High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Clinical Characteristics and Outcomes of HA-MRSAB and PVL-Negative CA-MRSAB
2.3. Prevalence of cna and fnbB Genes and Their Relationships with Metastatic Infections in PVL-Negative CA-MRSAB
2.4. Associations between Clinical Characteristics and Virulence Genes in PVL-Negative CA-MRSAB
3. Discussion
4. Materials and Methods
4.1. Collection of Clinical Isolates
4.2. Molecular Characterization
4.3. Clinical Characterization
4.4. Statistical Analysis
4.5. Ethics Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- David, M.Z.; Glikman, D.; Crawford, S.E.; Peng, J.; King, K.J.; Hostetler, M.A.; Boyle-Vavra, S.; Daum, R.S. What is community-associated methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2008, 197, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; French, G.L. Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J. Hosp. Infect. 2011, 79, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Popovich, K.J.; Weinstein, R.A.; Hota, B. Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains. Clin. Infect. Dis. 2008, 46, 787–794. [Google Scholar] [CrossRef]
- Kaku, N.; Sasaki, D.; Ota, K.; Miyazaki, T.; Yanagihara, K. Changing molecular epidemiology and characteristics of MRSA isolated from bloodstream infections: Nationwide surveillance in Japan in 2019. J. Antimicrob. Chemother. 2022, 77, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nakamura, I.; Sato, T.; Ono, D.; Sato, A.; Sonoda, S.; Aoki, K.; Miura, Y.; Koyama, S.; Tamai, K.; et al. Changes in the Genotypic Characteristics of Community-Acquired Methicillin-Resistant Staphylococcus aureus Collected in 244 Medical Facilities in Japan between 2010 and 2018: A Nationwide Surveillance. Microbiol. Spectr. 2022, 10, e02272-21. [Google Scholar] [CrossRef]
- Hamada, M.; Yamaguchi, T.; Sato, A.; Ono, D.; Aoki, K.; Kajiwara, C.; Kimura, S.; Maeda, T.; Sasaki, M.; Murakami, H.; et al. Increased Incidence and Plasma-Biofilm Formation Ability of SCCmec Type IV Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Patients with Bacteremia. Front. Cell Infect. Microbiol. 2021, 11, 602833. [Google Scholar] [CrossRef]
- Patti, J.M.; Bremell, T.; Krajewska-Pietrasik, D.; Abdelnour, A.; Tarkowski, A.; Rydén, C.; Höök, M. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect. Immun. 1994, 62, 152–161. [Google Scholar] [CrossRef]
- Shinji, H.; Yosizawa, Y.; Tajima, A.; Iwase, T.; Sugimoto, S.; Seki, K.; Mizunoe, Y. Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect. Immun. 2011, 79, 2215–2223. [Google Scholar] [CrossRef]
- Wang, F.D.; Wu, P.F.; Chen, S.J. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates from various sources. J. Microbiol. Immunol. Infect. 2019, 52, 426–432. [Google Scholar] [CrossRef]
- Miura, Y.; Yamaguchi, T.; Nakamura, I.; Koyama, S.; Tamai, K.; Okanda, T.; Matsumoto, T. Epidemiological trends observed from molecular characterization of methicillin-resistant Staphylococcus aureus isolates from blood cultures at a Japanese university hospital, 2012–2015. Microb. Drug Resist. 2018, 24, 70–75. [Google Scholar] [CrossRef]
- Horino, T.; Hori, S. Metastatic infection during Staphylococcus aureus bacteremia. J. Infect. Chemother. 2020, 26, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Yamaguchi, T.; Hamada, M.; Ono, D.; Sonoda, S.; Oshiro, T.; Nagashima, M.; Kato, K.; Okazumi, S.; Katoh, R.; et al. Morphological and biological characteristics of Staphylococcus aureus biofilm formed in the presence of plasma. Microb. Drug Resist. 2019, 25, 668–676. [Google Scholar] [CrossRef]
