Novel Formula of Antiprotozoal Mixtures
Abstract
:1. Introduction
2. Results
2.1. Antiprotozoal Activity
2.2. GC-MS Analysis of the Compositions
3. Discussion
4. Materials and Methods
4.1. Maintenance of Parasite Cultures and Evaluation of Antiprotozoal Activity
- Amoeba proteus—Chaos diffluens—a protozoan of the order Euamoebida, belonging to the phylum Amoebozoa, living in water.
- Paramecium caudatum—a paramecium representing aquatic ciliates.
- Gregarina blattarum—gregarines were isolated from cockroaches, representing the type Apicomplexa, living in the digestive tracts or body cavities of invertebrates.
- Euglena gracilis—a protozoan living in water, representing the flagellates—Mastigophora, family Euglenaceae.
- Pentatrichomonas hominis—a protozoan that lives in the human colon, representing the Trichomonadidae.
4.2. Essential Oils
4.3. Chemicals and Reagents
4.4. Phytoncides Mixture Preparation
4.5. GC-MS Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalt, M.-M.; Schuehly, W.; Saf, R.; Ochensberger, S.; Solnier, J.; Bucar, F.; Kaiser, M.; Presser, A. Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents. Eur. J. Med. Chem. 2020, 207, 112837. [Google Scholar] [CrossRef]
- Korpe, P.S.; Ravdin, J.I.; Petri, W.A. 271—Introduction to Protozoal Diseases. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2020; pp. 3270–3272. [Google Scholar] [CrossRef]
- Mitra, A.K.; Mawson, A.R. Neglected Tropical Diseases: Epidemiology and Global Burden. Trop. Med. Infect. Dis. 2017, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez, J.; Guggeri, L.; Tomaz, I.; Arrambide, G.; Navarro, M.; Costa Pessoa, J.; Garat, B.; Gambino, D. Design of vanadium mixed-ligand complexes as potential anti-protozoa agents. J. Inorg. Biochem. 2009, 103, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Fairhurst, R.; Wellems, T. Plasmodium species (Malaria). Princ. Pract. Infect. Dis. 2014, 2, 3437–3462. [Google Scholar] [CrossRef]
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [Green Version]
- CDC. How Can Malaria Cases and Deaths Be Reduced? Availabe online: https://www.cdc.gov/malaria/malaria_worldwide/reduction/index.html (accessed on 3 May 2022).
- WHO. Guideline WHO Guidelines for Malaria, 16 February 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. WHO Interim Guidelines for the Treatment of Gambiense Human African Trypanosomiasis; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- PAHO. Guidelines for the Diagnosis and Treatment of Chagas Disease; Pan American Health Organization: Washington, DC, USA, 2019. [Google Scholar]
- Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet. Infect. Dis. 2020, 20, e38–e46. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Rolta, R.; Sharma, A.; Sourirajan, A.; Mallikarjunan, P.K.; Dev, K. Combination between antibacterial and antifungal antibiotics with phytocompounds of Artemisia annua L: A strategy to control drug resistance pathogens. J. Ethnopharmacol. 2021, 266, 113420. [Google Scholar] [CrossRef]
- Abou Baker, D.H.; Al-Moghazy, M.; ElSayed, A.A.A. The in vitro cytotoxicity, antioxidant and antibacterial potential of Satureja hortensis L. essential oil cultivated in Egypt. Bioorganic Chem. 2020, 95, 103559. [Google Scholar] [CrossRef]
- Gavanji, S.; Zaker, S.R.; Nejad, Z.G.; Bakhtari, A.; Bidabadi, E.S.; Larki, B. Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition. Integr. Med. Res. 2015, 4, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Derda, M.; Hadaś, E. The use of phytotherapy in diseases caused by parasitic protozoa. Acta Parasitol. 2014, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Van Zyl, R.L.; Seatlholo, S.T.; Viljoen, A.M. Pharmacological interactions of essential oil constituents on the in vitro growth of Plasmodium falciparum. S. Afr. J. Bot. 2010, 76, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Santoro, G.F.; Cardoso, M.G.; Guimarães, L.G.L.; Mendonça, L.Z.; Soares, M.J. Trypanosoma cruzi: Activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Exp. Parasitol. 2007, 116, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Goulart, H.; Kimura Emília, A.; Peres Valnice, J.; Couto Alicia, S.; Aquino Duarte Fulgencio, A.; Katzin Alejandro, M. Terpenes Arrest Parasite Development and Inhibit Biosynthesis of Isoprenoids in Plasmodium falciparum. Antimicrob. Agents Chemother. 2004, 48, 2502–2509. [Google Scholar] [CrossRef] [Green Version]
- Monzote, L.; Alarcón, O.; Setzer, W. Antiprotozoal Activity of Essential Oils. Agric. Conspec. Sci. 2012, 77, 167–175. [Google Scholar]
- Carson, C.F.; Hammer, K.A. Chemistry and Bioactivity of Essential Oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 203–238. [Google Scholar] [CrossRef]
- Lam, N.S.; Long, X.; Su, X.-Z.; Lu, F. Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomed. Pharmacother. 2020, 130, 110624. [Google Scholar] [CrossRef]
