Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study
Abstract
Share and Cite
Singh, K.; Pandey, N.; Ahmad, F.; Upadhyay, T.K.; Islam, M.H.; Alshammari, N.; Saeed, M.; Al-Keridis, L.A.; Sharma, R. Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics 2022, 11, 1038. https://doi.org/10.3390/antibiotics11081038
Singh K, Pandey N, Ahmad F, Upadhyay TK, Islam MH, Alshammari N, Saeed M, Al-Keridis LA, Sharma R. Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics. 2022; 11(8):1038. https://doi.org/10.3390/antibiotics11081038
Chicago/Turabian StyleSingh, Kratika, Niharika Pandey, Firoz Ahmad, Tarun Kumar Upadhyay, Mohammad Hayatul Islam, Nawaf Alshammari, Mohd Saeed, Lamya Ahmed Al-Keridis, and Rolee Sharma. 2022. "Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study" Antibiotics 11, no. 8: 1038. https://doi.org/10.3390/antibiotics11081038
APA StyleSingh, K., Pandey, N., Ahmad, F., Upadhyay, T. K., Islam, M. H., Alshammari, N., Saeed, M., Al-Keridis, L. A., & Sharma, R. (2022). Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study. Antibiotics, 11(8), 1038. https://doi.org/10.3390/antibiotics11081038