Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Activity
2.2. Bioactive Compound Identification Using a Biochemometric Approach
2.3. Thin Layer Chromatography-Direct Bioautography
2.4. Hyphenated Thin Layer Chromatography-Mass Spectrometry Analysis of Bioactive Constituents
3. Discussion
4. Materials and Methods
4.1. Plant Material Collection, Preparation, and Extraction
4.2. Reagents, Chemicals, and Pathogens
4.3. Antibacterial Activity Determination Using the Microdilution Assay
4.4. Identification of Bioactive Compounds Using Biochemometric Analysis
4.5. Thin Layer Chromatography-Direct Bioautography
4.6. Identification of Bioactive Compounds Using Hyphenated Thin Layer Chromatography-Mass Spectrometry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed.; Livingstone Ltd.: Edinburgh, UK, 1962. [Google Scholar]
- Bocanegra-García, V.; Del Rayo Camacho-Corona, M.; Ramírez-Cabrera, M.; Rivera, G.; Garza-Gonzlez, E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res. Notes 2009, 2, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanphanphoom, S.; Krajangsang, S.; Thophon, S.; Waranusantigul, P.; Kangwanrangsan, N.; Sukhumaporn, K. Antimicrobial activity of Chromolaena odorata extracts against bacterial human skin infections. Mod. Appl. Sci. 2016, 10, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.P.; Padhy, R.N. In vitro antibacterial efficacy of 21 Indian timber-yielding plants against multidrug-resistant bacteria causing urinary tract infection. Osong Public Heal. Res. Perspect. 2013, 4, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.B.; Hansen, B.M.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003, 5, 631–640. [Google Scholar] [CrossRef]
- Li, L.; Yan, Q.; Ma, N.; Chen, X.; Li, G.; Liu, M. Analysis of intestinal flora and inflammatory cytokine levels in children with non-infectious diarrhea. Transl. Pediatr. 2021, 10, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Viljoen, A.M.; Gono-Bwalya, A.B.; Van Zyl, R.L.; Van Vuuren, S.F.; Lourens, A.C.U.; Başer, K.H.C.; Demirci, B.; Lindsey, K.L.; Van Staden, J.; et al. The in vitro pharmacological activities and a chemical investigation of three South African Salvia species. J. Ethnopharmacol. 2005, 102, 382–390. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Van Vuuren, S.F.; Van Heerden, F.R.; Seaman, T.; Viljoen, A.M. Antibacterial and antimycobacterial activities of South African Salvia species and isolated compounds from S. chamelaeagnea. S. Afr. J. Bot. 2007, 73, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Kamatou, G.P.P. Indigenous Salvia Species—An Investigation of Their Pharmacological Activities and Phytochemistry; University of Witwatersrand: Johannesburg, South Africa, 2006. [Google Scholar]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.S.F.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea Var. Victoria Blue decoctions. Antioxidants 2019, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Lim Ah Tock, M.J.; Kamatou, G.P.P.; Combrinck, S.; Sandasi, M.; Viljoen, A.M. A chemometric assessment of essential oil variation of three Salvia species indigenous to South Africa. Phytochemistry 2020, 172, 112249. [Google Scholar] [CrossRef]