- Moon, T.; Wilkinson, J.; Cavanagh, H. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol. Res. 2006, 99, 722–728. [Google Scholar] [CrossRef]
- Behnia, M.; Haghighi, A.; Komeylizadeh, H.; Tabaei, S.J.; Abadi, A. Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica. Korean J. Parasitol. 2008, 46, 153–156. [Google Scholar] [CrossRef]
- Saeidnia, S.; Gohari, A.; Hadjiakhoondi, A. Trypanocidal oil of the young leaves of Nepeta cataria L., obtained by solvent extraction. J. Med. Plants 2008, 7, 54–57. [Google Scholar]
- De Melo, A.R.B.; Maciel Higino, T.M.; da Rocha Oliveira, A.D.P.; Fontes, A.; da Silva, D.C.N.; de Castro, M.C.A.B.; Dantas Lopes, J.A.; de Figueiredo, R.C.B.Q. Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron 2020, 129, 102781. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Cruz, M.G.d.; Lima, T.B.C.; Serra, B.N.V.; Chaves, F.C.M.; Chagas, E.C.; Ventura, A.S.; Jerônimo, G.T. Antiparasitic activity of Mentha piperita (Lamiaceae) essential oil against Piscinoodinium pillulare and its physiological effects on Colossoma macropomum (Cuvier, 1818). Aquaculture 2019, 512, 734343. [Google Scholar] [CrossRef]
- Anacarso, I.; Sabia, C.; de Niederhäusern, S.; Iseppi, R.; Condò, C.; Bondi, M.; Messi, P. In vitro evaluation of the amoebicidal activity of rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry) essential oils against Acanthamoeba polyphaga trophozoites. Nat. Prod. Res. 2019, 33, 606–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zyl, R.L.; Seatlholo, S.T.; van Vuuren, S.F.; Viljoen, A.M. The Biological Activities of 20 Nature Identical Essential Oil Constituents. J. Essent. Oil Res. 2006, 18, 129–133. [Google Scholar] [CrossRef]
- Hauser, C.; Thielmann, J.; Muranyi, P. Chapter 46—Organic Acids: Usage and Potential in Antimicrobial Packaging. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 563–580. [Google Scholar] [CrossRef]
- Meira-Filho, M.R.C.; Ramirez, J.R.B.; Vianna, R.T.; Júnior, J.P. Efficacy of glacial acetic acid in the control of Trichodina sp. and Apiosoma sp. associated with Mugil liza. Aquaculture 2017, 479, 7–12. [Google Scholar] [CrossRef]
- Surve, A.N.; Sherikar, A.T.; Bhilegaonkar, K.N.; Karkare, U.D. Preservative effect of combinations of acetic acid with lactic or propionic acid on buffalo meat stored at refrigeration temperature. Meat Sci. 1991, 29, 309–322. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Alkhulaifi, M.M.; Abudabos, A.M.; Alabdullatifb, A.; El-Mubarak, A.H.; Al Suliman, A.R.; Stanley, D. Organic acid blend supplementation increases butyrate and acetate production in Salmonella enterica serovar Typhimurium challenged broilers. PLoS ONE 2020, 15, e0232831. [Google Scholar] [CrossRef]
- Marcelino, P.R.F.; Moreira, M.B.; Lacerda, T.M.; da Silva, S.S. Metal-Based Drugs for Treatment of Malaria. Biomed. Appl. Met. 2017, 167–193. [Google Scholar] [CrossRef]
- Navarro, M.; Gabbiani, C.; Messori, L.; Gambino, D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: Recent achievements and perspectives. Drug Discov. Today 2010, 15, 1070–1078. [Google Scholar] [CrossRef]
- Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem. 2015, 101, 534–551. [Google Scholar] [CrossRef]
- Low, W.-L.; Kenward, K.; Britland, S.T.; Amin, M.C.; Martin, C. Essential oils and metal ions as alternative antimicrobial agents: A focus on tea tree oil and silver. Int. Wound J. 2017, 14, 369–384. [Google Scholar] [CrossRef]
- Low, W.L.; Martin, C.; Hill, D.J.; Kenward, M.A. Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Int. J. Antimicrob. Agents 2011, 37, 162–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, T.; Osipenko, O. Metal ion-induced permeability changes in cell membranes: A minireview. Cell. Mol. Neurobiol. 1994, 14, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A.; et al. Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria monocytogenes and different serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Sen, R.; Chatterjee, M. Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 2011, 18, 1056–1069. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Viljoen, A. The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. Phytomedicine 2015, 22, 657–665. [Google Scholar] [CrossRef]
- Zenner, L.; Callait, M.P.; Granier, C.; Chauve, C. In vitro effect of essential oils from Cinnamomum aromaticum, Citrus limon and Allium sativum on two intestinal flagellates of poultry, Tetratrichomonas gallinarum and Histomonas meleagridis. Parasite 2003, 10, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Jugreet, B.S.; Mahomoodally, M.F. Reprint of: Essential oils from 9 exotic and endemic medicinal plants from Mauritius shows in vitro antibacterial and antibiotic potentiating activities. S. Afr. J. Bot. 2021, 140, 478–485. [Google Scholar] [CrossRef]
