Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK
Abstract
:1. Introduction
2. Results
2.1. Minimum Inhibitory Concentration (MIC) Distribution of Colistin against E. coli and mcr Status
2.2. Phenotypic (Disk Diffusion) Susceptibility to Other AMDs in Conjunction with Colistin Resistance
2.3. Phenotypic Resistance Patterns and Multi-Drug Resistance (MDR)
3. Discussion
4. Materials and Methods
4.1. Sample Origin, Acquisition, and Storage
4.2. Minimum Inhibitory Concentration (MIC)
4.3. Multiplex PCR Screening for mcr
4.4. Disk Diffusion Testing for Antimicrobial Susceptibility
4.5. Statistical Methods and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Antibiotic | Antibiotic Class | Antibiotic Disk Concentration (µg) | Susceptible Cut-Off Value (≥mm) | Guidelines |
---|---|---|---|---|
Ampicillin | Penicillins | 10 | 14 | EUCAST |
Ceftriaxone | Cephalosporins | 30 | 25 | EUCAST |
Enrofloxacin | Fluoroquinolones | 5 | 16 | CLSI |
Gentamicin | Aminoglycosides | 10 | 17 | EUCAST |
Tetracycline | Tetracyclines | 30 | 11 | CLSI |
Trimethoprim/Sulfamethoxazole | Diaminopyrimidines/Sulphonamides | 25 (1:19) | 14 | EUCAST |
References
- Guabiraba, R.; Schouler, C. Avian colibacillosis: Still many black holes. FEMS Microbiol. Lett. 2015, 362, fnv118. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.K.; Vaillancourt, J.P.; Barbieri, N.L.; Logue, C.M. Colibacillosis. Dis. Poult. 2020. [Google Scholar] [CrossRef]
- Brownlee, G.; Jones, T. The polymyxins; A related series of antibiotics derived from B. polymyxa. Biochem. J. 1948, 43, xxv. [Google Scholar] [PubMed]
- Mendelson, M.; Matsoso, M.P. The World Health Organization global action plan for antimicrobial resistance. SAMJ S. Afr. Med. J. 2015, 105, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, W.; Lei, S.; Lin, J.; Srinivas, S.; Feng, Y. An Evolutionarily Conserved Mechanism for Intrinsic and Transferable Polymyxin Resistance. MBio 2018, 9, e02317-17. [Google Scholar] [CrossRef] [Green Version]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018; EMA/24309/2020 2020; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef]
- DANMAP. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark; DANMAP: Wageningen, Denmark, 2019. [Google Scholar]
- RESAPATH. French Surveillance Network for Antimicrobial Resistance in Diseased Animals, 2019 Annual Report; RESAPATH: Lyon, France, 2021. [Google Scholar]
- Veldman, K.; Mevius, D.; Wit, B.; Pelt, W.; Franz, E.; Heederik, D. MARAN 2019: Monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2018. Combined with NETHMAP-2019: Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands, 2019. [CrossRef]
- UK-VARSS. UK Veterinary Antibiotic Resistance and Sales Surveillance Report (UK-VARSS 2018); Veterinary Medicines Directorate: New Haw, UK, 2019. [Google Scholar]
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.; et al. Global burden of colistin-resistant bacteria: Mobilized colistin resistance genes study (1980–2018). Microorganisms 2019, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Teo, J.W.; Kalisvar, M.; Venkatachalam, I.; Ng, O.T.; Lin, R.T.; Octavia, S. mcr-3 and mcr-4 variants in carbapenemase-producing clinical Enterobacteriaceae do not confer phenotypic polymyxin resistance. J. Clin. Microbiol. 2018, 56, e01562-17. [Google Scholar] [CrossRef] [Green Version]
- Terveer, E.M.; Nijhuis, R.H.; Crobach, M.J.; Knetsch, C.W.; Veldkamp, K.E.; Gooskens, J.; Kuikper, E.; and Claas, E. Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS ONE 2017, 12, e0178598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matamoros, S.; Van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Nguyen, T.; Hoa, N.; Bootsma, M.; Genderen, P.; et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 2017, 7, 15364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciuca, I.E.; Cummins, M.L.; Cozma, A.P.; Rimbu, C.M.; Guguianu, E.; Panzaru, C.; Licker, M.; Szekely, E.; Flonta, M.; Djordjevic, S.; et al. Genetic features of mcr-1 mediated colistin resistance in CMY-2-producing Escherichia coli from Romanian poultry. Front. Microbiol. 2019, 10, 2267. [Google Scholar] [CrossRef] [PubMed]
