. 2015, 20, 30040. [Google Scholar] [CrossRef] [PubMed]
- Papagiannitsis, C.C.; Dolejska, M.; Izdebski, R.; Dobiasova, H.; Studentova, V.; Esteves, F.J.; Derde, L.P.G.; Bonten, M.J.M.; Hrabák, J.; Gniadkowski, M. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate. Antimicrob. Agents Chemother. 2015, 59, 5065–5068. [Google Scholar] [CrossRef] [Green Version]
- Kiaei, S.; Moradi, M.; Hosseini-Nave, H.; Ziasistani, M.; Kalantar-Neyestanaki, D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect. Drug Resist. 2019, 12, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Van Duijkeren, E.; Wielders, C.C.H.; Dierikx, C.M.; van Hoek, A.H.A.M.; Hengeveld, P.; Veenman, C.; Florijn, A.; Lotterman, A.; Smit, L.A.M.; van Dissel, J.T.; et al. Long-term Carriage of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in the General Population in The Netherlands. Clin. Infect. Dis. 2018, 66, 1368–1376. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Kim, J.O.; Kim, D.; Lee, H.; Yang, J.W.; Lee, K.J.; Jeong, S.H. Klebsiella pneumoniae Carbapenemase Producers in South Korea between 2013 and 2015. Front. Microbiol. 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Wei, L.; Feng, Y.; Wen, H.; Ya, H.; Qiao, F.; Zong, Z. NDM-5-producing carbapenem-resistant Klebsiella pneumoniae of sequence type 789 emerged as a threat for neonates: A multicentre, genome-based study. Int. J. Antimicrob. Agents 2021, 59, 106508. [Google Scholar] [CrossRef]
- Kluytmans, J.A.J.W.; Overdevest, I.T.M.A.; Willemsen, I.; Kluytmans-van den Bergh, M.F.Q.; van der Zwaluw, K.; Heck, M.; Rijnsburger, M.; Vandenbroucke-Grauls, C.M.J.E.; Savelkoul, P.H.M.; Johnston, B.D.; et al. Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: Comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 2013, 56, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Kola, A.; Kohler, C.; Pfeifer, Y.; Schwab, F.; Kühn, K.; Schulz, K.; Balau, V.; Breitbach, K.; Bast, A.; Witte, W.; et al. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J. Antimicrob. Chemother. 2012, 67, 2631–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarfel, G.; Galler, H.; Luxner, J.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Kittinger, C.; Grisold, A.J.; Pless, P.; Feierl, G. Multiresistant bacteria isolated from chicken meat in Austria. Int. J. Environ. Res. Public Health 2014, 11, 12582–12593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghodousi, A.; Bonura, C.; Di Noto, A.M.; Mammina, C. Extended-Spectrum ß-Lactamase, AmpC-Producing, and Fluoroquinolone-Resistant Escherichia coli in Retail Broiler Chicken Meat, Italy. Foodborne Pathog. Dis. 2015, 12, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Egea, P.; López-Cerero, L.; Torres, E.; Del Gómez-Sánchez, M.C.; Serrano, L.; Navarro Sánchez-Ortiz, M.D.; Rodriguez-Baño, J.; Pascual, A. Increased raw poultry meat colonization by extended spectrum beta-lactamase-producing Escherichia coli in the south of Spain. Int. J. Food Microbiol. 2012, 159, 69–73. [Google Scholar] [CrossRef] [PubMed]
- The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [CrossRef] [Green Version]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [Green Version]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci. Total Environ. 2020, 727, 138788. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0, 2021. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 10 February 2022).
