Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterisation of E. coli Strains
2.2. Identification by MALDI-TOF MS
2.3. Phenotypic Testing for Antimicrobial Susceptibility
2.4. Identification of Colistin Resistance
2.5. DNA Extraction and Purification
2.6. Confirmation of E. coli Isolates Using PCR
2.7. Microarray-Prediction of Genoserotypes of E. coli Isolates
2.8. Detection of Carbapenemase Genes Using Multiplex Real-Time PCR
2.9. Statistical Analysis
3. Results
3.1. Isolation and Identification of E. coli
3.2. Antimicrobial Susceptibility Tsting
3.3. Serogenotyping of E. coli Isolates Using Microarray Analysis
3.4. Detection of Antimicrobial Resistance and Virulence Determinants in E. coli by Microarray Analysis
3.5. Association of Antimicrobial Resistance Genotypes among the Examined Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moawad, A.A.; Hotzel, H.; Awad, O.; Tomaso, H.; Neubauer, H.; Hafez, H.M.; El-Adawy, H. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 2017, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnedahl, J.; Drobni, P.; Johansson, A.; Hernandez, J.; Melhus, A.; Stedt, J.; Olsen, B.; Drobni, M. Characterization, and comparison, of human clinical and black-headed gull (Larus ridibundus) extended-spectrum beta-lactamase-producing bacterial isolates from Kalmar, on the southeast coast of Sweden. J. Antimicrob. Chemother. 2010, 65, 1939–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, J.; Bonnedahl, J.; Eliasson, I.; Wallensten, A.; Comstedt, P.; Johansson, A.; Granholm, S.; Melhus, A.; Olsen, B.; Drobni, M. Globally disseminated human pathogenic Escherichia coli of O25b-ST131 clone, harbouring blaCTX-M-15, found in Glaucous-winged gull at remote Commander Islands, Russia. Environ. Microbiol. Rep. 2010, 2, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Manageiro, V.; Clemente, L.; Graca, R.; Correia, I.; Albuquerque, T.; Ferreira, E.; Canica, M. New insights into resistance to colistin and third-generation cephalosporins of Escherichia coli in poultry, Portugal: Novel blaCTX-M-166 and blaESAC genes. Int. J. Food Microbiol. 2017, 263, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Health 2019, 3, e357–e369. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef]
- Livermore, D.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.; Arlet, G.; Ayala, J.; Coque, T.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Karisik, E.; Ellington, M.; Pike, R.; Warren, R.; Livermore, D.; Woodford, N. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J. Antimicrob. Chemother. 2006, 58, 665–668. [Google Scholar] [CrossRef]
- Phillips, I. Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int. J. Antimicrob. Agents 2007, 30, 101–107. [Google Scholar] [CrossRef]
- Yang, H.; Chen, S.; White, D.G.; Zhao, S.; McDermott, P.; Walker, R.; Meng, J. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J. Clin. Microbiol. 2004, 42, 3483–3489. [Google Scholar] [CrossRef] [Green Version]
- Aidara-Kane, A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev. Sci. Tech. 2012, 31, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Roy Chowdhury, P.; McKinnon, J.; Wyrsch, E.; Hammond, J.M.; Charles, I.G.; Djordjevic, S.P. Genomic interplay in bacterial communities: Implications for growth promoting practices in animal husbandry. Front. Microbiol. 2014, 5, 394. [Google Scholar] [CrossRef]
- Costa, D.; Vinue, L.; Poeta, P.; Coelho, A.C.; Matos, M.; Saenz, Y.; Somalo, S.; Zarazaga, M.; Rodrigues, J.; Torres, C. Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Vet. Microbiol. 2009, 138, 339–344. [Google Scholar] [CrossRef]