- Silva, V.; Almeida, L.; Gaio, V.; Cerca, N.; Manageiro, V.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. biofilm formation of multidrug-resistant mrsa strains isolated from different types of human infections. Pathogens 2021, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Iwata, Y.; Satou, K.; Furuichi, K.; Yoneda, I.; Matsumura, T.; Yutani, M.; Fujinaga, Y.; Hase, A.; Morita, H.; Ohta, T.; et al. Collagen adhesion gene is associated with bloodstream infections caused by methicillin-resistant Staphylococcus aureus. Int. J. Infect. Dis. 2020, 91, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.J. Surface proteins of Staphylococcus aureus. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Montarelo, D.; Viedma, E.; Murcia, M.; Muñoz-Gallego, I.; Larrosa, N.; Brañas, P.; Fernández-Hidalgo, N.; Gavaldà, J.; Almirante, B.; Chaves, F. Pathogenic characteristics of Staphylococcus aureus endovascular infection isolates from different clonal complexes. Front. Microbiol. 2017, 8, 917. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, J.J.; Sharma Kuinkel, B.K.; Clarke-Pearson, M.; Lamlertthon, S.; Park, L.; Rude, T.H.; Barriere, S.; Woods, C.W.; Chu, V.H.; Marín, M.; et al. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J. Infect. Dis. 2011, 204, 704–713. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Fowler, V.G.; Yeaman, M.R.; Perdreau-Remington, F.; Kreiswirth, B.N.; Bayer, A.S. Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J. Infect. Dis. 2009, 199, 201–208. [Google Scholar] [CrossRef]
- Moormeier, D.E.; Bose, J.L.; Horswill, A.R.; Bayles, K.W. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio 2014, 5, e01341-14. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.M.S.; Ferreira, F.A.; Beltrame, C.O.; Côrtes, M.F. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit. Rev. Microbiol. 2017, 43, 602–620. [Google Scholar] [CrossRef] [PubMed]
- Kawasuji, H.; Sakamaki, I.; Kawamura, T.; Ueno, A.; Miyajima, Y.; Matsumoto, K.; Kawago, K.; Higashi, Y.; Yamamoto, Y. Proactive infectious disease consultation at the time of blood culture collection is associated with decreased mortality in patients with methicillin-resistant Staphylococcus aureus bacteremia: A retrospective cohort study. J. Infect. Chemother. 2020, 26, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Pryce, T. Preparation of mycobacterial DNA from blood culture fluids by simple alkali wash and heat lysis method for PCR detection. J. Clin. Microbiol. 1996, 34, 1985–1991. [Google Scholar] [CrossRef]
- Chen, L.; Mediavilla, J.R.; Oliveira, D.C.; Willey, B.M.; de Lencastre, H.; Kreiswirth, B.N. Multiplex real-time PCR for rapid Staphylococcal cassette chromosome mec typing. J. Clin. Microbiol. 2009, 47, 3692–3706. [Google Scholar] [CrossRef]
- Vancraeynest, D.; Hermans, K.; Haesebrouck, F. Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Vet. Microbiol. 2004, 103, 241–247. [Google Scholar] [CrossRef]
- Reva, I.; Higuchi, W.; Takano, T.; Singur, O.; Ozaki, K.; Isobe, H.; Yabe, S.; Saito, K.; Baranovich, T.; Enany, S.; et al. A rapid screening method for Panton-Valentine leucocidin-positive community-acquired methicillin-resistant Staphylococcus aureus belonging to multilocus sequence type 30 and its related clone using a combination of multiplex PCR and pulsed-field gel electrophoresis. J. Infect. Chemother. 2009, 15, 75–83. [Google Scholar] [PubMed]