- Lim Ah Tock, M.J.; Chen, W.; Combrinck, S.; Sandasi, M.; Kamatou, G.P.P.; Viljoen, A.M. Exploring the phytochemical variation of non-volatile metabolites within three South African Salvia species using UPLC-MS fingerprinting and chemometric analysis. Fitoterapia 2021, 152, 104940. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Van Zyl, R.L.; Van Vuuren, S.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Viljoen, A.M. Seasonal variation in essential oil composition, oil toxicity and the biological activity of solvent extracts of three South African Salvia species. S. Afr. J. Bot. 2008, 74, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. Biochemometrics for Natural Products Research: Comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod. 2016, 79, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Suleman, T.; Van Vuuren, S.; Sandasi, M.; Viljoen, A.M. Antimicrobial activity and chemometric modelling of South African Propolis. J. Appl. Microbiol. 2015, 119, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.; Jesionek, W. TLC-Direct Bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography 2015, 2, 225–238. [Google Scholar] [CrossRef]
- Dewanjee, S.; Gangopadhyay, M.; Bhattacharya, N.; Khanra, R.; Dua, T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal. 2015, 5, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marston, A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A 2011, 1218, 2676–2683. [Google Scholar] [CrossRef]
- Kasote, D.; Ahmad, A.; Chen, W.; Combrinck, S.; Viljoen, A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from Propolis. Phytochem. Lett. 2015, 11, 326–331. [Google Scholar] [CrossRef]
- Eloff, J.N. A proposal towards a rational classification of the antimicrobial activity of acetone tree leaf extracts in a search for new antimicrobials. Planta Med. 2021, 87, 836–840. [Google Scholar] [CrossRef]
- Sato, Y.; Unno, Y.; Miyazaki, C.; Ubagai, T.; Ono, Y. Multidrug-resistant Acinetobacter Baumannii resists reactive oxygen species and survives in macrophages. Sci. Rep. 2019, 9, 17462. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Futur. Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [Green Version]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) Methanolic Extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef] [PubMed]
- Klancnik, A.; Kolar, M.H.; Abramovi, H.; Mozina, S.S. In vitro antimicrobial and antioxidant activity of commercial of commercial rosemary extract formulations. J. Food Prot. 2009, 72, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Khin, M.; Knowles, S.L.; Crandall, W.J.; Jones, D.D.; Oberlies, N.H.; Cech, N.B.; Houriet, J. Capturing the antimicrobial profile of Rosmarinus officinalis against methicillin-resistant Staphylococcus aureus (MRSA) with bioassay-guided fractionation and bioinformatics. J. Pharm. Biomed. Anal. 2021, 197, 113965. [Google Scholar] [CrossRef]
