Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic
Abstract
:1. Introduction
2. Results
2.1. Samples and Isolates
2.2. Identification of Isolates
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Samples and Isolates
4.2. Identification of Isolates
4.3. Antimicrobial Susceptibility Testing
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yost, C.K.; Diarra, M.S.; Topp, E. Animals and humans as sources of fecal indicator bacteria. In The Fecal Bacteria; Sadowsky, M., Whitman, R., Eds.; American Society for Microbiology Press: Washington, DC, USA, 2011; pp. 67–91. [Google Scholar]
- Dubin, K.; Pamer, E.G. Enterococci and their interactions with the intestinal microbiome. Microbiol. Spectr. 2017, 5, 14. [Google Scholar] [CrossRef]
- Garcia-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef]
- Boehm, A.B.; Sassoubre, L.M. Enterococci as indicators of environmental fecal contamination. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Rehman, M.A.; Yin, X.; Zaheer, R.; Goji, N.; Amoako, K.K.; McAllister, T.; Pritchard, J.; Topp, E.; Diara, M.S. Genotypes and Phenotypes of Enterococci Isolated from Broiler Chickens. Front. Sust. Food Syst. 2018, 13, 83. [Google Scholar] [CrossRef]
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84, e01902-17. [Google Scholar] [CrossRef]
- Lim, S.; Park, M.; Chang, D. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 isolated from meju. Food Sci. Biotechnol. 2005, 14, 49–57. [Google Scholar]
- Belgacem, B.Z.; Ferchichi, M.; Prévost, H.; Dousset, X.; Manai, M. Screeningfor anti-listerial bacteriocin-producing lactic acid bacteriafrom ‘Gueddid’ a traditionally Tunisian fermented meat. Meat Sci. 2007, 78, 513–521. [Google Scholar] [CrossRef]
- Aguilar-Galvez, A.; Dubois-Dauphin, R.; Campos, D.; Thonart, P. Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431. Food Sci. Biotechnol. 2011, 20, 289–296. [Google Scholar] [CrossRef]
- Kalode, V.; Patil, P. Enterococcus Species: A Systemic review. J. Pure Appl. Microbiol. 2023, 17, 761–767. [Google Scholar] [CrossRef]
- Upadhyaya, P.M.G.; Umapathy, B.L.; Ravikumar, K.L. Comparative study forthe presence of enterococcal virulence factorsgelatinase, hemolysin and biofilmamongclinical and commensalisolates of Enterococcus faecalis. J. Lab. Physicians 2010, 2, 100–104. [Google Scholar]
- Ira, P.; Sujatha, S.; Chandra, P.S. Virulence factors in clinical and commensalisolates of Enterococcus species. Indian J. Pathol. Microbiol. 2013, 56, 24–30. [Google Scholar]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef]
- Sood, S.; Malhotra, M.; Das, B.K.; Kapil, A. Enterococcal infections & antimicrobial resistance. Ind. J. Med. Res. 2008, 128, 111–121. [Google Scholar]
- Vu, J.; Carvalho, J. Enterococcus: Review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front. Biol. 2011, 6, 357–366. [Google Scholar] [CrossRef]
- Obeng, A.S.; Rickard, H.; Ndi, O.; Sexton, M.; Barton, M. Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol. 2013, 42, 45–54. [Google Scholar] [CrossRef]
- Billington, E.O.; Phang, S.H.; Gregson, D.B.; Pitout, J.D.; Ross, T.; Church, D.L.; Laupland, K.P.; Parkins, M.D. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: A population-based study. Int. J. Infect Dis. 2014, 26, 76–82. [Google Scholar] [CrossRef]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, ARBA-0032-2018. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control Publishes. Annual Epidemiological Report 2011. Eurosurveillance 2012, 16, 1. [Google Scholar]