- Savin, M.; Bierbaum, G.; Schmithausen, R.M.; Heinemann, C.; Kreyenschmidt, J.; Schmoger, S.; Akbaba, I.; Käsbohrer, A.; Hammerl, J.A. Slaughterhouse wastewater as a reservoir for extended-spectrum β-lactamase (ESBL)-producing, and colistin-resistant Klebsiella spp. and their impact in a “One Health” perspective. Sci. Total Environ. 2021, 804, 150000. [Google Scholar] [CrossRef] [PubMed]
- Wattam, A.R.; Abraham, D.; Dalay, O.; Disz, T.L.; Driscoll, T.; Gabbard, J.L.; Gillespie, J.J.; Gough, R.; Hix, D.; Kenyon, R.; et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014, 42, D581–D591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
Isolate | Species | Origin | Resistance Phenotype a | Combinations of β-Lactam–β-Lactamase Inhibitor | Antimicrobial Resistance Genes to Β-Lactams | MLST |
---|---|---|---|---|---|---|
05/11-30 | K. oxytoca | Effluent mWWTP | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, ETP | TZP, C/T | blaOXY-2-8-like c | - d |
05/11-32 | K. oxytoca | Effluent mWWTP | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP | TZP, C/T | blaOXY-2-8-like | - |
05/10-58 | K. oxytoca | Influent mWWTP | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP | TZP, C/T | blaOXY-2-8-like | - |
05/10-60 | K. oxytoca | Influent mWWTP | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP | TZP, C/T | blaOXY-2-8-like | - |
03/12-04Bki | K. oxytoca | On-site preflooder downstream | CIP, NAL, GEN, SMX, CTX, CAZ, FEP, FOX, ETP | TZP, C/T | blaCTX-M-9, blaOXA-4, blaOXY-2-8-like | - |
05/13-23 | K. oxytoca | On-site preflooder upstream | CIP, TMP, SMX, TET, CTX, CAZ, FEP, FOX, ETP | - b | blaCTX-M-15, blaOXY-2-5 c | - |
05/13-25 | K. oxytoca | On-site preflooder upstream | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP | TZP, C/T | blaOXY-2-8-like | - |
03/11-12 | K. pneumoniae | Effluent mWWTP | CIP, NAL, TET, CTX, CAZ, FEP, FOX, ETP, MEM | - | blaOKP-B-3-like c | - |
03/11-28 | K. pneumoniae | Effluent mWWTP | CIP, NAL, TMP, SMX, CTX, CAZ, FEP, ETP | - | blaCTX-M-15, blaOXA-1, blaSHV-28, blaTEM-1B | ST307 |
03/11-38 | K. pneumoniae | Effluent mWWTP | CHL, CIP, NAL, CTX, CAZ, FEP, FOX, ETP, IMI, MEM | - | blaGES-5-like, blaSHV-2-like | - |
05/11-29 | K. pneumoniae | Effluent mWWTP | CHL, CIP, NAL, CST, CTX, CAZ, FEP, FOX, ETP, IMI | TZP | blaCTX-M-15, blaOXA-1, blaSHV-1 c, blaSHV-148-like | ST16 |
05/11-43 | K. pneumoniae | Effluent mWWTP | CHL, CIP, NAL, GEN, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP | TZP | blaCTX-M-15, blaOXY-2-2-like c, blaTEM-1B | - |
04/08-35 | K. pneumoniae | Poultry Eviscerators | CIP, CTX, CAZ, FEP, FOX, ETP | - | blaSHV-25 | ST789 |
03/06-23 | K. pneumoniae | Pig Holding Pens | CHL, CIP, TMP, SMX, TET, CTX, CAZ, FEP, ETP | TZP, C/T | blaCTX-M-1, blaSHV-27-like, blaTEM-1B | ST873 |
03/01-52 | K. pneumoniae | Influent in-house chemical-physical WWTP | CIP, TMP, SMX, CTX, FEP, FOX, ETP, MEM | - | blaSHV-33 | ST1948 |
03/10-26 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP, MEM | TZP, C/T | blaCTX-M-15, blaOXA-1, blaSHV-1 | ST2459 |
03/10-27 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, TMP, SMX, CTX, CAZ, FEP, FOX, ETP, MEM | TZP, C/T | blaCTX-M-15, blaOXA-1, blaSHV-1 | ST2459 |
03/10-46 | K. pneumoniae | Influent mWWTP | CIP, TMP, SMX, CTX, CAZ, FEP, IMI | - | blaCTX-M-15, blaSHV-1-like | ST219 |
05/10-20 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, GEN, SMX, TET, CTX, CAZ, FEP, FOX, ETP, IMI, MEM | TZP, C/T | blaOXA-10, blaSHV-31 | ST252 |
05/10-21 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, GEN, SMX, TET, CTX, CAZ, FEP, FOX, ETP, IMI, MEM | TZP, C/T | blaOXA-10, blaSHV-31 | ST252 |
05/10-59 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, GEN, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP | C/T | blaCTX-M-15, blaSHV-11, blaTEM-1A | ST268 |
05/10-69A | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, SMX, CTX, CAZ, FEP, FOX, ETP, MEM | TZP, C/T | blaOXA-10, blaSHV-69-like, blaTEM-1B | ST503 |
05/10-69B | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, SMX, FEP, ETP, MEM | TZP, C/T | blaOXA-10, blaSHV-69-like, blaTEM-1B | ST503 |