- Bortolaia, V.; Larsen, J.; Damborg, P.; Guardabassi, L. Potential pathogenicity and host range of extended-spectrum beta-lactamase-producing Escherichia coli isolates from healthy poultry. Appl. Environ. Microbiol. 2011, 77, 5830–5833. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Clouting, C.; Horton, R.; Coldham, N.; Wu, G.; Clifton-Hadley, F.; Davies, R.; Teale, C. Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J. Antimicrob. Chemother. 2011, 66, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Matthijs, M.G.; Ariaans, M.P.; Dwars, R.M.; van Eck, J.H.; Bouma, A.; Stegeman, A.; Vervelde, L. Course of infection and immune responses in the respiratory tract of IBV infected broilers after superinfection with E. coli. Vet. Immunol. Immunopathol. 2009, 127, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Moawad, A.A.; Hotzel, H.; Neubauer, H.; Ehricht, R.; Monecke, S.; Tomaso, H.; Hafez, H.M.; Roesler, U.; El-Adawy, H. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: Emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut Pathog. 2018, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, H.H.; Jackson, C.R.; Taha, S.A.; Moawad, A.A.; Barrett, J.B.; Woodley, T.A. Contribution of Healthy Chickens to Antimicrobial-Resistant Escherichia coli Associated with Human Extraintestinal Infections in Egypt. Vector Borne Zoonotic Dis. 2018, 18, 408–416. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mathers, A. Mobilization of Carbapenemase-Mediated Resistance in Enterobacteriaceae. Microbiol. Spectr. 2016, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Bratu, S.; Landman, D.; Haag, R.; Recco, R.; Eramo, A.; Alam, M.; Quale, J. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: A new threat to our antibiotic armamentarium. Arch. Intern. Med. 2005, 165, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, S.S.; Hsueh, P.R.; Group, S.A.-P. Distribution of ESBLs, AmpC beta-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 2017, 72, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Navarro-San Francisco, C.; Mora-Rillo, M.; Romero-Gomez, M.P.; Moreno-Ramos, F.; Rico-Nieto, A.; Ruiz-Carrascoso, G.; Gomez-Gil, R.; Arribas-Lopez, J.R.; Mingorance, J.; Pano-Pardo, J.R. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: A major clinical challenge. Clin. Microbiol. Infect. 2013, 19, E72–E79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 2014, 20, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Sulis, G.; Sayood, S.; Katukoori, S.; Bollam, N.; George, I.; Yaeger, L.H.; Chavez, M.A.; Tetteh, E.; Yarrabelli, S.; Pulcini, C.; et al. Exposure to World Health Organization’ s AWaRe antibiotics and isolation of multidrug resistant bacteria: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Paauw, A.; Jonker, D.; Roeselers, G.; Heng, J.M.; Mars-Groenendijk, R.H.; Trip, H.; Molhoek, E.M.; Jansen, H.J.; van der Plas, J.; de Jong, A.L.; et al. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. Int. J. Med. Microbiol. 2015, 305, 446–452. [Google Scholar] [CrossRef]
- Seidavi, A.; Mirhosseini, S.; Shivazad, M.; Chamani, M.; Sadeghi, A.; Pourseify, R. Detection and investigation of Escherichia coli in contents of duodenum, jejunum, ileum and cecum of broilers at different ages by PCR. Asia-Pac. J. Mol. Biol. Biotechnol. 2010, 18, 321–326. [Google Scholar]
- Braun, S.D.; Monecke, S.; Thürmer, A.; Ruppelt, A.; Makarewicz, O.; Pletz, M.; Reißig, A.; Slickers, P.; Ehricht, R. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS ONE 2014, 9, e102232. [Google Scholar]