- Ammerlaan, H.S.M.; Harbarth, S.; Buiting, A.G.M.; Crook, D.W.; Fitzpatrick, F.; Hanberger, H.; Herwald, L.A.; van Keulen, P.H.J.; Kluytmans, J.A.J.W.; Kola, A.; et al. Secular trends in nosocomial bloodstream infections: Antibiotic-resistant bacteria increase the total burden of infection. Clin. Infect. Dis. 2013, 56, 798–805. [Google Scholar] [CrossRef]
- De Kraker, M.E.; Jarlier, V.; Monen, J.C.; Heuer, O.E.; Van De Sande, N.; Grundmann, H. The changing epidemiology of bacteraemias in Europe: Trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 2013, 9, 860–868. [Google Scholar] [CrossRef]
- Gregersen, R.H.; Petersen, A.; Christensen, H.; Bisgaard, M. Multilocus sequence typing of Enterococcus faecalis isolates demonstrating different lesion types in broiler breeders. Avian. Pathol. 2010, 39, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.H.; Frantzen, C.; Christensen, H.; Bisgaard, M. An investigation on first-week mortality in layers. Avian. Dis. 2012, 56, 51–57. [Google Scholar] [CrossRef]
- Meijerhof, R. Egg quality. In Manual of Poultry Diseases, 10th ed.; Brugere Picoux, J., Vaillancourt, J.-P., Bouzouaia, M., Eds.; AFAS: Paris, France, 2015; pp. 3–39. [Google Scholar]
- Meijerhof, R. Chick quality. In Manual of Poultry Diseases, 10th ed.; Brugere Picoux, J., Vaillancourt, J.-P., Bouzouaia, M., Eds.; AFAS: Paris, France, 2015; pp. 16–23. [Google Scholar]
- Giguere, S.; Prescott, J.F.; Baggot, J.D.; Walker, R.D.; Dowling, P.M. Antimicrobial Therapy in Veterinary Medicine, 4th ed.; Iowa State University Press: Ames, IA, USA, 2006. [Google Scholar]
- Kühn, S.; Iversen, A.; Burman, L.G.; Olsson-Liljequist, B.; Franklin, A.; Finn, M.; Aarestrup, F.; Seyfarth, A.M.; Blanch, A.R.; Taylor, H.; et al. Epidemiology and ecology of enterococci, withspecial reference to antibiotic resistant strains, in animals, humans and the environment. Int. J. Antimicrob. Agents 2000, 14, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 2011, 35, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Maasjost, J.; Muhldorfer, K.; Cortes de Jackel, S.; Hafez, H.M. Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian. Dis. 2015, 59, 143–148. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef]
- World Health Organisation, 2017. One Health. 2017. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 18 August 2023).
- 32019R0006; Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Eupropean Union Regulations: Brussels, Belgium, 2019; pp. L4–L43.
- European Medicines Agency. Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health (accessed on 18 August 2023).
- Moellering, R.C., Jr. Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis. 1992, 14, 1173–1176. [Google Scholar] [CrossRef]
- Prakash, V.P.; Rao, S.R.; Parija, S.C. Emergence of unusual species of enterococci causing infections, South India. BMC Infect Dis. 2005, 5, 14. [Google Scholar] [CrossRef]
- Hamarova, L.; Kopcakova, A.; Kocianova-Adamcova, M.; Piknova, M.; Javorsky, P.; Pristas, P. Antimicrobial resistance of enterococci from wild animals in Slovakia. Pol. J. Environ. Stud. 2021, 30, 2085–2091. [Google Scholar] [CrossRef]