- Do Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, Â.M.C.; Ferreira, D.A.; Santiago, G.M.P.; Braz-Filho, R.; Galberto, J.; Costa, M.; Br, A.M.C.A. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 2014, 19, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.P.; Mitra, A.; Bhattacharya, A.; Sen, A. Quorum quenching activity of pentacyclic triterpenoids leads to inhibition of biofilm formation by Acinetobacter baumannii. Biofouling 2020, 36, 922–937. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, W.; Majer-Dziedzic, B.; Horváth, G.; Móricz, Á.M.; Choma, I.M. Screening of antibacterial compounds in Salvia officinalis L. Tincture Using Thin-Layer Chromatography-Direct Bioautography and Liquid Chromatography-Tandem mass spectrometry techniques. J. Planar Chromatogr. Mod. TLC 2017, 30, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Caesar, L.K.; Cech, N.B.; Kubanek, J.; Linington, R.; Luesch, H. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 845–936. [Google Scholar] [CrossRef] [Green Version]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, R.C.F.; Cardoso, S.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis “Icterina” and Salvia mexicana aqueous extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation. Molecules 2019, 24, 1849. [Google Scholar] [CrossRef] [Green Version]
- Almosa, A.A.O.; Al-Salamah, A.A.; Maany, D.A.; El-Abd, M.A.E.; Ibrahim, A.S.S. Biofilm formation by clinical Acinetobacter Baumannii strains and its effect on antibiotic resistance. Egypt. J. Chem. 2021, 64, 1615–1625. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Ej Golzari, S. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef]
- Huttunen, S.; Toivanen, M.; Liu, C.; Tikkanen-Kaukanen, C. Novel anti-infective potential of salvianolic acid B against human serious pathogen Neisseria meningitidis. BMC Res. Notes 2016, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Horiuchi, K.; Shiota, S.; Hatano, T.; Yoshida, T.; Kuroda, T.; Tsuchiya, T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant Enterococci (VRE). Biol. Pharm. Bull. 2007, 30, 1147–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiuchi, K.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol. Pharm. Bull. 2007, 30, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Climati, E.; Mastrogiovanni, F.; Valeri, M.; Salvini, L.; Bonechi, C.; Mamadalieva, N.Z.; Egamberdieva, D.; Taddei, A.R.; Tiezzi, A. Methyl carnosate, an antibacterial diterpene isolated from Salvia officinalis leaves. Nat. Prod. Commun. 2013, 8, 429–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evidence-based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef]
- Jesionek, W.; Grzelak, E.M.; Majer-Dziedzi, B.; Chom, I.M. Thin-layer chromatography - direct bioautography for the screening of antimicrobial properties of plant extracts. J. Planar Chromatogr. Mod. TLC 2013, 26, 109–113. [Google Scholar] [CrossRef]