- Perrin-Guyomard, A.; Bruneau, M.; Houee, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Eurosurveillance 2016, 21, 30135. [Google Scholar] [CrossRef]
- Dominguez, J.E.; Redondo, L.M.; Figueroa Espinosa, R.A.; Cejas, D.; Gutkind, G.O.; Chacana, P.A.; Di Conza, J.; Miyakawa, M. Simultaneous carriage of mcr-1 and other antimicrobial resistance determinants in Escherichia coli from poultry. Front. Microbiol. 2018, 9, 1679. [Google Scholar] [CrossRef] [Green Version]
- Thomrongsuwannakij, T.; Blackall, P.J.; Djordjevic, S.P.; Cummins, M.L.; Chansiripornchai, N. A comparison of virulence genes, antimicrobial resistance profiles and genetic diversity of avian pathogenic Escherichia coli (APEC) isolates from broilers and broiler breeders in Thailand and Australia. Avian Pathol. 2020, 49, 457–466. [Google Scholar] [CrossRef]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.-A.; Grobbel, M.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Roesler, U.; Kasbohrer, A. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Hesp, A.; Van Der Goot, J.; Joosten, P.; Sarrazin, S.; Wagenaar, J.A. Antimicrobial resistance prevalence in commensal Escherichia coli from broilers, fattening turkeys, fattening pigs and veal calves in European countries and association with antimicrobial usage at country level. J. Med. Microbiol. 2020, 69, 537–547. [Google Scholar] [CrossRef]
- Webb, H.E.; Angulo, F.J.; Granier, S.A.; Scott, H.M.; Loneragan, G.H. Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin. F1000Res 2017, 6, 1805. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yu, L.; Chen, X.; Zhi, C.; Yao, X.; Liu, Y.; Wu, S.; Guo, Z.; Yi, Z.; Zeng, Z.; et al. High prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front. Microbiol. 2017, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X.; et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: An epidemiological comparative study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis. 2016, 16, 293. [Google Scholar] [CrossRef] [Green Version]
- Makita, K.; Fujimoto, Y.; Sugahara, N.; Miyama, T.; Usui, M.; Asai, T.; Kawanishi, M.; Ozawa, M.; Tamura, Y. Quantitative release assessment of mcr-mediated colistin-resistant Escherichia coli from Japanese pigs. Food Saf. 2020, 8, 13–33. [Google Scholar] [CrossRef]
- Ahmed, S.; Das, T.; Islam, M.Z.; Herrero-Fresno, A.; Biswas, P.K.; Olsen, J.E. High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh. Sci. Rep. 2020, 10, 18637. [Google Scholar] [CrossRef]
- El Garch, F.; de Jong, A.; Bertrand, X.; Hocquet, D.; Sauget, M. mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet. Microbiol 2018, 213, 42–46. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Spiller, O.B.; Andrey, D.O.; Hinchliffe, P.; Li, H.; MacLean, C.; Niumsup, P.; Powell, L.; Pritchard, M.; et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat. Commun. 2017, 8, 2054. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson-Palme, J.; Jonsson, V.; Hess, S. What is the role of the environment in the emergence of novel antibiotic resistance genes?—A modelling approach. Environ. Sci. Technol. 2021, 55, 15734–15743. [Google Scholar]
- Li, H.; Wang, Y.; Chen, Q.; Xia, X.; Shen, J.; Wang, Y.; Shao, B. Identification of Functional Interactome of Colistin Resistance Protein MCR-1 in Escherichia coli. Front. Microbiol. 2021, 11, 3632. [Google Scholar] [CrossRef]
- Yang, Q.E.; MacLean, C.; Papkou, A.; Pritchard, M.; Powell, L.; Thomas, D.; Andrey, D.; Li, M.; Spiller, B.; Yang, W.; et al. Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones. ISME J. 2020, 14, 861–865. [Google Scholar] [CrossRef]
- Pitt, T.; Sparrow, M.; Warner, M.; Stefanidou, M. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax 2003, 58, 794–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübbert, C.; Faucheux, S.; Becker-Rux, D.; Laudi, S.; Dürrbeck, A.; Busch, T.; Gastmeier, P.; Eckmanns, T.; Rodloff, A.; Kaisers, U. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: A single-centre experience. Int. J. Antimicrob. Agents 2013, 42, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Johura, F.-T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.; Camilli, A.; Seed, K.; Ahmed, N.; et al. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.; Nguyen, H.M.; Nguyen, C.V.; Nguyen, T.V.; Nguyen, M.T.; Thai, H.Q.; Ho, M.H.; Thwaites, G.; Ngo, H.T.; Baker, S.; et al. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria. Appl. Environ. Microbiol. 2016, 82, 3727–3735. [Google Scholar] [CrossRef] [Green Version]