- Mazoir, N.; Dakir, M.; Tebbaa, M.; Loughzail, M.; Benharref, A. Aromatization of (Z) and (E)-α-atlantones isolated from Cedrus atlantica essential oil followed by condensation with thiosemicarbazide: Synthesis of new thiadiazolines derivatives. Tetrahedron Lett. 2016, 57, 278–280. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.R.; Wu, S.; Xiao, Y.Q.; He, Q.; Shi, S.R. The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poult. Sci. 2019, 98, 6349–6355. [Google Scholar] [CrossRef]
- Katopodi, A.; Detsi, A. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127529. [Google Scholar] [CrossRef]
- Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorganic Chem. 2019, 88, 102939. [Google Scholar] [CrossRef]
- Nair, J.J.; van Staden, J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorganic Med. Chem. Lett. 2019, 29, 126642. [Google Scholar] [CrossRef] [PubMed]
- Cimanga Kanyanga, R.; Kikweta Munduku, C.; Nsaka Lumpu, S.; Tshodi Ehata, M.; Makila Bool-Miting, F.; Kambu Kabangu, O.; Mbamu Maya, B.; Cos, P.; Maes, L.; Vlietinck, A.J.; et al. Isolation and structure elucidation of two antiprotozoal bisbenzylisoquinoline alkaloids from Triclisia gilletii stem bark. Phytochem. Lett. 2018, 28, 19–23. [Google Scholar] [CrossRef]
- Mostafa, A.E.; El-Hela, A.A.; Mohammad, A.-E.I.; Cutler, S.J.; Ross, S.A. New triterpenoidal saponins from Koelreuteria paniculata. Phytochem. Lett. 2016, 17, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, M.; Jiddah-kazeem, B.; Fatoki, T.H.; Ibukun, E.O.; Akinmoladun, A.C. Antioxidant property of Eucalyptus globulus Labill. Extracts and inhibitory activities on carbohydrate metabolizing enzymes related to type-2 diabetes. Biocatal. Agric. Biotechnol. 2021, 36, 102111. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crop. Prod. 2019, 132, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, H.; Jiang, D.; Yang, Y.; Tang, W.; Xu, K. The antifungal activity of essential oil from Melaleuca leucadendra (L.) L. grown in China and its synergistic effects with conventional antibiotics against Candida. Nat. Prod. Res. 2019, 33, 2545–2548. [Google Scholar] [CrossRef]
- Murray, M.T. 91—Melaleuca alternifolia (Tea Tree). In Textbook of Natural Medicine, 5th ed.; Pizzorno, J.E., Murray, M.T., Eds.; Churchill Livingstone: St. Louis, MO, USA, 2020; pp. 693–696. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Valladão, G.M.R.; Gallani, S.U.; Ikefuti, C.V.; da Cruz, C.; Levy-Pereira, N.; Rodrigues, M.V.N.; Pilarski, F. Essential oils to control ichthyophthiriasis in pacu, Piaractus mesopotamicus (Holmberg): Special emphasis on treatment with Melaleuca alternifolia. J. Fish Dis. 2016, 39, 1143–1152. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Santos, R.C.V.; Vaucher, R.A.; Raffin, R.P.; Gomes, P.; Dambros, M.G.C.; Miletti, L.C.; Boligon, A.A.; et al. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp. Parasitol. 2014, 141, 21–27. [Google Scholar] [CrossRef]
- Mikus, J.; Harkenthal, M.; Steverding, D.; Reichling, J. In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Med. 2000, 66, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Ahmad, S.; Mazumder, A. Cedrus deodara (Roxb.) Loud.: A Review on its Ethnobotany, Phytochemical and Pharmacological Profile. Pharmacogn. J. 2011, 3, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Saab, A.M.; Gambari, R.; Sacchetti, G.; Guerrini, A.; Lampronti, I.; Tacchini, M.; El Samrani, A.; Medawar, S.; Makhlouf, H.; Tannoury, M.; et al. Phytochemical and pharmacological properties of essential oils from Cedrus species. Nat. Prod. Res. 2018, 32, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Bisht, A.; Jain, S.; Misra, A.; Dwivedi, J.; Paliwal, S.; Sharma, S. Cedrus deodara (Roxb. ex D.Don) G.Don: A review of traditional use, phytochemical composition and pharmacology. J. Ethnopharmacol. 2021, 279, 114361. [Google Scholar] [CrossRef]
- Motazedian, M.H.; Mikaeili, F.; Mohebali, M.; Miri, R.; Habibi, P.; Kamarloie, S. The antileishmanial effects of Lowsonia inermis and Cedrus libani on Leishmania major promastigotes: An in vitro study. J. Parasit. Dis. 2017, 41, 375–379. [Google Scholar] [CrossRef]
- Nisha, M.; Kalyanasundaram, M.; Paily, K.P.; Abidha; Vanamail, P.; Balaraman, K. In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol. Res. 2007, 100, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.; Chakraborty, S.; De, A.K.; Ghosh, S.; Bera, T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes. Eur. J. Pharm. Sci. 2017, 104, 196–211. [Google Scholar] [CrossRef]
- Kazemi, M.; Mohammadifar, M.; Aghadavoud, E.; Vakili, Z.; Aarabi, M.H.; Talaei, S.A. Deep skin wound healing potential of lavender essential oil and licorice extract in a nanoemulsion form: Biochemical, histopathological and gene expression evidences. J. Tissue Viability 2020, 29, 116–124. [Google Scholar] [CrossRef]
- Yudin, A.L. Amoeba and Other Protozoa. In Animal Species for Developmental Studies: Volume 1 Invertebrates; Dettlaff, T.A., Vassetzky, S.G., Eds.; Springer: Boston, MA, USA, 1990; pp. 1–11. [Google Scholar] [CrossRef]