- Balloy, D. Streptococci and Enterococci. In Manual of Poultry Diseases, 10th ed.; Brugere Picoux, J., Vaillancourt, J.-P., Bouzouaia, M., Eds.; AFAS: Paris, France, 2015; pp. 367–373. [Google Scholar]
- Kilonzo-Nthenge, A.; Brown, A.; Nahashon, S.N.; Long, D. Occurrence and antimicrobial resistance of enterococci isolated from organic and conventional retail chicken. J. Food Protect. 2015, 78, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Noenchat, P.; Nhoonoi, C.; Srithong, T.; Lertpiriyasakulkit, S.; Sornplang, P. Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. Vet. World 2022, 5, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- Makarov, D.A.; Ivanova, O.E.; Pomazkova, A.V.; Egoreva, M.A.; Prasolova, O.V.; Lenev, S.V.; Gergel, M.A.; Bukova, N.K.; Karabanov, S.Y. Antimicrobial resistance of comensal Enterococcus faecalis and Enterococcus faecium from food-producing animals in Russia. Vet. World 2022, 15, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, C.; Chukwudile, U.B.; Ugwu, C.C. Molecular determinants of virulence and antimicrobial resistance among Enterococcus speciesisolated from chickens. Poult. Sci. J. 2022, 11, 47–57. [Google Scholar]
- Alzahrani, O.M.; Fayez, M.; Alswat, A.S.; Alkafafy, M.; Mahmoud, S.F.; Al-Marri, T.; Almuslem, A.; Ashfaq, H.; Yusuf, S. Antimicrobial resistance, biofilm formation, and virulence genes in Enterococcus species from small backyard chicken flocks. Antibiotics 2022, 11, 380. [Google Scholar] [CrossRef]
- Kumar, S.; Rao, U.P.C.; Natarajan, A.; Mali, S.; Beena, P.M. Virulence factors of clinical and fecal isolates of enterococcispecies. J. Pure Appl. Microbiol. 2023, 17, 1097–1102. [Google Scholar] [CrossRef]
- Rice, E.W.; Messer, J.W.; Johnson, C.H.; Reasoner, D.J. Occurrence of high-level aminoglycoside resistance in enviromental isolates of enterococci. Appl. Environ. Microbiol. 1995, 61, 374–376. [Google Scholar] [CrossRef]
- Lukasova, J.; Sustackova, A. Enterococci and antibiotic resistance. Acta Vet. Brno 2003, 72, 315–323. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stȩpien-Pysniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Bushby, S.R.; Hitchings, G.H. Trimethoprim, a sulphonamidepotentiator. Br. J. Pharmacol. Chemother. 1968, 33, 72–90. [Google Scholar] [CrossRef]
- Zervos, M.J.; Schaberg, D.R. Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob. Agents Chemother. 1985, 28, 446–448. [Google Scholar] [CrossRef]
- Grayson, M.L.; Thauvin-Eliopoulos, C.; Eliopoulos, G.M.; Yao, J.D.; DeAngelis, D.V.; Walton, L.; Woolley, J.L.; Moellering, R.C., Jr. Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1990, 34, 1792–1794. [Google Scholar] [CrossRef]
- Chenoweth, C.E.; Robinson, K.A.; Schaberg, D.R. Efficacy of ampicillin vs. trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob. Agents Chemother. 1990, 34, 1800–1802. [Google Scholar] [CrossRef]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoints—Breakpoints and Guidance. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 18 August 2023).
- Sanaliba, P.; Tezel, B.U.; Senturk, E. Antimicrobial resistance of Enterococcus species isolated from Chicken in Turkey. Korean J. Food Sci. 2018, 38, 391–402. [Google Scholar]