- Corvec, S.; Furustrand Tafin, U.; Betrisey, B.; Borens, O.; Trampuz, A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob. Agents Chemother. 2013, 57, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.-P.; Lin, Q.-Q.; He, W.-Y.; Wang, J.; Yi, M.-Y.; Lv, L.-C.; Yang, J.; Liu, J.-H.; Guo, J.-Y. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1 in a Chinese broiler farm. Zool. Res. 2020, 41, 569. [Google Scholar] [CrossRef]
- Migura-Garcia, L.; González-López, J.J.; Martinez-Urtaza, J.; Aguirre Sánchez, J.; Moreno-Mingorance, A.; Perez de Rozas, A.; Hofle, U.; Ramiro, Y.; Gonzalez-Escalona, N. mcr-colistin resistance genes mobilized by IncX4, IncHI2, and IncI2 plasmids in Escherichia coli of pigs and White Stork in Spain. Front. Microbiol. 2020, 10, 3072. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Huang, Y.; Yang, G.; Lei, T.; Chen, M.; Ye, Q.; Wang, J.; Gu, Q.; Wei, X.; Zhang, J.; et al. High prevalence of multidrug-resistant Escherichia coli and first detection of IncHI2/IncX4-plasmid carrying mcr-1 E. coli in retail ready-to-eat foods in China. Int. J. Food Microbiol. 2021, 355, 109349. [Google Scholar] [CrossRef]
- Snesrud, E.; He, S.; Chandler, M.; Dekker, J.P.; Hickman, A.B.; McGann, P.; Dyda, F. A model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob. Agents Chemother. 2016, 60, 6973–6976. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
- Le Devendec, L.; Mourand, G.; Bougeard, S.; Leaustic, J.; Jouy, E.; Keita, A.; Couet, W.; Rousset, N.; Kempf, I. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure. Vet. Microbiol. 2016, 194, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Mead, A.; Richez, P.; Azzariti, S.; Pelligand, L. Pharmacokinetics of Colistin in the Gastrointestinal Tract of Poultry Following Dosing via Drinking Water and Its Bactericidal Impact on Enteric Escherichia coli. Front. Vet. Sci. 2021, 8, 634. [Google Scholar] [CrossRef] [PubMed]
Resistance Profile | Number of Isolates | |||
---|---|---|---|---|
Denmark | France | Netherlands | UK | |
No resistance | 15 (62.5%) | 10 (25.6%) | 25 (49%) | 33 (55%) |
Single resistance | 7 (29.2%) | 7 (17.9%) | 9 (18%) | 15 (25%) |
Col | - | - | - | 1 * |
Amp | 1 | 1 | 2 | 3 |
Gent | - | - | 4 | 3 |
Tet | 6 | 4 | 3 | 3 |
Sxt | - | 2 | - | - |
Double resistance | 2 (8.3 %) | 8 (20.5%) | 8 (15.7%) | 7 (11.7%) |
Col-Gent | 1 * | - | - | - |
Amp-Enr | - | - | 2 | - |
Amp-Tet | 1 | 6 | 1 | 3 |
Amp-Sxt | - | 1 | 4 | 3 |
Tet-Gent | - | - | - | 1 |
Tet-Sxt | - | 1 | 1 | - |
MDR resistance (≥3) | 0 (0%) | 14 (35.9%) | 9 (17.6%) | 4 (6.7%) |
Col-Gent-Ceft | - | 1 * | - | - |
Amp-Enr-Sxt | - | - | 1 | - |
Amp-Tet-Ceft | - | 1 | - | - |
Amp-Tet-Gent | - | 1 | - | 1 |
Amp-Tet-Sxt | - | 9 | 7 | 3 |
Amp-Tet-Ceft-Sxt | - | 1 | - | - |
Amp-Tet-Enr-Sxt | - | - | - | 1 |
Amp-Tet-Gent-Sxt | - | - | 1 | - |
Tet-Ceft-Sxt | - | 1 | - | - |
Total | 24 | 39 | 51 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mead, A.; Billon-Lotz, C.; Olsen, R.; Swift, B.; Richez, P.; Stabler, R.; Pelligand, L. Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK. Antibiotics 2022, 11, 631. https://doi.org/10.3390/antibiotics11050631
Mead A, Billon-Lotz C, Olsen R, Swift B, Richez P, Stabler R, Pelligand L. Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK. Antibiotics. 2022; 11(5):631. https://doi.org/10.3390/antibiotics11050631
Chicago/Turabian StyleMead, Andrew, Candice Billon-Lotz, Rikke Olsen, Ben Swift, Pascal Richez, Richard Stabler, and Ludovic Pelligand. 2022. "Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK" Antibiotics 11, no. 5: 631. https://doi.org/10.3390/antibiotics11050631
APA StyleMead, A., Billon-Lotz, C., Olsen, R., Swift, B., Richez, P., Stabler, R., & Pelligand, L. (2022). Epidemiological Prevalence of Phenotypical Resistances and Mobilised Colistin Resistance in Avian Commensal and Pathogenic E. coli from Denmark, France, The Netherlands, and the UK. Antibiotics, 11(5), 631. https://doi.org/10.3390/antibiotics11050631