- Demin, S.Y.; Berdieva, M.A.; Podlipaeva, Y.I.; Goodkov, A.V. Karyotypic instability of endoprophase and mitotic cells of Amoeba sp. strain Cont from the “proteus-type” group (Amoebozoa, Euamoebida, Amoebidae). Eur. J. Protistol. 2020, 74, 125691. [Google Scholar] [CrossRef]
- Pawlaczyk-Szpilowa, M. Ćwiczenia z Mikrobiologii Wody i Ścieków; PWN: Warszawa, Poland, 1980. [Google Scholar]
- Sonneborn, T.M. Chapter 12 Methods in Paramecium Research. In Methods in Cell Biology; Prescott, D.M., Ed.; Academic Press: New York, NY, USA, 1970; Volume 4, pp. 241–339. [Google Scholar]
- Feng, J.; Zhu, H.; Lukeš, J.; Korabečná, M.; Fohlerová, Z.; Mei, T.; Chang, H.; Neužil, P. Nanowatt simple microcalorimetry for dynamically monitoring the defense mechanism of Paramecium caudatum. Sens. Actuators A Phys. 2021, 323, 112643. [Google Scholar] [CrossRef]
- Wu, M.; Qin, H.; Deng, J.; Liu, Y.; Lei, A.; Zhu, H.; Hu, Z.; Wang, J. A new pilot-scale fermentation mode enhances Euglena gracilis biomass and paramylon (β-1,3-glucan) production. J. Clean. Prod. 2021, 321, 128996. [Google Scholar] [CrossRef]
- Chomicz, L.; Padzik, M.; Laudy, A.; Kozłowska, M.; Pietruczuk, A.; Piekarczyk, J.; Godineau, N.; Olędzka, G.; Kazimierczuk, Z. Anti-Pentatrichomonas hominis activity of newly synthesized benzimidazole derivatives—In vitro studies. Acta Parasitol. 2009, 54, 165–171. [Google Scholar] [CrossRef]
- Moraczewski, J. Ćwiczenia z zoologii bezkręgowców. Wydanie I; PWN: Warszawa, Poland, 1974; pp. 285–292. [Google Scholar]
- Dogiel, W.A. Zoologia Bezkręgowców. Wydanie III; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1972. [Google Scholar]
- Hempel-Zawitkowska, J. Zoologia dla uczelni rolniczych; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006. [Google Scholar]
- Łyczko, J.; Pawlak, A.; Augustyński, I.; Okińczyc, P.; Szperlik, J.; Kulma, A.; Różański, H.; Obmińska-Mrukowicz, B.; Szumny, A. Chemical profiling and cytotoxic activity of 150-year old original sample of Jerusalem Balsam. Food Chem. Toxicol. 2020, 138, 111183. [Google Scholar] [CrossRef]
- Lucero, M.; Estell, R.; Tellez, M.; Fredrickson, E. A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 2009, 20, 378–384. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
Essential Oil | Acetic Acid (A) | Propionic Acid (P) | Lactic Acid (L) | Mixture of Acids (M) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Mn | Zn | Cu | Mn | Zn | Cu | Mn | Zn | Cu | Mn | Zn | |
Eucalyptus essential oil (Eucalyptus globulus Labill.) (E) | EACu | EAMn | EAZn | EPCu | EPMn | EPZn | ELCu | ELMn | ELZn | EMCu | EMMn | EMZn |
Tea tree essential oil (Melaleuca alternifolia (Maiden & Betche) Cheel) (T) | TACu | TAMn | TAZn | TPCu | TPMn | TPZn | TLCu | TLMn | TLZn | TMCu | TMMn | TMZn |
Cedar essential oil (Cedrus sp.) (C) | CACu | CAMn | CAZn | CPCu | CPMn | CPZn | CLCu | CLMn | CLZn | CMCu | CMMn | CMZn |
Lavender essential oil (Lavandula angustifolia Miller) (L) | LACu | LAMn | LAZn | LPCu | LPMn | LPZn | LLCu | LLMn | LLZn | LMCu | LMMn | LMZn |
Protozoa | CH a | M b | Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids c | Manganese (II) Chloride Solution d | Copper (II) Carbonate Hydroxide Solution e | Zinc Carbonate Solution f | Catalyst Solution g | Eucalyptus Essential Oil (Eucalyptus globulus Labill.) |
---|---|---|---|---|---|---|---|---|---|---|---|
Euglena gracilis | LD50: 0.05% LD100: 0.09% | LD50: n.t LD100: n.t | LD50: 0.8% LD100: 1.1% | LD50: 0.5% LD100: 1.1% | LD50: 0.6% LD100: 1.3% | LD50: 0.5% LD100: 0.9% | LD50: 0.5% LD100: 0.7% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.3% | LD50: 0.5% LD100: 0.1% | LD50: 0.1% LD100: 0.2% |
Gregarina blattarum | LD50: n.t LD100: n.t | LD50: 0.1% LD100: 0.3% | LD50: 0.9% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 1.0% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 0.4% LD100: 0.7% | LD50: 0.1% LD100: 0.4% | LD50: 0.2% LD100: 0.4% | LD50: 0.7% LD100: 0.3% | LD50: 0.2% LD100: 0.5% |
Amoeba proteus | LD50: 0.07% LD100: 0.15% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.6% LD100: 1.0% | LD50: 0.9% LD100: 1.4% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 1.0% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.2% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 0.7% |
Paramecium caudatum | LD50: 0.001% LD100: 0.006% | LD50: n.t LD100: n.t | LD50: 1.0% LD100: 1.3% | LD50: 0.8% LD100: 1.2% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.8% LD100: 1.2% | LD50: 0.3% LD100: 0.5% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.1% LD100: 0.3% |
Pentatrichomonas hominis | LD50: n.t LD100: n.t | LD50: 0.05% LD100: 0.14% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.3% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.3% | LD50: 0.2% LD100: 0.4% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.3% |