- Abouelnaga, M.; Lamas, A.; Quintela-Baluja, M.; Osman, M.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Evaluation of theextent of spreading of virulence factors and antibiotic resistance in enterococci isolated from fermented and unfermented foods. Ann. Microbiol. 2016, 66, 577–585. [Google Scholar] [CrossRef]
- Rafaat, S.A.; Abo-Elmagd, E.K.; Awad, R.A.; Hassan, E.M. Prevalence of vancomycin-resistant enterococci in different food samples. Egypt J. Med. Microbiol. 2016, 25, 47–55. [Google Scholar]
- Jahan, M.; Krause, D.O.; Holley, R.A. Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method. Int. J. Food Microbiol. 2013, 163, 89–95. [Google Scholar] [CrossRef]
- Bulajic, S.; Tambur, Z.; Opacic, D.; Miljkovic-Selimocic, B.; Doder, R.; Cenic-Miloševic, D. Characterization of antibiotic resistance phenotypes and resistance genes in Enterococcus spp. isolated from cheeses. Arch. Biol. Sci. 2015, 67, 139–146. [Google Scholar] [CrossRef]
- Wasteson, Y.; Roe, D.E.; Falk, K.; Roberts, M.C. Characterization of tetracycline and erythromycin resistance in Actinobacillus pleuropneumoniae. Vet. Microbiol. 1995, 48, 41–50. [Google Scholar] [CrossRef]
- Votava, M.; Ruzicka, F.; Woznicova, V.; Cernohorska, L.; Dvorackova, M.; Hola, V.; Zahradnicek, O. Medical Microbiology—Examination Methods, 1st ed.; Neptun: Brno, Czech Republic, 2010; pp. 312–313. (In Czech) [Google Scholar]
- Bzdil, J. SOP02/21Cultivation and Identification of Bacteria from the Genus Enterococcus; Ptacy s.r.o.: Valasska Bystrice, Czech Republic, 2021; p. 4. (In Czech) [Google Scholar]
- Clinical Laboratory Standards Institute. VET01-A4 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 4th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2013; pp. 1–73. [Google Scholar]
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Tests for Bacteria Isolated from Animals. CLSI Supplement VET01S, 5th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020; pp. 1–216. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
Farm | Kept Breeds | Reproduction Breeding for Meat | Reproduction Breeding for Eggs | Commercial Laying Hens | Broilers |
---|---|---|---|---|---|
1 Bil | COBB 500 | + | − | − | − |
2 Hlu | ROSS 308 | + | − | − | − |
3 Hor | ROSS 308 | − | − | − | + |
4 Kun | COBB 500 | + | − | − | − |
COBB 309 | |||||
5 Kyl | COBB 500 | + | − | − | − |
6 Lub | ROSS 308 | + | − | − | − |
7 Maj | ROSS 308 | − | − | − | + |
8 Mal | COBB 500 | − | − | − | + |
ROSS 308 | |||||
9 Mel | COBB 500 | + | − | − | − |
10 Ost | ROSS 308 | + | − | − | − |
11 Roh | ROSS 308 | + | − | − | − |
12 Uni | Lohmann Brown | − | − | + | − |
Enterococcus Species | E. faecalis | E. faecium | E. gallinarum | E. hirae |
---|---|---|---|---|
Parameters | ||||
Number of positive findings (n) | 108 | 7 | 10 | 3 |
Prevalence (%) | (23.3) | (1.5) | (2.2) | (0.6) |
Intensity of growth + (%) * | 21 (19.4) | 4 (57.1) | 3 (30.0) | 0 |
Intensity of growth ++ (%) * | 33 (30.6) | 1 (14.3) | 4 (40.0) | 3 (100.0) |
Intensity of growth +++ (%) * | 30 (27.8) | 1 (14.3) | 2 (20.0) | 0 |
Intensity of growth ++++ (%) * | 24 (22.2) | 1 (14.3) | 1 (10.0) | 0 |
Number of isolates from the navel (%) * | 29 (26.9) | 2 (28.6) | 3 (30.0) | 1 (33.3) |
Number of isolates from organs (%) * | 35 (32.4) | 2 (28.6) | 2 (20.0) | 1 (33.3) |
Number of isolates from the yolk sac (%) * | 30 (27.8) | 3 (42.8) | 5 (50.0) | 1 (33.3) |
Number of isolates from the bone (%) * | 6 (5.5) | 0 | 0 | 0 |