- Goto, M.; Schweizer, M.L.; Vaughan-Sarrazin, M.S.; Perencevich, E.N.; Livorsi, D.J.; Diekema, D.J.; Richardson, K.K.; Beck, B.F.; Alexander, B.; Ohl, M.E. Association of evidence-based care processes with mortality in Staphylococcus aureus bacteremia at Veterans Health Administration Hospitals, 2003–2014. JAMA Intern. Med. 2017, 177, 1489–1497. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Hayden, D.L.; Schoenfeld, D.A.; Ware, L.B. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007, 132, 410–417. [Google Scholar] [CrossRef]
- Minejima, E.; Mai, N.; Bui, N.; Mert, M.; Mack, W.J.; She, R.C.; Nieberg, P.; Spellberg, B.; Wong-Beringer, A. Defining the breakpoint duration of Staphylococcus aureus bacteremia predictive of poor outcomes. Clin. Infect. Dis. 2020, 70, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, R.; Morata, L.; Boeing, C.; Subirana, I.; Seifert, H.; Rieg, S.; Kern, W.V.; Kim, H.B.; Kim, E.S.; Liao, C.H.; et al. Defining persistent Staphylococcus aureus bacteraemia: Secondary analysis of a prospective cohort study. Lancet Infect. Dis. 2020, 20, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total, n = 79 | HA-MRSAB, n = 27 (34.2%) | CA-MRSAB, n = 36 (45.6%) | p Value |
---|---|---|---|---|
Age, years, median (IQR) | 72 (65–81) | 77 (68–82) | 71 (63.3–80.5) | 0.14 |
Sex, male, n (%) | 54 (68.4) | 17 (63.0) | 26 (72.2) | 0.59 |
BMI (kg/m2), median (IQR) | 20.1 (17.6–22.8) | 20.1 (18.0–22.7) | 20.6 (17.8–22.8) | 0.81 |
Acquisition of infection, n (%) | ||||
Hospital-onset | 57 (72.1) | 23 (85.2) | 22 (61.1) | <0.01 |
Source of infection, n (%) | ||||
CRBSI | 35 (44.3) | 9 (33.3) | 15 (41.7) | 0.60 |
Lower respiratory tract | 17 (21.5) | 5 (18.5) | 10 (27.8) | 0.55 |
Surgical site | 7 (8.9) | 7 (25.9) | 0 (0.0) | <0.01 |
Infective endocarditis | 4 (5.1) | 0 (0.0) | 3 (8.3) | 0.25 |
Intra-abdominal | 5 (6.3) | 2 (7.4) | 2 (5.6) | 1.00 |
Skin and soft tissue | 17 (21.5) | 1 (3.7) | 13 (36.1) | <0.01 |
Urinary tract | 10 (12.7) | 3 (11.1) | 4 (11.1) | 1.00 |
Mediastinitis | 3 (3.8) | 3 (11.1) | 0 (0.0) | 0.07 |
Bone and joint | 10 (12.7) | 3 (11.1) | 4 (11.1) | 1.00 |
Other and unknown | 2 (2.5) | 2 (7.4) | 0 (0.0) | 0.18 |
Metastatic infection, n (%) | 18 (22.8) | 2 (7.4) | 12 (33.3) | 0.017 |
Polymicrobial bacteremia, n (%) | 8 (10.1) | 1 (3.7) | 5 (13.9) | 0.23 |
Comorbid medical conditions, n (%) | ||||
Malignancy | 35 (44.3) | 14 (51.9) | 15 (41.7) | 0.45 |
Diabetes mellitus | 20 (25.3) | 7 (25.9) | 10 (27.8) | 1.00 |
Chronic heart failure | 8 (10.1) | 3 (11.1) | 5 (13.9) | 1.00 |
Valvular heart disease | 3 (3.8) | 2 (7.4) | 1 (2.8) | 0.57 |
Chronic renal failure | 14 (17.7) | 5 (18.5) | 7 (19.4) | 1.00 |
Hemodialysis | 5 (6.3) | 0 (0.0) | 5 (13.9) | 0.065 |
Cirrhosis | 1 (1.2) | 0 (0.0) | 0 (0.0) | – |
Chronic pulmonary disease | 11 (13.9) | 5 (18.5) | 4 (11.1) | 0.48 |
Cerebrovascular event | 4 (5.1) | 2 (7.4) | 2 (5.6) | 1.00 |
Burn injury | 2 (2.5) | 0 (0.0) | 2 (5.6) | 0.50 |
Foreign body a | 18 (22.8) | 8 (29.6) | 6 (16.7) | 0.24 |
Immunosuppression b | 13 (16.4) | 4 (14.8) | 5 (13.9) | 1.00 |
Charlson comorbidity index, median (IQR) | 3 (2–4) | 3 (2–4) | 3 (2–4) | 0.64 |