- Dilika, F.; Meyer, J.J.M. Antibacterial Activity of Helichrysum pedunculatum callus cultures. S. Afr. J. Bot. 1998, 64, 312–313. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, M.M.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Detection of antimicrobial compounds by bioautography of different extracts of leaves of South African tree species. African J. Tradit., Compliment. Altern. Med. 2010, 7, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.M.; Tahir, A.; Malfent, F.; Opsenica, D.M.; Rollinger, J.M. High-performance thin-layer chromatography/bioautography and liquid chromatography-mass spectrometry hyphenated with chemometrics for the quality assessment of Morus alba samples. J. Chromatogr. A 2019, 1594, 190–198. [Google Scholar] [CrossRef]
- Cornejo-Báez, A.A.; Peña-Rodríguez, L.M.; Álvarez-Zapata, R.; Vázquez-Hernández, M.; Sánchez-Medina, A. Chemometrics: A complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov. Today 2020, 25, 27–37. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Wang, R.; Wang, Z.; Yang, B.; Kuang, H. An evolving technology that integrates classical methods with continuous technological developments: Thin-layer chromatography bioautography. Molecules 2021, 26, 4647. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, R.A.; Cech, N.B. Integration of biochemometrics and molecular networking to identify bioactive constituents of ashitaba (Angelica Keiskei Koidzumi). Planta Med. 2018, 84, 721. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vuuren, S.F.; Nkwanyana, M.N.; de Wet, H. Antimicrobial evaluation of plants used for the treatment of diarrhoea in a rural community in Northern Maputaland, KwaZulu-Natal, South Africa. BMC Complement. Altern. Med. 2015, 15, 53. [Google Scholar] [CrossRef] [Green Version]
S. africana-lutea (n = 30) | |||||||
---|---|---|---|---|---|---|---|
Population | S. aureus ATCC 25923 | B. cereus ATCC 11778 | E. faecium ATCC 27270 | B. subtilis ATCC 6051 | A. baumannii ATCC 19606 | P. aeruginosa ATCC 27853 | E. coli ATCC 8739 |
Atlantis | 2.0–2.0 (2.0) | 0.50–0.50 (0.50) | 1.50–4.0 (3.3) | 1.0–1.0 (1.0) | 1.0–1.0 (1.0) | 0.50–0.50 (0.50) | 1.0–4.0 (3.1) |
Silverstroomstrand | 2.0–> 8.0 | 0.50–3.0 (1.4) | 4.0–8.0 (5.6) | 0.50–1.0 (1.4) | 1.0–> 8.0 | 0.50–0.50 (0.50) | 4.0–8.0 (4.8) |
Betty’s bay | 1.0–4.0 (2.7) | 0.50–1.0 (0.70) | 2.0–4.0 (3.0) | 0.50–2.0 (1.1) | 1.0–1.5 (1.1) | 0.50–0.50 (0.50) | 1.5–4.0 (3.3) |
Blousteen | 1.0–4.0 (2.5) | 0.50–1.0 (0.80) | 1.5–6.0 (3.5) | 1.0–2.0 (1.4) | 1.0–1.5 (1.3) | 0.50–0.75 (0.55) | 4.0–4.0 (4.0) |
Rondeberg | 2.0–4.0 (2.4) | 0.25–0.50 (0.40) | 1.0–2.0 (1.8) | 1.0–2.0 (1.2) | 0.50–1.0 (0.80) | 0.50–0.75 (0.55) | 1.0–2.0 (1.6) |
Langebaan | 1.0–3.0 (1.5) | 0.25–0.38 (0.32) | 0.50–2.0 (1.1) | 1.0–2.0 (1.2) | 0.25–1.0 (0.55) | 0.50–0.50 (0.50) | 1.0–2.0 (1.3) |
Overall range of MICs (mg/mL) | 1.0–> 8.0 | 0.25–3.0 | 0.50–8.0 | 0.50–2.0 | 0.25–> 8.0 | 0.50–0.75 | 1.0–8.0 |
Average of MICs ± SD (mg/mL) | 2.9 ± 2.0 | 0.69 ± 0.53 | 3.0 ± 1.8 | 1.1 ± 0.4 | 1.2 ± 1.3 | 0.52 ± 0.08 | 3.0 ± 1.6 |
Positive control ciprofloxacin (µg/mL) | 0.69 | 0.08 | 2.2 | 0.22 | 0.47 | 0.26 | 1.1 |
Number of active/more active samples (MIC ≤ 1.0 mg/mL) | 6 | 28 | 5 | 23 | 23 | 27 | 6 |
Number of inactive/less active samples (MIC > 1.0 mg/mL) | 24 | 2 | 25 | 7 | 7 | 3 | 24 |
S. lanceolata (n = 25) | |||||||