Protozoa | Eucalyptus Essential Oil (Eucalyptus globulus Labill.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids a | |||||||||
Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | |
EACu | EAMn | EAZn | EPCu | EPMn | EPZn | ELCu | ELMn | ELZn | EMCu | EMMn | EMZn | |
Euglena gracilis1 | LD50: 0.04% ± 0.035 ab LD100: 0.08% ± 0.068 abc | LD50: 0.03% ± 0.032 ab LD100: 0.06% ± 0.058 abcd | LD50: 0.03% ± 0.032 ab LD100: 0.07% ± 0.065 abc | LD50: 0.01% ± 0.015 b LD100: 0.03% ± 0.025 d | LD50: 0.04% ± 0.038 ab LD100: 0.08% ± 0.078 a | LD50: 0.03% ± 0.028 ab LD100: 0.06% ± 0.070 ab | LD50: 0.03% ± 0.032 ab LD100: 0.07% ± 0.069 abc | LD50: 0.01% ± 0.102 a LD100: 0.03% ± 0.032 bcd | LD50: 0.04% ± 0.038 ab LD100: 0.08% ± 0.080 a | LD50: 0.03% ± 0.032 ab LD100: 0.06% ± 0.088 a | LD50: 0.03% ± 0.028 ab LD100: 0.07% ± 0.068 abc | LD50: 0.01% ± 0.102 a LD100: 0.03% ± 0.030 cd |
Gregarina blattarum1 | LD50: 0.04% ± 0.038 a LD100: 0.05% ± 0.045 b | LD50: 0.03% ± 0.034 a LD100: 0.07% ± 0.065 b | LD50: 0.03% ± 0.032 a LD100: 0.06% ± 0.060 b | LD50: 0.03% ± 0.034 a LD100: 0.04% ± 0.038 b | LD50: 0.04% ± 0.040 a LD100: 0.05% ± 0.052 b | LD50: 0.03% ± 0.031 a LD100: 0.07% ± 0.068 b | LD50: 0.03% ± 0.028 a LD100: 0.06% ± 0.062 b | LD50: 0.03% ± 0.028 a LD100: 0.04% ± 0.042 b | LD50: 0.04% ± 0.042 a LD100: 0.05% ± 0.049 b | LD50: 0.03% ± 0.035 a LD100: 0.07% ± 0.248 a | LD50: 0.03% ± 0.025 a LD100: 0.06% ± 0.056 b | LD50: 0.03% ± 0.035 a LD100: 0.04% ± 0.041 b |
Amoeba proteus 1 | LD50: 0.03% ± 0.028 c LD100: 0.06% ± 0.062 a | LD50: 0.04% ± 0.045 abc LD100: 0.08% ± 0.076 a | LD50: 0.05% ± 0.052 abc LD100: 0.09% ± 0.082 a | LD50: 0.07% ± 0.065 ab LD100: 0.08% ± 0.075 a | LD50: 0.03% ± 0.032 c LD100: 0.06% ± 0.062 a | LD50: 0.04% ± 0.042 bc LD100: 0.08% ± 0.080 a | LD50: 0.05% ± 0.049 abc LD100: 0.09% ± 0.085 a | LD50: 0.07% ± 0.072 a LD100: 0.08% ± 0.082 a | LD50: 0.03% ± 0.031 c LD100: 0.06% ± 0.055 a | LD50: 0.04% ± 0.045 abc LD100: 0.08% ± 0.082 a | LD50: 0.05% ± 0.050 abc LD100: 0.09% ± 0.078 a | LD50: 0.07% ± 0.070 ab LD100: 0.08% ± 0.075 a |
Paramecium caudatum 1 | LD50: 0.02% ± 0.020 a LD100: 0.06% ± 0.062 a | LD50: 0.02% ± 0.022 a LD100: 0.07% ± 0.070 a | LD50: 0.04% ± 0.040 a LD100: 0.07% ± 0.072 a | LD50: 0.03% ± 0.032 a LD100: 0.08% ± 0.075 a | LD50: 0.02% ± 0.022 a LD100: 0.06% ± 0.062 a | LD50: 0.02% ± 0.022 a LD100: 0.07% ± 0.072 a | LD50: 0.04% ± 0.042 a LD100: 0.07% ± 0.071 a | LD50: 0.03% ± 0.032 a LD100: 0.08% ± 0.075 a | LD50: 0.02% ± 0.024 a LD100: 0.06% ± 0.065 a | LD50: 0.02% ± 0.024 a LD100: 0.07% ± 0.069 a | LD50: 0.04% ± 0.032 a LD100: 0.07% ± 0.065 a | LD50: 0.03% ± 0.032 a LD100: 0.08% ± 0.078 a |
Pentatrichomonas hominis1 | LD50: 0.04% ± 0.035 a LD100: 0.07% ± 0.072 ab | LD50: 0.03% ± 0.032 a LD100: 0.05% ± 0.045 b | LD50: 0.05% ± 0.050 a LD100: 0.09% ± 0.085 ab | LD50: 0.03% ± 0.032 a LD100: 0.04% ± 0.042 b | LD50: 0.04% ± 0.040 a LD100: 0.07% ± 0.065 ab | LD50: 0.03% ± 0.030 a LD100: 0.05% ± 0.050 b | LD50: 0.05% ± 0.045 a LD100: 0.09% ± 0.085 ab | LD50: 0.03% ± 0.035 a LD100: 0.04% ± 0.035 b | LD50: 0.04% ± 0.040 a LD100: 0.07% ± 0.068 ab | LD50: 0.03% ± 0.048 a LD100: 0.05% ± 0.052 b | LD50: 0.05% ± 0.024 a LD100: 0.09% ± 0.125 a | LD50: 0.03% ± 0.052 a LD100: 0.04% ± 0.040 b |
Protozoa | CH a | M b | Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids c | Manganese (II) Chloride Solution d | Copper (II) Carbonate Hydroxide Solution e | Zinc Carbonate Solution f | Catalyst Solution g | Tea Tree Essential Oil (Melaleuca alternifolia (Maiden & Betche) Cheel ) |
---|---|---|---|---|---|---|---|---|---|---|---|
Euglena gracilis | LD50: 0.05% LD100: 0.09% | LD50: n.t LD100: n.t | LD50: 0.8% LD100: 1.1% | LD50: 0.5% LD100: 1.1% | LD50: 0.6% LD100: 1.3% | LD50: 0.5% LD100: 0.9% | LD50: 0.5% LD100: 0.7% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.3% | LD50: 0.5% LD100: 0.1% | LD50: 0.05% LD100: 0.1% |
Gregarina blattarum | LD50: n.t LD100: n.t | LD50: 0.1% LD100: 0.3% | LD50: 0.9% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 1.0% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 0.4% LD100: 0.7% | LD50: 0.1% LD100: 0.4% | LD50: 0.2% LD100: 0.4% | LD50: 0.7% LD100: 0.3% | LD50: 0.25% LD100: 0.3% |
Amoeba proteus | LD50: 0.07% LD100: 0.15% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.6% LD100: 1.0% | LD50: 0.9% LD100: 1.4% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 1.0% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.2% | LD50: 0.5% LD100: 1.0% | LD50: 0.3% LD100: 0.5% |
Paramecium caudatum | LD50: 0.001% LD100: 0.006% | LD50: n.t LD100: n.t | LD50: 1.0% LD100: 1.3% | LD50: 0.8% LD100: 1.2% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.8% LD100: 1.2% | LD50: 0.3% LD100: 0.5% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.2% LD100: 0.25% |
Pentatrichomonas hominis | LD50: n.t LD100: n.t | LD50: 0.05% LD100: 0.14% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.3% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.3% | LD50: 0.2% LD100: 0.4% | LD50: 0.9% LD100: 1.1% | LD50: 0.08% LD100: 0.1% |