Severity of infection | ||||
Septic shock, n (%) | 10 (12.7) | 1 (3.7) | 7 (19.4) | 0.12 |
Mechanical ventilation, n (%) | 5 (6.3) | 1 (3.7) | 4 (11.1) | 0.38 |
Pitt’s bacteremia score at onset of bacteremia, median (IQR) | 0 (0–2) | 0 (0–1) | 0.5 (0–2) | 0.11 |
SOFA score at onset of bacteremia, median (IQR) | 2 (0–4) | 1 (0–4) | 3 (0–5) | 0.18 |
Quick SOFA score at onset of bacteremia, median (IQR) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 0.85 |
Antimicrobial therapy, n (%) | ||||
Inappropriate empirical therapy | 62 (78.5) | 20 (74.1) | 31 (86.1) | 0.33 |
Reduced susceptibility to vancomycin, n (%) MIC ≥2.0 mg/L | 16 (20.3) | 11 (40.7) | 2 (5.6) | <0.01 |
Initial anti-MRSA therapy, n (%) | ||||
Vancomycin | 36 (45.6) | 11 (40.7) | 19 (52.8) | 0.45 |
Teicoplanin | 17 (21.5) | 7 (25.9) | 5 (13.9) | 0.33 |
Arbekacin | 1 (1.3) | 0 (0.0) | 1 (2.8) | 1.00 |
Linezolid | 13 (16.5) | 3 (11.1) | 7 (19.4) | 0.49 |
Daptomycin | 9 (11.4) | 4 (14.8) | 3 (8.3) | 0.45 |
Management, n (%) | ||||
Removal of intravascular device within 5 days after bacteremia onset in patients with CRBSI | 34 (89.5) | 9/9 (100) | 15/17 (88.2) | 0.53 |
Follow-up blood culture | 65 (82.3) | 18 (66.7) | 32 (88.9) | 0.057 |
Anti-MRSA therapy duration ≥14 days | 61 (84.8) | 21/24 (87.5) | 31/34 (91.2) | 0.68 |
Anti-MRSA therapy duration, median (IQR) | 22 (14–36) | 23 (14–35) | 25 (15.3–46) | 0.31 |
Outcome, n (%) | ||||
Persistent bacteremia | 16 (24.6) | 3 (16.7) | 8 (25.0) | 0.72 |
All-cause 30-day mortality | 9 (11.4) | 4 (14.8) | 3 (8.3) | 0.45 |
All-cause in-hospital mortality | 18 (22.7) | 7 (25.9) | 8 (22.2) | 0.77 |
Length of hospital stay, median (IQR) | 55 (28–114) | 99 (67–140) | 44.5 (28.3–106) | 0.012 |
SCCmec Type, n (%) | cna (+) | fnbB (+) |
---|---|---|
II | 1/20 (5.0) | 1/20 (5.0) |
III | 0/7 (0.0) | 1/7 (14.3) |
IV | 18/32 (34.3) | 18/32 (34.3) |
V | 2/4 (50.0) | 0/4 (0.0) |
VI | 5/8 (62.5) | 2/8 (25.0) |
VIII | 0/1 (0.0) | 0/1 (0.0) |
Non-typable | 6/7 (85.7) | 4/7 (57.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasuji, H.; Ikezawa, Y.; Morita, M.; Sugie, K.; Somekawa, M.; Ezaki, M.; Koshiyama, Y.; Takegoshi, Y.; Murai, Y.; Kaneda, M.; et al. High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan. Antibiotics 2023, 12, 1516. https://doi.org/10.3390/antibiotics12101516
Kawasuji H, Ikezawa Y, Morita M, Sugie K, Somekawa M, Ezaki M, Koshiyama Y, Takegoshi Y, Murai Y, Kaneda M, et al. High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan. Antibiotics. 2023; 12(10):1516. https://doi.org/10.3390/antibiotics12101516
Chicago/Turabian StyleKawasuji, Hitoshi, Yoshihiro Ikezawa, Mika Morita, Kazushige Sugie, Mayu Somekawa, Masayoshi Ezaki, Yuki Koshiyama, Yusuke Takegoshi, Yushi Murai, Makito Kaneda, and et al. 2023. "High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan" Antibiotics 12, no. 10: 1516. https://doi.org/10.3390/antibiotics12101516
APA StyleKawasuji, H., Ikezawa, Y., Morita, M., Sugie, K., Somekawa, M., Ezaki, M., Koshiyama, Y., Takegoshi, Y., Murai, Y., Kaneda, M., Kimoto, K., Nagaoka, K., Niimi, H., Morinaga, Y., & Yamamoto, Y. (2023). High Incidence of Metastatic Infections in Panton-Valentine Leucocidin-Negative, Community-Acquired Methicillin-Resistant Staphylococcus aureus Bacteremia: An 11-Year Retrospective Study in Japan. Antibiotics, 12(10), 1516. https://doi.org/10.3390/antibiotics12101516