Silverstroomstrand | 2.0–> 8.0 | 1.0–3.0 (2.0) | 4.0–> 8.0 | 0.50–0.50 (0.50) | 1.0–2.0 (1.3) | 0.25–0.50 (0.45) | 4.0–6.0 (4.8) |
Velddrif | 1.0–3.0 (1.8) | 0.50–1.0 (0.70) | 2.0–5.3 (3.2) | 0.50–0.50 (0.50) | 0.50–1.0 (0.90) | 0.13–0.50 (0.38) | 2.0–6.0 (4.0) |
Rondeberg | 2.7–4.0 (3.7) | 0.75–2.0 (1.1) | 2.0–6.0 (4.4) | 0.25–2.0 (0.95) | 1.0–1.5 (1.1) | 0.50–0.50 (0.50) | 4.0–6.0 (4.4) |
Yzerfontein | 3.0–> 8.0 | 1.0–2.5 (1.9) | 3.0–8.0 (4.2) | 1.0–2.0 (1.2) | 1.0–> 8.0 | 0.50–0.50 (0.50) | 4.0–> 8.0 |
Mamre | 1.0–4.0 (2.1) | 0.38–1.0 (0.65) | 0.75–4.0 (2.1) | 1.0–1.0 (1.0) | 0.25–1.5 (0.80) | 0.25–0.50 (0.45) | 1.0–4.0 (2.8) |
Overall range of MIC values (mg/mL) | 1.0–> 8.0 | 0.38–3.0 | 0.75–> 8.0 | 0.25–2.0 | 0.25–> 8.0 | 0.13–0.50 | 1.0–> 8.0 |
Average of MICs ± SD (mg/mL) | 3.0 ± 1.8 | 1.3 ± 0.8 | 4.0 ± 2.0 | 0.83 ± 0.44 | 1.4 ± 1.4 | 0.46 ± 0.10 | 4.2 ± 1.5 |
Positive control ciprofloxacin (µg/mL) | 0.69 | 0.080 | 2.2 | 0.22 | 0.47 | 0.26 | 1.1 |
Number of active/more active samples (MIC ≤ 1.0 mg/mL) | 3 | 16 | 2 | 23 | 17 | 5 | 2 |
Number of inactive/less active samples (MIC > 1.0 mg/mL) | 22 | 9 | 23 | 2 | 8 | 20 | 23 |
S. chamelaeagnea (n = 26) | |||||||
Paarl | 0.38–2.0 (0.98) | 0.038–0.25 (0.16) | 0.25–1.00 (0.57) | 1.0–1.0 (1.0) | 0.13–0.50 (0.25) | 0.50–0.50 (0.50) | 0.25–1.5 (0.69) |
Simonsvlei | 1.0–2.0 (1.2) | 0.13–0.50 (0.20) | 0.50–2.0 (1.0) | 1.0–2.0 (1.6) | 0.25–0.50 (0.40) | 0.50–0.75 (0.55) | 0.50–2.0 (1.0) |
Du Toitskloof | 0.75–4.0 (2.0) | 0.13–0.50 (0.28) | 0.25–2.0 (0.95) | 1.0–1.0 (1.0) | 0.25–1.0 (0.60) | 0.50–0.50 (0.50) | 0.50–4.0 (1.8) |
Elandsberg | 1.0–2.0 (1.7) | 0.25–0.50 (0.38) | 1.0–1.5 (1.2) | 1.0–1.0 (1.0) | 0.50–1.0 (0.60) | 0.50–0.75 (0.55) | 1.0–2.0 (1.3) |
Riebeek Kasteel | 1.0–1.0 (1.0) | 0.13–0.25 (0.18) | 0.50–1.0 (0.60) | 1.0–2.0 (1.4) | 0.25–0.50 (0.30) | 0.50–0.75 (0.55) | 0.50–1.0 (0.60) |
Overall range of MIC values (mg/mL) | 0.38–4.0 | 0.038–0.50 | 0.25–2.0 | 1.0–2.0 | 0.13–1.0 | 0.50–0.75 | 0.25–4.0 |
Average of MICs ± SD (mg/mL) | 1.3 ± 0.8 | 0.23 ± 0.14 | 0.85 ± 0.48 | 1.2 ± 0.4 | 0.42 ± 0.24 | 0.53 ± 0.08 | 1.0 ± 0.8 |
Positive control ciprofloxacin (µg/mL) | 0.69 | 0.080 | 2.2 | 0.22 | 0.47 | 0.26 | 1.1 |
Number of active/more active samples (MIC ≤ 1.0 mg/mL) | 17 | 22 | 22 | 21 | 24 | 23 | 20 |
Number of inactive/less active samples (MIC > 1.0 mg/mL) | 9 | 4 | 4 | 5 | 2 | 3 | 6 |
Pathogen | OPLS-DA Model b Statistics | Compound ID | Rt (min) | [M-H]− (m/z) | Molecular Formula | Compound Class | Correlates with HPTLC-MS | |||
---|---|---|---|---|---|---|---|---|---|---|
A | R2XP1/R2XO1 | R2Xcum | Q2cum | |||||||
S. aureus | 1 + 11 | 0.03/0.28 | 0.88 | 0.90 | Methyl carnosate a Unknown | 10.15 10.74 | 345, 346 389, 390, 329 | C20H26O4 C22H29O6 | Diterpenoid Diterpenoid | N/A |
B. cereus | 1 + 3 | 0.21/0.16 | 0.63 | 0.99 | Methyl carnosate a Epiisorosmanol methyl ether a | 10.15 10.50 | 345, 346 359 | C20H26O4 C21H28O5 | Diterpenoid Diterpenoid | N/A |
E. faecium | 1 + 10 | 0.09/0.26 | 0.88 | 0.95 | Dihydroxy-dimethoxyflavone derivative a Unknown | 8.97 10.74 | 387 389, 390, 329 | C20H39O4 | Flavonoid | N/A |
