The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains
Abstract
:1. Introduction
2. Results
2.1. Purification and Characterisation of GDP-Mannose Dehydrogenase from Mucoid Strains of P. aeruginosa
2.2. Analysis of GMD Activity: Kinetic Parameters
2.3. GDP-Mannose Dehydrogenase: A Nucleosido-Protein
2.4. Inhibition of GMD by Guanosine and Derivatives
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Medium
4.2. Chemicals
4.3. GDP-Mannose Dehydrogenase Purification
4.4. Determination of GMD Activity
4.5. Phosphorus Nuclear Magnetic Resonance
4.6. Pufication and Analysis of GMD Associated Nucleotide
4.7. Synthesis of GMD Inhibitors
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govan, J.R.W.; Harris, G.S. Pseudomonas aeruginosa and cystic fibrosis: Unusual bacterial adaptation and pathogenesis. Microbiol. Sci. 1986, 3, 301–308. [Google Scholar]
- Yu, H.; Head, N.E. Persistent infections and immunity in cystic fibrosis. Front. Biosci. 2002, 7, 442–457. [Google Scholar] [CrossRef]
- Evans, L.R.; Linker, A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol. 1973, 116, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Estersen, F.; Hoïby, N.; Shand, G.H. Purification, characterization and immunological cross reactivity of alginate produced by mucoid Pseudomonas aeruginosa. J. Clin. Microbiol. 1989, 27, 691–699. [Google Scholar] [CrossRef]
- Chitnis, C.E.; Ohman, D.E. Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J. Bacteriol. 1990, 172, 2894–2900. [Google Scholar] [CrossRef]
- Franklin, M.J.; Ohman, D.E. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J. Bacteriol. 1993, 175, 5057–5065. [Google Scholar] [CrossRef]
- Remminghorst, U.; Rehm, B.H. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2006, 72, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Merighi, M.; Lee, V.T.; Hyodo, M.; Hayakawa, Y.; Lory, S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 2007, 65, 876–895. [Google Scholar] [CrossRef]
- Oglesby, A.G.; Farrow, J.M., 3rd; Lee, J.H.; Tomaras, A.P.; Greenberg, E.P.; Pesci, E.C.; Vasil, M.L. The influence of iron on Pseudomonas aeruginosa physiology: A regulatory link between iron and quorum sensing. J. Biol. Chem. 2008, 283, 15558–15567. [Google Scholar] [CrossRef]
- Franklin, M.J.; Ohman, D.E. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J. Bacteriol. 2002, 184, 3000–3007. [Google Scholar] [CrossRef]
- Franklin, M.J.; Chitnis, C.E.; Gacesa, P.; Sonesson, A.; White, D.C.; Ohman, D.E. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J. Bacteriol. 1994, 176, 1821–1830. [Google Scholar] [CrossRef]
- De Vault, J.D.; Berry, A.; Misra, T.K.; Darzins, A.; Chakrabarty, A.M. Environmental sensory signals and microbial pathogenesis. Bio/technology 1989, 7, 352–357. [Google Scholar]
- Deretic, V.; Gill, J.F.; Chakrabarty, A.M. Pseudomonas aeruginosa infection in cystic fibrosis: Nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res. 1986, 15, 4567–4581. [Google Scholar] [CrossRef]
- Deretic, V.; Gill, J.F.; Chakrabarty, A.M. Gene algD coding for GDP-mannose dehydrogenase is transcriptionally activated in mucoid strains. J. Bacteriol. 1987, 169, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kimbara, K.; Chakrabarty, A.M. Control of alginate synthesis in Pseudomonas aeruginosa: Regulation of the algR1 gene. Biochem. Biophys. Res. Commun. 1989, 164, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Konyecsni, W.M.; Deretic, V. DNA sequence and expression analysis of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. J. Bacteriol. 1990, 172, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, D.J.; Ohman, D.E. Pseudomonas aeruginosa algB, a two-component response regulator of the Ntrc family, is required for algD transcription. J. Bacteriol. 1991, 173, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, S.; Sakai, K.; Schlictman, D.; Chakrabarty, A.M. Signal transduction in exopolysaccharide alginate synthesis: Phosphorylation of the response regulator AlgR1 in Pseudomonas aeruginosa and Escherichia coli. Gene 1992, 112, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Mohr, C.D.; Martin, D.W. Mucoid Pseudomonas aeruginosa in cystic fibrosis: Signal transduction and histone-like elements in the regulation of bacterial virulence. Mol. Microbiol. 1991, 5, 1577–1583. [Google Scholar] [CrossRef]