Protozoa | Tea Tree Essential Oil (Melaleuca alternifolia (Maiden & Betche) Cheel) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids a | |||||||||
Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | |
TACu | TAMn | TAZn | TPCu | TPMn | TPZn | TLCu | TLMn | TLZn | TMCu | TMMn | TMZn | |
Euglena gracilis1 | LD50: 0.03% ± 0.032 a LD100: 0.06% ± 0.059 ab | LD50: 0.04% ± 0.035 a LD100: 0.07% ± 0.065 a | LD50: 0.03% ± LD100: 0.05% ± 0.052 abc | LD50: 0.03% ± 0.026 a LD100: 0.04% ± 0.035 bcd | LD50: 0.01% ± 0.0134 ab LD100: 0.02% ± 0.018 de | LD50: 0.02% ± 0.020 ab LD100: 0.03% ± 0.028 cde | LD50: 0.02% ± 0.021 ab LD100: 0.04% ± 0.038 bcd | LD50: 0.02% ± 0.022 ab LD100: 0.04% ± 0.042 abcd | LD50: 0.02% ± 0.022 ab LD100: 0.05% ± 0.052 abc | LD50: 0.001% ± 0.001 b LD100: 0.003% ± 0.002 e | LD50: 0.001% ± 0.001 b LD100: 0.002% ± 0.002 e | LD50: 0.003% ± 0.002 b LD100: 0.004% ± 0.004 e |
Gregarina blattarum1 | LD50: 0.04% ± 0.038 b LD100: 0.07% ± 0.065 b | LD50: 0.04% ± 0.036 b LD100: 0.05% ± 0.052 bcd | LD50: 0.04% ± 0.035 b LD100: 0.06% ± 0.060 b | LD50: 0.04% ± 0.036 b LD100: 0.06% ± 0.058 bc | LD50: 0.05% ± 0.048 b LD100: 0.08% ± 0.078 b | LD50: 0.05% ± 0.051 b LD100: 0.07% ± 0.068 b | LD50: 0.03% ± 0.031 b LD100: 0.04% ± 0.038 bcd | LD50: 0.05% ± 0.049 b LD100: 0.07% ± 0.065 b | LD50: 0.08% ± 0.075 a LD100: 0.15% ± 0.138 a | LD50: 0.004% ± 0.004 c LD100: 0.006% ± 0.006 d | LD50: 0.004% ± 0.004 c LD100: 0.007% ± 0.007 cd | LD50: 0.003% ± 0.002 c LD100: 0.005% ± 0.004 d |
Amoeba proteus1 | LD50: 0.04% ± 0.038 bc LD100: 0.06% ± 0.062 bc | LD50: 0.03% ± 0.035 cd LD100: 0.06% ± 0.06 4 bc | LD50: 0.04% ± 0.042 bc LD100: 0.07% ± 0.072 abc | LD50: 0.04% ± 0.042 bc LD100: 0.07% ± 0.072 abc | LD50: 0.01% ± 0.014 de LD100: 0.01% ± 0.014 de | LD50: 0.07% ± 0.072 a LD100: 0.09% ± 0.092 a | LD50: 0.06% ± 0.058 ab LD100: 0.08% ± 0.082 ab | LD50: 0.01% ± 0.012 e LD100: 0.03% ± 0.028 d | LD50: 0.01% ± 0.016 de LD100: 0.05% ± 0.052 c | LD50: 0.002% ± 0.002 e LD100: 0.003% ± 0.004 de | LD50: 0.002% ± 0.002 e LD100: 0.004% ± 0.003 e | LD50: 0.001% ± 0.001 e LD100: 0.002% ± 0.002 e |
Paramecium caudatum1 | LD50: 0.02% ± 0.022 abcd LD100: 0.05% ± 0.052 bcd | LD50: 0.02% ± 0.020 abcd LD100: 0.05% ± 0.045 cde | LD50: 0.03% ± 0.032 abcd LD100: 0.06% ± 0.062 abc | LD50: 0.05% ± 0.045 ab LD100: 0.08% ± 0.075 ab | LD50: 0.01% ± 0.012 bcd LD100: 0.02% ± 0.022 ef | LD50: 0.05% ± 0.050 a LD100: 0.09% ± 0.085 a | LD50: 0.05% ± 0.049 a LD100: 0.07% ± 0.068 abc | LD50: 0.03% ± 0.035 abc LD100: 0.04% ± 0.042 cde | LD50: 0.02% ± 0.024 abcd LD100: 0.03% ± 0.032 de | LD50: 0.002% ± 0.002 cd LD100: 0.005% ± 0.005 f | LD50: 0.001% ± 0.001 d LD100: 0.002% ± 0.002 f | LD50: 0.003% ± 0.003 cd LD100: 0.005% ± 0.005 f |
Pentatrichomonas hominis1 | LD50: 0.09% ± 0.085 a LD100: 0.35% ± 0.362 a | LD50: 0.08% ± 0.075 a LD100: 0.2% ± 0.238 a | LD50: 0.07% ± 0.065 ab LD100: 0.25% ± 0.238 a | LD50: 0.03% ± 0.032 cd LD100: 0.05% ± 0.045 b | LD50: 0.01% ± 0.012 de LD100: 0.04% ± 0.035 b | LD50: 0.07% ± 0.065 ab LD100: 0.09% ± 0.088 b | LD50: 0.025% ± 0.025 cde LD100: 0.045% ± 0.046 b | LD50: 0.05% ± 0.045 bc LD100: 0.07% ± 0.072 b | LD50: 0.02% ± 0.020 cde LD100: 0.05% ± 0.045 b | LD50: 0.004% ± 0.004 e LD100: 0.004% ± 0.004 b | LD50: 0.007% ± 0.007 de LD100: 0.009% ± 0.008 b | LD50: 0.002% ± 0.002 e LD100: 0.004% ± 0.002 b |
Protozoa | CH a | M b | Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids c | Manganese (II) Chloride Solution d | Copper (II) Carbonate Hydroxide Solution e | Zinc Carbonate Solution f | Catalyst Solution g | Cedar Essential Oil (Cedrus sp.) |
---|---|---|---|---|---|---|---|---|---|---|---|
Euglena gracilis | LD50: 0.05% LD100: 0.09% | LD50: n.t LD100: n.t | LD50: 0.8% LD100: 1.1% | LD50: 0.5% LD100: 1.1% | LD50: 0.6% LD100: 1.3% | LD50: 0.5% LD100: 0.9% | LD50: 0.5% LD100: 0.7% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.3% | LD50: 0.5% LD100: 0.1% | LD50: 0.7% LD100: 0.9% |
Gregarina blattarum | LD50: n.t LD100: n.t | LD50: 0.1% LD100: 0.3% | LD50: 0.9% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 1.0% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 0.4% LD100: 0.7% | LD50: 0.1% LD100: 0.4% | LD50: 0.2% LD100: 0.4% | LD50: 0.7% LD100: 0.3% | LD50: 0.7% LD100: 0.9% |
Amoeba proteus | LD50: 0.07% LD100: 0.15% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.6% LD100: 1.0% | LD50: 0.9% LD100: 1.4% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 1.0% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.2% | LD50: 0.5% LD100: 1.0% | LD50: 0.4% LD100: 0.6% |
Paramecium caudatum | LD50: 0.001% LD100: 0.006% | LD50: n.t LD100: n.t | LD50: 1.0% LD100: 1.3% | LD50: 0.8% LD100: 1.2% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.8% LD100: 1.2% | LD50: 0.3% LD100: 0.5% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.1% LD100: 0.25% |