- Weiß, D.; Engelmann, I.; Braun, S.D.; Monecke, S.; Ehricht, R. A multiplex real-time PCR for the direct, fast, economic and simultaneous detection of the carbapenemase genes blaKPC, blaNDM, blaVIM and blaOXA-48. J. Microbiol. Methods 2017, 142, 20–26. [Google Scholar] [CrossRef]
- Ali, A.; El-Mawgoud, A.I.A.; Dahshan, A.-H.M.; El-Sawah, A.A.A.; Nasef, S.A. Escherichia coli in broiler chickens in Egypt, its virulence traits and vaccination as an intervention strategy. Nov. Res. Microbiol. J. 2019, 3, 415–427. [Google Scholar]
- Adorján, A.; Makrai, L.; Mag, T.; Jánosi, S.; Könyves, L.; Tóth, I. High Frequency of Multidrug-Resistant (MDR) Atypical Enteropathogenic Escherichia coli (aEPEC) in Broilers in Hungary. Front. Vet. Sci. 2020, 7, 511. [Google Scholar] [CrossRef]
- Hafez, H.M.; Hauck, R. Colibcillosis: Main Diseases in Poultry Farming—Bacterial Infection; Grupo Asís Biomedia, S.L.: Zaragoza, Spain, 2016; p. 113. [Google Scholar]
- Randall, L.P.; Mueller-Doblies, D.; Lemma, F.L.; Horton, R.A.; Teale, C.J.; Davies, R.H. Characteristics of ciprofloxacin and cephalosporin resistant Escherichia coli isolated from turkeys in Great Britain. Br. Poult. Sci. 2013, 54, 96–105. [Google Scholar] [CrossRef]
- Dutil, L.; Irwin, R.; Finley, R.; Ng, L.K.; Avery, B.; Boerlin, P.; Bourgault, A.M.; Cole, L.; Daignault, D.; Desruisseau, A.; et al. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerg. Infect. Dis. 2010, 16, 48–54. [Google Scholar] [CrossRef]
- Boulianne, M.; Arsenault, J.; Daignault, D.; Archambault, M.; Letellier, A.; Dutil, L. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can. J. Vet. Res. 2016, 80, 49–59. [Google Scholar]
- Corcione, S.; Lupia, T.; De Rosa, F.G. Novel Cephalosporins in Septic Subjects and Severe Infections: Present Findings and Future Perspective. Front. Med. 2021, 8, 548. [Google Scholar] [CrossRef]
- Salmon, S.A.; Watts, J.L. Minimum inhibitory concentration determinations for various antimicrobial agents against 1570 bacterial isolates from turkey poults. Avian Dis. 2000, 44, 85–98. [Google Scholar] [CrossRef]
- Gosling, R.J.; Clouting, C.S.; Randall, L.P.; Horton, R.A.; Davies, R.H. Ciprofloxacin resistance in E. coli isolated from turkeys in Great Britain. Avian Pathol. 2012, 41, 83–89. [Google Scholar] [CrossRef]
- Altekruse, S.F.; Elvinger, F.; Lee, K.Y.; Tollefson, L.K.; Pierson, E.W.; Eifert, J.; Sriranganathan, N. Antimicrobial susceptibilities of Escherichia coli strains from a turkey operation. J. Am. Vet. Med. Assoc. 2002, 221, 411–416. [Google Scholar] [CrossRef]
- Moffat, J.; Chalmers, G.; Reid-Smith, R.; Mulvey, M.R.; Agunos, A.; Calvert, J.; Cormier, A.; Ricker, N.; Weese, J.S.; Boerlin, P. Resistance to extended-spectrum cephalosporins in Escherichia coli and other Enterobacterales from Canadian turkeys. PLoS ONE 2020, 15, e0236442. [Google Scholar] [CrossRef]
- Singer, R.S.; Hofacre, C.L. Potential impacts of antibiotic use in poultry production. Avian Dis. 2006, 50, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; Nowrouzian, F.; Adlerberth, I.; Wold, A.E. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 2006, 50, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccirillo, A.; Giovanardi, D.; Dotto, G.; Grilli, G.; Montesissa, C.; Boldrin, C.; Salata, C.; Giacomelli, M. Antimicrobial resistance and class 1 and 2 integrons in Escherichia coli from meat turkeys in Northern Italy. Avian Pathol. 2014, 43, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niero, G.; Bortolaia, V.; Vanni, M.; Intorre, L.; Guardabassi, L.; Piccirillo, A. High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy. Vet. Microbiol. 2018, 216, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Golkar, T.; Zieliński, M.; Berghuis, A.M. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front. Microbiol. 2018, 9, 1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bywater, R.J. Identification and surveillance of antimicrobial resistance dissemination in animal production. Poult. Sci. 2005, 84, 644–648. [Google Scholar] [CrossRef]