05/10-71 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, CST, SMX, CTX, CAZ, FEP, ETP, MEM | TZP, C/T | blaOXA-10, blaSHV-69-like | ST503 |
05/10-83 | K. pneumoniae | Influent mWWTP | CHL, CIP, NAL, GEN, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP | TZP | blaCTX-M-15, blaOXA-1, blaSHV-38-like, blaTEM-1B | ST441 |
03/13-21 | K. pneumoniae | On-site preflooder upstream | CHL, CIP, NAL, TMP, CTX, CAZ, FEP, ETP | - | blaCTX-M-15, blaSHV-1 | ST2459 |
05/13-31 | K. pneumoniae | On-site preflooder upstream | CHL, CIP, NAL, GEN, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP | - | blaCTX-M-15, blaSHV-11, blaTEM-1A | ST268 |
03/05-22 | K. pneumoniae | Pig Transporters | CHL, TMP, SMX, TET, CTX, CAZ, FEP, ETP | - | blaCTX-M-1, blaSHV-27-like, blaTEM-1B | ST873 |
01/07-40 | K. pneumoniae | Poultry Stunning Facilities | CIP, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP, MEM | TZP | blaSHV-28-like, blaTEM-1B | ST458 |
01/07-41 | K. pneumoniae | Poultry Stunning Facilities | CIP, TMP, SMX, TET, TGC, CTX, CAZ, FEP, FOX, ETP, MEM | - | blaSHV-28-like, blaTEM-1B | ST458 |
Antimicrobial Class | Genes | Percentage [%] |
---|---|---|
β-lactams | blaCTX-M-15 | 36.7 |
blaTEM-1B | 30.0 | |
blaOXY-2-8-like a | 20.0 | |
blaOXA-1 | 16.7 | |
blaSHV-1 a | 16.7 | |
blaOXA-10 | 16.7 | |
blaSHV-69-like | 10.0 | |
blaTEM-1B, blaSHV-27-like, blaSHV-27-like, blaSHV-11, blaTEM-1A | each 6.7 | |
blaOKP-B-3-likea, blaSHV-28, blaGES-5-like, blaSHV-2-like, blaSHV-148-like, blaOXY-2-2-likea, blaSHV-25, blaSHV-33, blaSHV-38-like, blaCTX-M-9, blaOXA-4, blaOXY-2-5a, blaSHV-28-like | each 3.3 | |
Aminoglycosides | strB | 40.0 |
strA | 36.7 | |
aadA5 | 23.3 | |
aac(3)-I-like | 16.7 | |
aadA1 | 16.7 | |
aadA2 | 16.7 | |
strA-like | 13.3 | |
strB-like | 13.3 | |
aadB | 10.0 | |
aac(3)-IId-like, aacA4, aadA24-like, aph(3′)-Ia | each 6.7 | |
aac(3)-IIa-like, aacA4-like, aadA22, aph(3′)-XV | each 3.3 | |
Phenicols | catB3-like | 20.0 |
floR-like | 6.7 | |
catB2 | 3.3 | |
Fluoroquinolones and aminoglycosides | aac(6’)Ib-cr | 20.0 |
aac(6’)Ib-cr-like | 10.0 | |
Diaminopyrimidines (Trimethoprim) | dfrA14-like | 26.7 |
dfrA17 | 23.3 | |
dfrA1 | 13.3 | |
dfrA12 | 6.7 | |
Sulfonamides | sul1 | 56.7 |
sul2 | 33.3 | |
sul2-like | 16.7 | |
Phosphonic Acid (Fosfomycin) | fosA-like a | 56.7 |
fosAa | 13.3 | |
Quinolones | oqxA-like a | 70.0 |
oqxB-like a | 70.0 | |
qnrB66-like | 13.3 | |
qnrS1 | 13.3 | |
qnrA1-like | 10.0 | |
qnrB1 | 6.7 | |
Tetracyclines | tet(A) | 13.3 |
tet(A)-like | 6.7 | |
tet(B) | 6.7 | |
Macrolides | mph(A) | 30.0 |
erm(B)-like | 6.7 | |
Lincosamides | lnu(F) | 3.3 |
Virulence Factor | Genes | Percentage a |
---|---|---|
Enterobactin | ent | 96.7 |
Yersiniabactin | ybt, irp1, irp2, fyuA | 40.0 |
Salmochelin | iroN, iroBCD | 40.0 |
Aerobactin | iucABCD, iutA | 33.3 |
Colibactin | clbA-R | 0 |
Regulators of mucoid phenotype | rmpA, rmpA2, rmpB | 0 |
K1 capsule synthesis | magA | 0 |
Chromosomal capsule production | cps | 0 |
Fimbriae type 1 | fim | 90.0 |
Fimbriae type 3 | mrk | 63.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, M.; Bierbaum, G.; Mutters, N.T.; Schmithausen, R.M.; Kreyenschmidt, J.; García-Meniño, I.; Schmoger, S.; Käsbohrer, A.; Hammerl, J.A. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics 2022, 11, 435. https://doi.org/10.3390/antibiotics11040435
Savin M, Bierbaum G, Mutters NT, Schmithausen RM, Kreyenschmidt J, García-Meniño I, Schmoger S, Käsbohrer A, Hammerl JA. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics. 2022; 11(4):435. https://doi.org/10.3390/antibiotics11040435
Chicago/Turabian StyleSavin, Mykhailo, Gabriele Bierbaum, Nico T. Mutters, Ricarda Maria Schmithausen, Judith Kreyenschmidt, Isidro García-Meniño, Silvia Schmoger, Annemarie Käsbohrer, and Jens Andre Hammerl. 2022. "Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater" Antibiotics 11, no. 4: 435. https://doi.org/10.3390/antibiotics11040435
APA StyleSavin, M., Bierbaum, G., Mutters, N. T., Schmithausen, R. M., Kreyenschmidt, J., García-Meniño, I., Schmoger, S., Käsbohrer, A., & Hammerl, J. A. (2022). Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics, 11(4), 435. https://doi.org/10.3390/antibiotics11040435