Number of isolates from the brain (%) * | 8 (7.4) | 0 | 0 | 0 |
Origin of Chicken Contamination | Prenatal | Postnatal | |||||
---|---|---|---|---|---|---|---|
Organ | Ovary | Oviduct | Egg Surface | Skin | Digestive Tract (Drinking) | Respiratory Tract (Aspiration of Aerosol) | Septicaemia or Sepsis |
Navel | + | + | + | ++ | + | − | ++ |
Lung | + | + | + | − | + | ++ | ++ |
Heart | + | + | + | − | + | ++ | ++ |
Liver | + | + | + | − | ++ | + | ++ |
Yolk sac | ++ | ++ | ++ | + | + | − | ++ |
Bone | + | + | + | − | − | − | ++ |
Brain | + | + | + | − | − | − | ++ |
MIC (mg/L) | MIC50 | MIC90 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | (mg/L) | (mg/L) | |
E. faecalis | |||||||||||||||
PNC | 4 | 1 | 5 | 11 | 74 | 4 | 4 | 5 | 4 | 8 | |||||
AMP | 15 | 16 | 18 | 50 | 1 | 2 | 4 | 2 | 4 | 4 | |||||
AMC | 96 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | ≤0.5 | 1 | |||||
ERY | 8 | 11 | 10 | 15 | 18 | 11 | 9 | 6 | 20 | 2 | >32 | ||||
ENR | 14 | 8 | 29 | 29 | 13 | 3 | 2 | 10 | 0.5 | 4 | |||||
FFC | 2 | 10 | 41 | 44 | 2 | 5 | 1 | 3 | 4 | 8 | |||||
TTC | 32 | 6 | 2 | 3 | 4 | 17 | 26 | 15 | 32 | >64 | |||||
SXT | 93 | 8 | 2 | 5 | ≤0.03 | 0.06 | |||||||||
E. faecium | |||||||||||||||
PNC | 1 | 6 | 4 | 4 | |||||||||||
AMP | 2 | 2 | 3 | 2 | 4 | ||||||||||
AMC | 6 | 1 | ≤0.5 | ≤0.5 | |||||||||||
ERY | 1 | 2 | 1 | 1 | 2 | 2 | >32 | ||||||||
ENR | 1 | 5 | 1 | 0.25 | 4 | ||||||||||
FFC | 1 | 5 | 1 | 2 | 4 | ||||||||||
TTC | 3 | 1 | 1 | 1 | 1 | 16 | >64 | ||||||||
SXT | 7 | ≤0.03 | ≤0.03 | ||||||||||||
E. gallinarum | |||||||||||||||
PNC | 1 | 1 | 2 | 5 | 1 | 4 | 4 | ||||||||
AMP | 2 | 3 | 1 | 3 | 1 | 1 | 4 | ||||||||
AMC | 8 | 1 | 1 | ≤0.5 | 1 | ||||||||||
ERY | 1 | 2 | 3 | 1 | 1 | 2 | 0.5 | 1 | |||||||
ENR | 1 | 2 | 6 | 1 | 0.125 | 0.25 | |||||||||
FFC | 1 | 4 | 3 | 2 | 2 | >32 | |||||||||
TTC | 4 | 1 | 3 | 2 | 1 | >64 | |||||||||
SXT | 9 | 1 | ≤0.03 | ≤0.03 | |||||||||||
E. hirae | |||||||||||||||
PNC | 1 | 2 | >16 | >16 | |||||||||||
AMP | 1 | 1 | 1 | 16 | >64 | ||||||||||
AMC | 1 | 1 | 1 | 16 | >64 | ||||||||||
ERY | 1 | 1 | 1 | 16 | >32 | ||||||||||
ENR | 1 | 2 | 8 | 8 | |||||||||||
FFC | 1 | 1 | 1 | 32 | 64 | ||||||||||
TTC | 1 | 2 | 64 | 64 | |||||||||||
SXT | 1 | 2 | >4 | >4 |
Profile | Resistant Isolates of E. faecalis | Resistant Isolates of E. faecium | Resistant Isolates of E. gallinarum | Resistant Isolates of E. hirae | Resistant Isolates Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | No. | % | No. | % | |
No resistant isolates | 7 | 6.5 | 1 | 14.3 | 4 | 40.0 | 0 | 0 | 12 | 9.4 |
Number of strains with a mix of intermediary and susceptible results on the tests | 30 | 27.8 | 1 | 14.3 | 0 | 0 | 1 | 33.3 | 32 | 25.0 |
ERY | 7 | 6.5 | 1 | 14.3 | 1 | 10.0 | 0 | 0 | 9 | 7.0 |
ENR | 1 | 0.9 | 1 | 14.3 | 0 | 0 | 0 | 0 | 2 | 1.6 |
TTC | 30 | 27.8 | 1 | 14.3 | 2 | 20.0 | 0 | 0 | 33 | 25.8 |
SXT | 1 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8 |
ERY, ENR | 2 | 1.9 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1.6 |
ERY, TTC | 9 | 8.3 | 2 | 28.6 | 0 | 0 | 0 | 0 | 11 | 8.6 |
ENR, SXT | 1 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8 |
TTC, SXT | 4 | 3.7 | 0 | 0 | 1 | 10.0 | 0 | 0 | 5 | 3.9 |
PNC, AMP, ERY * | 3 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2.3 |
ERY, ENR, TTC * | 1 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8 |