- Schwarz, S.; Kadlec, K.; Strommenger, B. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius detected in the BfT-GermVet monitoring programme 2004–2006 in Germany. J. Antimicrob. Chemother. 2008, 61, 282–285. [Google Scholar] [CrossRef] [Green Version]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [Green Version]
- Hoepers, P.G.; Silva, P.L.; Rossi, D.A.; Valadares Junior, E.C.; Ferreira, B.C.; Zuffo, J.P.; Koerich, P.K.; Fonseca, B.B. The association between extended spectrum beta-lactamase (ESBL) and ampicillin C (AmpC) beta-lactamase genes with multidrug resistance in Escherichia coli isolates recovered from turkeys in Brazil. Br. Poult. Sci. 2018, 59, 396–401. [Google Scholar] [CrossRef]
- da Silva, K.C.; Cunha, M.P.; Cerdeira, L.; de Oliveira, M.G.; de Oliveira, M.C.; Gomes, C.R.; Lincopan, N.; Knobl, T.; Moreno, A.M. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from commercial turkeys. Diagn. Microbiol. Infect. Dis. 2017, 87, 64–67. [Google Scholar] [CrossRef]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio 2019, 10, e00853-19. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yu, L.; Chen, X.; Zhi, C.; Yao, X.; Liu, Y.; Wu, S.; Guo, Z.; Yi, L.; Zeng, Z.; et al. High Prevalence of Colistin Resistance and mcr-1 Gene in Escherichia coli Isolated from Food Animals in China. Front. Microbiol. 2017, 8, 562. [Google Scholar] [CrossRef]
- Perrin-Guyomard, A.; Bruneau, M.; Houée, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill. 2016, 21, 30135. [Google Scholar] [CrossRef]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.A.; Grobbel, M.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Roesler, U.; Käsbohrer, A. Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Amaral, L.; Martins, A.; Spengler, G.; Molnar, J. Efflux pumps of Gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Front. Pharmacol. 2014, 4, 168. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.P.; Chandler, M.; Courvalin, P.; Guédon, G.; Mullany, P.; Pembroke, T.; Rood, J.I.; Smith, C.J.; Summers, A.O.; Tsuda, M.; et al. Revised nomenclature for transposable genetic elements. Plasmid 2008, 60, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, T.M.; Chow, L.; Asher, A.J.; Waldron, L.S.; Gillings, M.R. Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE 2017, 12, e0179169. [Google Scholar] [CrossRef]
- Jones-Dias, D.; Manageiro, V.; Ferreira, E.; Barreiro, P.; Vieira, L.; Moura, I.B.; Caniça, M. Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables. Front. Microbiol. 2016, 7, 1400. [Google Scholar] [CrossRef] [Green Version]
- Karimi Dehkordi, M.; Halaji, M.; Nouri, S. Prevalence of class 1 integron in Escherichia coli isolated from animal sources in Iran: A systematic review and meta-analysis. Trop. Med. Health 2020, 48, 16. [Google Scholar] [CrossRef]
- Johnson, T.; Logue, C.; Johnson, J.; Kuskowski, M.; Sherwood, J.; Barnes, H.; DebRoy, C.; Wannemuehler, Y.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef] [Green Version]
Numbers | Governorates | Total | ||||
---|---|---|---|---|---|---|
Dakahliya | Damietta | Kafr El-Sheikh | Sharkiya | Gharbiya | 5 | |
Farms | 4 | 3 | 2 | 2 | 1 | 12 |
Bird capacity | 5000 | 2100 | 1200 | 1800 | 800 | 10,900 |