Pentatrichomonas hominis | LD50: n.t LD100: n.t | LD50: 0.05% LD100: 0.14% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.3% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.3% | LD50: 0.2% LD100: 0.4% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.2% |
Protozoa | Cedar Essential Oil (Cedrus sp.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids a | |||||||||
Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | |
CACu | CAMn | CAZn | CPCu | CPMn | CPZn | CLCu | CLMn | CLZn | CMCu | CMMn | CMZn | |
Euglena gracilis1 | LD50: 0.04% ± 0.035 a LD100: 0.08% ± 0.079 a | LD50: 0.03% ± 0.033 a LD100: 0.07% ± 0.065 abc | LD50: 0.04% ± 0.035 a LD100: 0.07% ± 0.068 ab | LD50: 0.03% ± 0.026 a LD100: 0.05% ± 0.048 bcd | LD50: 0.01% ± 0.014 ab LD100: 0.02% ± 0.018 fg | LD50: 0.02% ± 0.020 ab LD100: 0.03% ± 0.028 def | LD50: 0.01% ± 0.014 ab LD100: 0.02% ± 0.023 efg | LD50: 0.02% ± 0.023 ab LD100: 0.04% ± 0.043 cde | LD50: 0.03% ± 0.025 a LD100: 0.06% ± 0.055 bc | LD50: 0.001% ± 0.001 b LD100: 0.002% ± 0.002 g | LD50: 0.002% ± 0.002 b LD100: 0.004% ± 0.004 g | LD50: 0.003% ± 0.003 b LD100: 0.006% ± 0.007 fg |
Gregarina blattarum 1 | LD50: 0.03% ± 0.032 a LD100: 0.06% ± 0.062 abc | LD50: 0.02% ± 0.022 ab LD100: 0.05% ± 0.052 bc | LD50: 0.04% ± 0.035 a LD100: 0.08% ± 0.082 a | LD50: 0.03% ± 0.034 a LD100: 0.04% ± 0.042 c | LD50: 0.03% ± 0.033 a LD100: 0.07% ± 0.070 ab | LD50: 0.03% ± 0.031 a LD100: 0.05% ± 0.052 bc | LD50: 0.03% ± 0.031 a LD100: 0.04% ± 0.038 c | LD50: 0.02% ± 0.022 ab LD100: 0.05% ± 0.049 bc | LD50: 0.04% ± 0.043 a LD100: 0.05% ± 0.045 bc | LD50: 0.003% ± 0.003 b LD100: 0.004% ± 0.004 d | LD50: 0.002% ± 0.002 b LD100: 0.005% ± 0.005 d | LD50: 0.004% ± 0.004 b LD100: 0.005% ± 0.005 d |
Amoeba proteus1 | LD50: 0.04% ± 0.038 ab LD100: 0.05% ± 0.052 b | LD50: 0.05% ± 0.052 a LD100: 0.08% ± 0.076 ab | LD50: 0.06% ± 0.062 a LD100: 0.01% ± 0.014 c | LD50: 0.05% ± 0.045 ab LD100: 0.07% ± 0.072 ab | LD50: 0.05% ± 0.045 ab LD100: 0.08% ± 0.078 ab | LD50: 0.04% ± 0.038 ab LD100: 0.06% ± 0.058 ab | LD50: 0.06% ± 0.058 a LD100: 0.08% ± 0.082 a | LD50: 0.05% ± 0.045 ab LD100: 0.07% ± 0.072 ab | LD50: 0.02% ± 0.019 bc LD100: 0.05% ± 0.052 b | LD50: 0.006% ± 0.006 c LD100: 0.008% ± 0.008 c | LD50: 0.005% ± 0.005 c LD100: 0.007% ± 0.007 c | LD50: 0.002% ± 0.002 c LD100: 0.005% ± 0.005 c |
Paramecium caudatum1 | LD50: 0.03% ± 0.025 ab LD100: 0.08% ± 0.082 a | LD50: 0.04% ± 0.040 a LD100: 0.07% ± 0.072 a | LD50: 0.05% ± 0.048 a LD100: 0.08% ± 0.075 a | LD50: 0.04% ± 0.042 a LD100: 0.08% ± 0.075 a | LD50: 0.04% ± 0.042 a LD100: 0.06% ± 0.060 abc | LD50: 0.04% ± 0.040 a LD100: 0.07% ± 0.068 ab | LD50: 0.03% ± 0.030 ab LD100: 0.04% ± 0.042 bc | LD50: 0.03% ± 0.035 a LD100: 0.08% ± 0.078 a | LD50: 0.02% ± 0.024 ab LD100: 0.04% ± 0.035 cd | LD50: 0.003% ± 0.002 b LD100: 0.004% ± 0.004 e | LD50: 0.003% ± 0.002 b LD100: 0.008% ± 0.008 de | LD50: 0.002% ± 0.002 b LD100: 0.004% ± 0.004 e |
Pentatrichomonas hominis1 | LD50: 0.09% ± 0.085 a LD100: 0.15% ± 0.150 a | LD50: 0.02% ± 0.020 bc LD100: 0.04% ± 0.042 bcde | LD50: 0.04% ± 0.040 b LD100: 0.07% ± 0.072 b | LD50: 0.04% ± 0.035 b LD100: 0.06% ± 0.058 bc | LD50: 0.03% ± 0.025 bc LD100: 0.04% ± 0.040 bcde | LD50: 0.03% ± 0.025 bc LD100: 0.05% ± 0.048 bcd | LD50: 0.03% ± 0.032 b LD100: 0.04% ± 0.042 bcde | LD50: 0.02% ± 0.022 bc LD100: 0.03% ± 0.025 cde | LD50: 0.025% ± 0.026 bc LD100: 0.07% ± 0.068 b | LD50: 0.003% ± 0.002 c LD100: 0.004% ± 0.004 e | LD50: 0.002% ± 0.002 c LD100: 0.003% ± 0.002 e | LD50: 0.002% ± 0.002 c LD100: 0.007% ± 0.006 de |
Protozoa | CH a | M b | Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids c | Manganese (II) Chloride Solution d | Copper (II) Carbonate Hydroxide Solution e | Zinc Carbonate Solution f | Catalyst Solution g | Lavender Essential Oil (Lavandula angustifolia Miller) |
---|---|---|---|---|---|---|---|---|---|---|---|
Euglena gracilis | LD50: 0.05% LD100: 0.09% | LD50: n.t LD100: n.t | LD50: 0.8% LD100: 1.1% | LD50: 0.5% LD100: 1.1% | LD50: 0.6% LD100: 1.3% | LD50: 0.5% LD100: 0.9% | LD50: 0.5% LD100: 0.7% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.3% | LD50: 0.5% LD100: 0.1% | LD50: 0.8% LD100: 0.9% |
Gregarina blattarum | LD50: n.t LD100: n.t | LD50: 0.1% LD100: 0.3% | LD50: 0.9% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 1.0% LD100: 1.1% | LD50: 0.9% LD100: 1.0% | LD50: 0.4% LD100: 0.7% | LD50: 0.1% LD100: 0.4% | LD50: 0.2% LD100: 0.4% | LD50: 0.7% LD100: 0.3% | LD50: 0.7% LD100: 0.8% |
Amoeba proteus | LD50: 0.07% LD100: 0.15% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.6% LD100: 1.0% | LD50: 0.9% LD100: 1.4% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 1.0% | LD50: 0.1% LD100: 0.2% | LD50: 0.1% LD100: 0.2% | LD50: 0.5% LD100: 1.0% | LD50: 0.5% LD100: 0.8% |