B. subtilis | 1+ 7 | 0.04/0.27 | 0.82 | 0.84 | Salvianolic acid E a Salvianolic acid B a Unknown | 3.10 3.88 9.02 | 519 717, 519 417 | C36H30O16 C36H30O16 C21H37O8 | Caffeic acid derivative Caffeic acid derivative | N/A |
E. coli | 1 + 10 | 0.04/0.27 | 0.86 | 0.91 | Unknown | 10.74 | 389 | C22H29O6 | - | N/A |
A. baumannii | 1 + 7 | 0.04/0.27 | 0.80 | 0.89 | Unknown Unknown | 9.02 10.74 | 417 390, 329 | C21H37O8 C22H29O6 | - | Yes Yes |
P. aeruginosa | 1 + 8 | 0.02/0.29 | 0.84 | 0.89 | Salvianolic acid B a Unknown | 3.88 9.02 | 717, 519 417 | C36H30O16 C21H37O8 | Caffeic acid derivative | N/A |
Pathogen | OPLS-DA Model b Statistics | Compound ID | Rt (min) | [M–H]− (m/z) | Molecular Formula | Compound Class | Correlate with HPTLC-MS | |||
---|---|---|---|---|---|---|---|---|---|---|
A | R2XP1/R2XO1 | R2Xcum | Q2cum | |||||||
S. aureus | 1 + 8 | 0.06/0.17 | 0.70 | 0.93 | Unknown Epiisorosmanol a | 6.79 7.80 | 331 345 | C20H26O5 | Diterpenoid | N/A |
B. cereus | 1 + 4 | 0.08/0.12 | 0.52 | 0.95 | Unknown | 8.72 | 331 | C21H31O3 | N/A | |
E. faecium | 1 + 5 | 0.16/0.13 | 0.57 | 0.99 | Epiisorosmanol a Unknown Unknown | 7.80 10.36 10.43 | 345 317 331 | C20H26O5 C21H33O2 C21H31O3 | Diterpenoid | N/A |
B. subtilis | 1 + 3 | 0.04/0.19 | 0.40 | 0.53 | Rosmarinic acid c | 3.66 | 359 | C18H15O8 | Caffeic acid derivative | N/A |
E. coli | 1 + 1 | 0.16/0.13 | 0.30 | 0.92 | Epiisorosmanol a Unknown Unknown | 7.80 10.36 10.43 | 345 317 331 | C20H26O5 C21H33O2 C21H31O3 | Diterpenoid | N/A |
A. baumannii | 1 + 7 | 0.04/0.17 | 0.67 | 0.96 | Salvianolic acid E c Epiisorosmanol a | 3.10 7.80 | 717 345 | C36H30O16 C20H26O5 | Caffeic acid derivative Diterpenoid | No Yes |
P. aeruginosa | 1 + 5 | 0.05/0.18 | 0.57 | 0.92 | Unknown Epiisorosmanol a Unknown | 6.79 7.80 10.43 | 331 345 331 | C20H26O5 C21H31O3 | Diterpenoid | N/A |
Pathogen | OPLS-DA Model b Statistics | Compound ID | Rt (min) | [M–H]− (m/z) | Molecular Formula | Compound Class | Correlate with HPTLC-MS | |||
---|---|---|---|---|---|---|---|---|---|---|
A | R2XP1/R2XO1 | R2Xcum | Q2cum | |||||||
S. aureus | 1 + 9 | 0.21/0.27 | 0.89 | 0.94 | Carnosol c Carnosic acid c | 10.00 11.39 | 329 331 | C20H26O4 C20H28O4 | Diterpenoid Diterpenoid | N/A |
B. cereus | 1 + 7 | 0.04/0.44 | 0.84 | 0.80 | Carnosol c Carnosic acid c Unknown | 9.99 11.39 12.19 | 329 331 317 | C20H26O4 C20H28O4 C21H33O2 | Diterpenoid Diterpenoid | N/A |
E. faecium | 1 + 12 | 0.03/0.44 | 0.91 | 0.88 | Rosmanol methyl ether a Carnosol c Carnosic acid c Unknown | 9.82 9.99 11.39 12.19 | 359 329 331 317 | C22H28O5 C20H26O4 C20H28O4 C21H33O2 | Diterpenoid Diterpenoid Diterpenoid | N/A |
B. subtilis | 1 + 7 | 0.04/0.43 | 0.84 | 0.82 | Methyl carnosate a Unknown Unknown | 10.15 10.74 12.19 | 345 389, 329 317 | C21H30O4 C22H29O6 C21H33O2 | Diterpenoid | N/A |
E. coli | 1 + 9 | 0.27/0.20 | 0.89 | 0.95 | Carnosol c Carnosic acid c | 9.99 11.39 | 329 331 | C20H26O4 C20H28O4 | Diterpenoid Diterpenoid | N/A |