ENR, FFC, TTC * | 0 | 0 | 0 | 0 | 1 | 10.0 | 0 | 0 | 1 | 0.8 |
ENR, TTC, SXT * | 3 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2.3 |
PNC, AMP, ERY, FFC, TTC * | 2 | 1.9 | 0 | 0 | 1 | 10.0 | 0 | 0 | 3 | 2.3 |
PNC, AMP, AMC, ERY, ENR, TTC, SXT * | 1 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8 |
PNC, AMP, AMC, ERY, ENR, FFC, TTC, SXT * | 2 | 1.9 | 0 | 0 | 0 | 0 | 2 | 66.7 | 4 | 3.1 |
Total of tested strains | 108 | 100.0 | 7 | 100.0 | 10 | 100.0 | 3 | 100.0 | 128 | 100.0 |
Farm Identification | 1 Bil | 2 Hlu | 3 Hor | 4 Kun | 5 Kyl | 6 Lub | 7 Maj | 8 Mal | 9 Mel | 10 Ost | 11 Roh | 12 Uni | Total Isolates |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolates | |||||||||||||
E. faecalis | 17 | 9 | 13 | 6 | 6 | 4 | 2 | 27 | 14 | 5 | 1 | 4 | 108 |
E. faecium | 2 | 2 | 3 | 7 | |||||||||
E. gallinarum | 2 | 1 | 1 | 2 | 2 | 2 | 10 | ||||||
E. hirae | 2 | 1 | 3 | ||||||||||
Total strains | 21 | 10 | 15 | 6 | 6 | 6 | 2 | 29 | 16 | 7 | 6 | 4 | 128 |
MDR 3 resist. | 2 | 1 | 1 | 2 | 2 | 8 | |||||||
MDR 5 | 1 | 2 | 3 | ||||||||||
MDR 7 | 1 | 1 | |||||||||||
MDR 8 | 4 | 4 | |||||||||||
Total MDR strains | 6 | 1 | 1 | 1 | 3 | 4 | 16 |
Year | Number of Examined Mixed Samples | Number of Examined Chickens | Number of Farms | Number of Examined Broilers | Number of Examined Males | Number of Examined Females | |||
---|---|---|---|---|---|---|---|---|---|
n | Percentage of All Examined Chickens | n | Percentage of All Examined Chickens | n | Percentage of All Examined Chickens | ||||
2021 | 140 | 1400 | 10 | 0 | 0 | 80 | 5.7 | 1320 | 94.3 |
2022 | 210 | 2100 | 11 | 50 | 2.4 | 60 | 2.9 | 1990 | 94.8 |
2023 | 114 | 1140 | 6 | 10 | 0.88 | 230 | 20.2 | 900 | 78.9 |
Total | 464 | 4640 | 12 * | 60 | 1.3 | 370 | 8.0 | 4210 | 90.7 |
Antimicrobials | Tested Concentrations (mg/L) | Enterococcus spp. | Source | ||
---|---|---|---|---|---|
MIC Breakpoints (mg/L) | |||||
≤S | I | ≥R | |||
penicillin | 0.125–16 | 8 | - | 16 | VET01S |
ampicillin | 0.5–64 | 4 | 8 | 16 | EUCAST |
amoxicillin/clavulanic acid | 0.5/0.25–64/32 | 4 | 8 | 16 | EUCAST |
erythromycin | 0.125–16 | 0.5 | 1–4 | 8 | VET01S |
enrofloxacin | 0.06–8 | 0.25 | 0.5–1 | 2 | VET01S |
florfenicol | 0.5–64 | 8 | 16 | 32 | VET01S |
tetracycline | 0.5–64 | 4 | 8 | 16 | VET01S |
trimethoprim/sulphamethoxazole | 0.03/0.6–4/76 | ≤0.03/0.6 | 0.06/0.125–1/19 | 2/38 | EUCAST |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzdil, J.; Sladecek, V.; Senk, D.; Stolar, P.; Waicova, Z.; Kollertova, N.; Zouharova, M.; Matiaskova, K.; Linhart, P.; Nedbalcova, K. Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic. Antibiotics 2023, 12, 1487. https://doi.org/10.3390/antibiotics12101487
Bzdil J, Sladecek V, Senk D, Stolar P, Waicova Z, Kollertova N, Zouharova M, Matiaskova K, Linhart P, Nedbalcova K. Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic. Antibiotics. 2023; 12(10):1487. https://doi.org/10.3390/antibiotics12101487
Chicago/Turabian StyleBzdil, Jaroslav, Vladimir Sladecek, David Senk, Petr Stolar, Zuzana Waicova, Nela Kollertova, Monika Zouharova, Katarina Matiaskova, Petr Linhart, and Katerina Nedbalcova. 2023. "Enterococci Isolated from One-Day-Old Chickens and Their Phenotypic Susceptibility to Antimicrobials in the Czech Republic" Antibiotics 12, no. 10: 1487. https://doi.org/10.3390/antibiotics12101487