Paramecium caudatum | LD50: 0.001% LD100: 0.006% | LD50: n.t LD100: n.t | LD50: 1.0% LD100: 1.3% | LD50: 0.8% LD100: 1.2% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.8% LD100: 1.2% | LD50: 0.3% LD100: 0.5% | LD50: 0.3% LD100: 0.5% | LD50: 0.8% LD100: 1.2% | LD50: 0.1% LD100: 0.25% |
Pentatrichomonas hominis | LD50: n.t LD100: n.t | LD50: 0.05% LD100: 0.14% | LD50: 1.0% LD100: 1.5% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.3% | LD50: 0.8% LD100: 1.0% | LD50: 0.9% LD100: 1.1% | LD50: 0.1% LD100: 0.3% | LD50: 0.2% LD100: 0.4% | LD50: 0.9% LD100: 1.1% | LD50: 0.2% LD100: 0.4% |
Protozoa | Lavender Essential Oil (Lavandula angustifolia Miller) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetic Acid | Propionic Acid | Lactic Acid | Mixture of Acids a | |||||||||
Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | Cu b | Mn c | Zn d | |
LACu | LAMn | LAZn | LPCu | LPMn | LPZn | LLCu | LLMn | LLZn | LMCu | LMMn | LMZn | |
Euglena gracilis1 | LD50: 0.04% ± 0.035 ab LD100: 0.06% ± ± 0.059 ab | LD50: 0.02% ± 0.024 bcd LD100: 0.04% ± 0.035 cd | LD50: 0.05% ± 0.045 a LD100: 0.08% ± 0.078 a | LD50: 0.03% ± 0.026 abc LD100: 0.045% ± 0.046 bcd | LD50: 0.01% ± 0.014 cde LD100: 0.03% ± 0.025 de | LD50: 0.03% ± 0.028 abc LD100: 0.05% ± 0.050 bc | LD50: 0.02% ± 0.016 bcde LD100: 0.04% ± 0.042 bcd | LD50: 0.03% ± 0.025 abc LD100: 0.05% ± 0.045 bcd | LD50: 0.03% ± 0.025 abc LD100: 0.05% ± 0.052 bc | LD50: 0.002% ± 0.002 e LD100: 0.004% ± 0.004 e | LD50: 0.001% ± 0.001 e LD100: 0.005% ± 0.004 e | LD50: 0.004% ± 0.004 de LD100: 0.006% ± 0.006 e |
Gregarina blattarum1 | LD50: 0.03% ± 0.032 abc LD100: 0.06% ± 0.062 ab | LD50: 0.01% ± 0.011 cd LD100: 0.04% ± 0.040 b | LD50: 0.03% ± 0.032 abc LD100: 0.08% ± 0.082 a | LD50: 0.03% ± 0.034 ab LD100: 0.045% ± 0.044 b | LD50: 0.03% ± 0.032 abc LD100: 0.06% ± 0.060 ab | LD50: 0.04% ± 0.036 ab LD100: 0.05% ± 0.052 b | LD50: 0.05% ± 0.049 a LD100: 0.07% ± 0.065 ab | LD50: 0.02% ± 0.022 bcd LD100: 0.04% ± 0.042 b | LD50: 0.05% ± 0.045 a LD100: 0.09% ± 0.085 a | LD50: 0.003% ± 0.003 d LD100: 0.004% ± 0.004 c | LD50: 0.002% ± 0.002 d LD100: 0.005% ± 0.005 c | LD50: 0.004% ± 0.004 d LD100: 0.006% ± 0.006 c |
Amoeba proteus1 | LD50: 0.05% ± 0.052 ab LD100: 0.06% ± 0.055 b | LD50: 0.05% ± 0.052 ab LD100: 0.07% ± 0.074 ab | LD50: 0.06% ± 0.062 a LD100: 0.09% ± 0.085 a | LD50: 0.04% ± 0.042 abc LD100: 0.06% ± 0.060 ab | LD50: 0.05% ± 0.045 ab LD100: 0.07% ± 0.070 ab | LD50: 0.04% ± 0.038 abc LD100: 0.07% ± 0.068 ab | LD50: 0.02% ± 0.016 cd LD100: 0.05% ± 0.049 b | LD50: 0.04% ± 0.042 abc LD100: 0.07% ± 0.072 ab | LD50: 0.03% ± 0.026 bcd LD100: 0.06% ± 0.055 b | LD50: 0.003% ± 0.003 d LD100: 0.004% ± 0.004 c | LD50: 0.002% ± 0.002 d LD100: 0.004% ± 0.004 c | LD50: 0.003% ± 0.002 d LD100: 0.005% ± 0.005 c |
Paramecium caudatum1 | LD50: 0.05% ± 0.050 a LD100: 0.08% ± 0.082 a | LD50: 0.05% ± 0.048 ab LD100: 0.08% ± 0.075 a | LD50: 0.03% ± 0.032 abc LD100: 0.07% ± 0.072 a | LD50: 0.05% ± 0.045 ab LD100: 0.08% ± 0.075 a | LD50: 0.03% ± 0.032 abc LD100: 0.06% ± 0.060 ab | LD50: 0.03% ± 0.030 bc LD100: 0.08% ± 0.080 a | LD50: 0.02% ± 0.018 cd LD100: 0.04% ± 0.042 b | LD50: 0.04% ± 0.039 ab LD100: 0.07% ± 0.072 a | LD50: 0.04% ± 0.035 abc LD100: 0.06% ± 0.062 ab | LD50: 0.006% ± 0.006 d LD100: 0.008% ± 0.008 c | LD50: 0.005% ± 0.005 d LD100: 0.008% ± 0.008 c | LD50: 0.004% ± 0.004 d LD100: 0.006% ± 0.006 c |
Pentatrichomonas hominis1 | LD50: 0.07% ± 0.070 ab LD100: 0.1% ± 0.125 a | LD50: 0.07% ± 0.072 ab LD100: 0.09% ± 0.085 bc | LD50: 0.06% ± 0.040 cd LD100: 0.08% ± 0.075 bc | LD50: 0.08% ± 0.075 ab LD100: 0.1% ± 0.098 abc | LD50: 0.06% ± 0.025 de LD100: 0.09% ± 0.092 abc | LD50: 0.08% ± 0.080 a LD100: 0.1% ± 0.110 ab | LD50: 0.05% ± 0.048 bcd LD100: 0.07% ± 0.072 c | LD50: 0.08% ± 0.075 ab LD100: 0.1% ± 0.110 ab | LD50: 0.055% ± 0.054 abc LD100: 0.09% ± 0.088 bc | LD50: 0.003% ± 0.002 e LD100: 0.005% ± 0.005 d | LD50: 0.003% ± 0.002 e LD100: 0.007% ± 0.006 d | LD50: 0.004% ± 0.004 e LD100: 0.008% ± 0.008 d |
Protozoa | LD50 | LD100: |
---|---|---|
Euglena gracilis | TMCu, TMMN, CMCu, LMMn | TMMn, CMCu |
Gregarina blattarum | CMMn, LMMn | CMCu, LMCu |
Amoeba proteus | TMZn | TMZn |
Paramecium caudatum | TMMn | TMMn |
Pentatrichomonas hominis | TMZn, CMMn, CMZn | CMMn |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwiński, H.; Łyczko, J.; Różański, H.; Szumny, A. Novel Formula of Antiprotozoal Mixtures. Antibiotics 2022, 11, 913. https://doi.org/10.3390/antibiotics11070913
Iwiński H, Łyczko J, Różański H, Szumny A. Novel Formula of Antiprotozoal Mixtures. Antibiotics. 2022; 11(7):913. https://doi.org/10.3390/antibiotics11070913
Chicago/Turabian StyleIwiński, Hubert, Jacek Łyczko, Henryk Różański, and Antoni Szumny. 2022. "Novel Formula of Antiprotozoal Mixtures" Antibiotics 11, no. 7: 913. https://doi.org/10.3390/antibiotics11070913
APA StyleIwiński, H., Łyczko, J., Różański, H., & Szumny, A. (2022). Novel Formula of Antiprotozoal Mixtures. Antibiotics, 11(7), 913. https://doi.org/10.3390/antibiotics11070913