Samples | 71 | 44 | 46 | 46 | 43 | 250 |
Target Gene | Primer, Probe | Nucleotide Sequence (5′-3′) | Fragment Length (bp) |
---|---|---|---|
blaKPC | KPC-FW | CTG TAT CGC CGT CTA GTT CTG | 101 |
KPC-RV | AGT TTA GCG AAT GGT TCC G | ||
KPC-P | 6FAM- TGT CTT GTC TCT CAT GGC CGC TGG –BHQ1 | ||
blaNDM-1 | NDM-FW | GCA TTA GCC GCT GCA TT | 100 |
NDM-RV | GAT CGC CAA ACC GTT GG | ||
NDM-P | ROX- ACG ATT GGC CAG CAA ATG GAA ACT GG –BHQ2 | ||
blaVIM | VIM-FW | TGG CAA CGT ACG CAT CAC C | 70 |
VIM-RV | CGC AGC ACC GGG ATA GAA | ||
VIM-P | Cy5- TCT CTA GAA GGA CTC TCA TCG AGC GGG–BHQ3 | ||
blaOXA-48 | OXA-48-FW | TTC CCA ATA GCT TGA TCG C | 143 |
OXA-48-RV | CCA TCC CAC TTA AAG ACT TGG | ||
OXA-48-P | HEX- TCG ATT TGG GCG TGG TTA AGG ATG AAC–BHQ1 |
Antibiotic | 0.03125 | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | Resistant | % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trimethoprim/Sulfamethoxazole (T/S) | 1/19 (2) | 2/38 | 4/76 (24) | 24 | 92.3 | |||||||||||
Penicillin (PEN) | 26 | 26 | 100 | |||||||||||||
Streptomycin (STR) | 4 | 22 | 26 | 100 | ||||||||||||
Amoxicillin/Clavulanic acid (AMC) | 0.5/0.25 | 1/0.5 (1) | 2/1 | 4/2 (3) | 8/4 (3) | 16/8 (10) | 32/16 (5) | 64/32 (3) | 18 | 69.2 | ||||||
Ceftazidime (CAZ) | 2 | 2 | 4 | 4 | 3 | 10 | 17 | 65.4 | ||||||||
Imipenem (IMP) | 18 | 1 | 5 | 0 | 0 | |||||||||||
Ciprofloxacin (CIP) | 7 | 1 | 6 | 12 | 18 | 69.2 | ||||||||||
Levofloxacin (LEV) | 4 | 4 | 1 | 17 | 18 | 69.2 | ||||||||||
Gentamicin (GEN) | 2 | 1 | 3 | 1 | 1 | 2 | 14 | 17 | 65.4 | |||||||
Amikacin (AMK) | 1 | 8 | 12 | 3 | 2 | 2 | 7.7 | |||||||||
Tetracycline (TET) | 1 | 1 | 24 | 24 | 92.3 | |||||||||||
Erythromycin (ERY) | 1 | 25 | 26 | 100 | ||||||||||||
Chloramphenicol (CMP) | 1 | 1 | 1 | 2 | 21 | 23 | 88.5 | |||||||||
Rifampicin (RAM) | 26 | 26 | 100 |
District | Isolate Code | Age (d) | Virulence Genes | Resistance Genes | Phenotypic Resistance |
---|---|---|---|---|---|
Dakahliya | CS0284-1 | 365 | hemL, tnpISEcp1 | strA, strB, cmlA1, floR | PEN, STR, AMC, ERY, RAM |
CS0302-3 | 365 | intl1 | blaTEM, aadA2, aphA, qnrS, sul3, tetA, strA, strB, cmlA1, floR, dfrA1, dfrA15, mcr-9 | PEN, STR, CAZ, CIP, LEV, GEN, AMK, TET, ERY, CMP, RAM, T/S | |
CS0290-2 | 365 | intl1 | tetA, strA, strB, cmlA1, floR, aadA1, sul1, sul2, dfrA1 | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0299-1 | 6 | intl1 | blaTEM, aphA, mph, qnrS, dfrA14, tetA, strA, strB, cmlA1, floR, | PEN, STR, CAZ, CIP, LEV, GEN, AMK, TET, ERY, CMP, RAM, T/S | |
CS0303-1 | 6 | hemL, intl1 | blaSHV, blaTEM, blaOXA-10, aadA1, aadA2, mph, qnrS, sul2, dfrA14, dfrA12, dfrA14, tetA, strA, strB, cmlA1, floR | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0298-2 | 6 | astA, hemL, intl1, tnpISEcp1 | blaCTX-M9, blaTEM, aadA1, aadA2, aphA, mph, mrx, sul1, sul2, sul3,tetA, strA, strB, cmlA1, floR | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0290-1 | 365 | hemL | blaSHV, blaTEM, qnrS, strA, strB, floR, arr | PEN, STR, CAZ, GEN, ERY, CMP, RAM | |
CS0296-2 | 6 | hemL, intl1, tnpISEcp1 | blaCTX-M9, blaTEM, aadA1, aadA2, aphA, mrx, sul1, sul2, sul3, dfrA12, dfrA14, tetA, strA, strB, cmlA1, floR | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0278-2 | 365 | intl1, oqxB | blaTEM, aphA, qnrS, sul2, dfrA14, tetA, aar, cmlA1 | PEN, STR, CAZ, TET, ERY, CMP, RAM, T/S | |
CS0304 | 6 | ifpA, cma, hemL, intl1 | blaTEM, aadA1, aadA2, aphA, qnrS, sul3, dfrA14 | PEN, STR, AMC, TET, ERY, CMP, RAM, T/S | |
CS0305-1 | 6 | astA, hemL, intl1, tnpISEcp1 | blaCTX-M9, blaTEM, aadA1, aadA2, aphA, strA, strB, mrx, cmlA1, floR, sul1, sul2, sul3, dfrA12, dfrA14 | PEN, STR, TET, ERY, CMP, RAM, T/S | |