A. baumannii | 1 + 5 | 0.07/0.36 | 0.79 | 0.77 | Epirosmanol a Rosmanol methyl ether a Carnosol c Carnosic acid c | 7.36 9.82 9.99 11.4 | 345 359 329, 330, 285 331 | C20H26O5 C22H28O5 C20H26O4 C20H28O4 | Diterpenoid Diterpenoid Diterpenoid Diterpenoid | Yes Yes Yes Yes |
P. aeruginosa | 1 + 8 | 0.02/0.44 | 0.86 | 0.78 | Methyl carnosate a Unknown Unknown | 10.15 10.74 12.19 | 345 389 317 | C21H30O4 C22H29O6 C21H33O2 | Diterpenoid | N/A |
Peak No. | Rt (min) (Figure 3c) | [M-H]− m/z | Rt (min) from UPLC-MS | Possible Compound Identification (Compound Structures Given in Figure 4) | Correlate to Biochemometric Analysis |
---|---|---|---|---|---|
S. africana-lutea(SALB2) | |||||
1 | 2.12 | 417 | 9.07 | Unknown | Yes |
359, 283, 329 | 9.81 | Rosmanol methyl ether | No | ||
329 | 10.71 | Unknown | Yes | ||
401 | Unknown | No | |||
403, 343 | 11.50 | Unknown | No | ||
2 | 3.95 | 331 | 8.71 | Unknown | No |
417 | 9.07 | Unknown | Yes | ||
315 | 9.76 | Rosmaridiphenol | No | ||
317 | 10.29/12.19/12.71 | All three unknown | No | ||
331 | 10.49 | Unknown | No | ||
315, 359 | 10.50 | Epiisorosmanol methyl ether | No | ||
401 | Unknown | No | |||
287 | 13.27 | Unknown | No | ||
S. lanceolata(SLM2) | |||||
3 | 5.97 | 403, 359 | 6.52 | Unknown | No |
345 | 7.83 | Epiisorosmanol | Yes | ||
315 | 9.80 | Rosmaridiphenol | No | ||
359 | 10.50 | Epiisorosmanol methyl ether | No | ||
329 | Unknown | No | |||
347 | 8.55 | Unknown | Yes | ||
375 | Unknown | No | |||
383 | Unknown | No | |||
401 | Unknown | No | |||
433 | Unknown | No | |||
S. chamelaeagnea(SCP6) | |||||
4 | 9.39 | 343 | Unknown | No | |
373 | 4.57 | Methyl rosmarinate | No | ||
287, 331 | 11.38 | Carnosic acid | Yes | ||
5 | 11.07 | 345 | 10.11 | Methyl carnosate | No |
331 | 11.38 | Carnosic acid | Yes | ||
343 | Unknown | No | |||
6 | 12.6 | 315 | 9.76 | Rosmaridiphenol | No |
285, 329 | 9.98 | Carnosol | Yes | ||
331, 287 | 11.38 | Carnosic acid | Yes | ||
455 | 13.80 | Ursolic acid | No |
Species | Pathogens | Class 1 (More Active) MICs | Class 2 (Less Active) MICs |
---|---|---|---|
S. africana-lutea | P. aeruginosa | ≤0.50 | >0.50 |
S. lanceolata | P. aeruginosa | ≤0.38 | >0.38 |
S. chamelaeagnea | B. cereus A. baumannii P. aeruginosa | ≤0.38 ≤0.50 ≤0.50 | >0.38 >0.50 >0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim Ah Tock, M.; Combrinck, S.; Kamatou, G.; Chen, W.; Van Vuuren, S.; Viljoen, A. Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species. Antibiotics 2022, 11, 901. https://doi.org/10.3390/antibiotics11070901
Lim Ah Tock M, Combrinck S, Kamatou G, Chen W, Van Vuuren S, Viljoen A. Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species. Antibiotics. 2022; 11(7):901. https://doi.org/10.3390/antibiotics11070901
Chicago/Turabian StyleLim Ah Tock, Margaux, Sandra Combrinck, Guy Kamatou, Weiyang Chen, Sandy Van Vuuren, and Alvaro Viljoen. 2022. "Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species" Antibiotics 11, no. 7: 901. https://doi.org/10.3390/antibiotics11070901
APA StyleLim Ah Tock, M., Combrinck, S., Kamatou, G., Chen, W., Van Vuuren, S., & Viljoen, A. (2022). Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species. Antibiotics, 11(7), 901. https://doi.org/10.3390/antibiotics11070901