CS0310-1 | 365 | ifpA, hemL, iss, intI1 | mph, floR, arr | PEN, STR, TET, ERY, RAM, T/S | |
Damietta | CS0294-1 | 240 | aadA1, strA, strB, mph, sul1, sul2, dfrA1, arr, higA, tetA,cmlA1, floR | PEN, STR, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0317 | 240 | cma, intl1, hemL, iroN, iss | blaTEM, aadA1, strB, mph, qnrS, sul2, tetA, dfrA1, floR, cmIA1 | PEN, STR, AMC, CAZ, CIP, LEV, TET, ERY, RAM, T/S | |
CS0314-1 | 240 | intI1, tnpISEcp1 | blaCTX-M9, blaTEM, aadA1, aadA2, aphA, strA, strB, mph, mrx, sul1, sul2, sul3, dfrA12, dfrA14, | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0316-1 | 240 | intl1, oqxB | blaTEM, aadA1, mph, qnrS, dfrA1 | PEN, STR, AMC, CAZ, CIP, LEV, TET, ERY, CMP, RAM, T/S | |
CS0324-2 | 240 | intl1, hemL | blaTEM, aadA2, strA, strB, floR, mph, mrx, qnrS, tetA, sul2, dfrA12, dfrA5 | PEN, STR, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0328-3 | 240 | hemL | tetA, mph | PEN, STR, AMC, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0329 | 240 | astA, intl1, hemL, tnpISEcp1 | blaCTX-M9, blaTEM, aadA1, aadA2, aphA, strA, strB, mph, mrx, sul1, sul2, sul3, cmlA1, floR, tetA, dfrA14, dfrA12 | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0332-2 | 10 | intl1, hemL | blaTEM, aphA,strA, strB, qnrS, sul2, dfrA14, cmIA1, floR | PEN, STR, AMC, CIP, LEV, TET, ERY, CMP, RAM, T/S | |
Gharbiya | CS0281-2 | 365 | intI1 | blaTEM, blaOXA-10, aadA1, strA, strB, qnrA1, sul1, sul2, floR | PEN, STR, GEN, TET, ERY, CMP, RAM, T/S |
Kafr El-sheikh | CS0296-1 | 365 | intI1 | blaSHV, blaTEM, blaOXA10, aadA1, aadA2, strA, cmlA1, floR, qnrS, arr, tetA, sul2, dfrA14 | PEN, STR, AMC, TET, ERY, CMP, RAM, T/S |
CS0408-2 | 150 | intl1, ifpA, hemL, iss,tnpISEcp11 | blaSHV, blaTEM, aadA1, aadA2, mph, mrx, aphA, qnrS, sul1, sul2, sul3, dfrA12, dfrA14 | PEN, STR, AMC, CAZ, GEN, TET, ERY, CMP, RAM, T/S | |
Sharkiya | CS0319-1 | 240 | intI1, tnpISEcp1 | blaTEM, blaCTX-M9, aadA1, aadA2, aphA, strA, strB, mph, mrx, sul1, sul2, sul3, dfrA12, dfrA14, tetA | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S |
CS0336-2 | 10 | intI1 | blaTEM, aadA1, aadA2, strA, qnrB, sul1, sul2, dfrA1, dfrA12, tetA | PEN, STR, AMC, CAZ, CIP, LEV, GEN, TET, ERY, CMP, RAM, T/S | |
CS0357-2 | 75 | intI1, tnpISEcp1 | blaSHV, blaTEM, blaOXA10, aadA1, aadA2, aphA, mph, mrx, qnrS, sul1, sul2, sul3, dfrA12 | PEN, STR, AMC, CAZ, CIP, LEV, TET, ERY, CMP, RAM, T/S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moawad, A.A.; Hotzel, H.; Hafez, H.M.; Ramadan, H.; Tomaso, H.; Braun, S.D.; Ehricht, R.; Diezel, C.; Gary, D.; Engelmann, I.; et al. Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt. Antibiotics 2022, 11, 1075. https://doi.org/10.3390/antibiotics11081075
Moawad AA, Hotzel H, Hafez HM, Ramadan H, Tomaso H, Braun SD, Ehricht R, Diezel C, Gary D, Engelmann I, et al. Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt. Antibiotics. 2022; 11(8):1075. https://doi.org/10.3390/antibiotics11081075
Chicago/Turabian StyleMoawad, Amira A., Helmut Hotzel, Hafez M. Hafez, Hazem Ramadan, Herbert Tomaso, Sascha D. Braun, Ralf Ehricht, Celia Diezel, Dominik Gary, Ines Engelmann, and et al. 2022. "Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt" Antibiotics 11, no. 8: 1075. https://doi.org/10.3390/antibiotics11081075
APA StyleMoawad, A. A., Hotzel, H., Hafez, H. M., Ramadan, H., Tomaso, H., Braun, S. D., Ehricht, R., Diezel, C., Gary, D., Engelmann, I., Zakaria, I. M., Reda, R. M., Eid, S., Shahien, M. A., Neubauer, H., & Monecke, S. (2022). Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt. Antibiotics, 11(8), 1075. https://doi.org/10.3390/antibiotics11081075