- Mohr, C.D.; Leveau, J.H.J.; Krieg, D.P.; Hibler, N.S.; Deretic, V. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J. Bacteriol. 1992, 174, 6624–6633. [Google Scholar] [CrossRef]
- Kato, J.; Chakrabarty, A.M. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1991, 88, 1760–1764. [Google Scholar] [CrossRef]
- Delic-Attree, I.; Toussaint, B.; Vignais, P.M. Cloning and sequence analyses of the genes encoding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa. Gene 1995, 154, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Tomasek, P.; Darzins, A.; Chakrabarty, A.M. Gene amplification induces mucoid phenotype in rec2 Pseudomonas aeruginosa exposed to kanamycin. J. Bacteriol. 1986, 165, 510–516. [Google Scholar] [CrossRef]
- Roychoudhury, S.; May, T.B.; Gill, J.F.; Singh, S.K.; Feingold, D.S.; Chakrabarty, A.M. Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. J. Biol. Chem. 1989, 264, 9380–9385. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, S.; Chakrabarty, K.; Ho, Y.K.; Chakrabarty, A.M. Characterization of guanosine diphospho-D-mannose dehydrogenase from Pseudomonas aeruginosa. Structural analysis by limited proteolyses. J. Biol. Chem. 1992, 267, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Ye, R.W.; Schlictman, D.; Chakrabarty, A.M. Exopolysaccharide alginate synthesis in Pseudomonas aeruginosa: Enzymology and regulation of gene expression. Adv. Enzymol. Relat. Areas Mol. Biol. 1995, 70, 221–255. [Google Scholar]
- Snook, C.F.; Tipton, P.A.; Beamer, L.J. Crystal structure of GDP-mannose dehydrogenase: A key enzyme of alginate biosynthesis in P. aeruginosa. Biochemitry 2003, 42, 4558–4568. [Google Scholar] [CrossRef] [PubMed]
- Siegel, L.M.; Monty, K.J. Determination of weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta 1966, 112, 346–362. [Google Scholar] [CrossRef]
- Dickinson, F.M. Studies on the unusual behaviour of bovine liver UDP-glucose dehydrogenase in assays at acid and neutral pH and on the presence of tightly bound nucleotide material in purified preparations of this enzyme. Biochem. J. 1988, 255, 775–780. [Google Scholar] [CrossRef]
- Naught, L.E.; Gilbert, S.; Imhoff, R.; Snook, C.; Beamer, L.; Tipton, P. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Biochemistry 2002, 41, 9637–9645. [Google Scholar] [CrossRef]
- Tangy, F.; Moukkadem, M.; Vindimian, E.; Capmau, M.L.; Le Goffic, F. Mechanism of action of gentamycin components. Eur. J. Biochem. 1985, 147, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Preiss, J. Sugar nucleotide reactions in Arthrobacter. II. Biosynthesis of guanosine diphosphomannuronate. J. Biol. Chem. 1964, 239, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Knutson, C.A.; Jeanes, A. A new modification of the carbazole: Application to heteropolysaccharides. Anal. Biochem. 1968, 24, 470–481. [Google Scholar] [CrossRef]
- Bitter T and Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, M.; Eloumi, N.; Capmau, M.-L.; Hulen, C. Inhibition of alginate synthesis in mucoid strains of Pseudomonas aeruginosa. Path. Biol. 1991, 39, 606–612. (In French) [Google Scholar]
- Nichols, W.; Dorrington, S.M.; Slack, M.P.E.; Walmsmey, H.L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother. 1988, 132, 518–523. [Google Scholar] [CrossRef]
- Elloumi, N.; Moreau, B.; Aguiar, L.; Jaziri, N.; Sauvage, M.; Hulen, C.; Capmau, M.L. Inhibitors of GDP-mannose dehydrogenase of Pseudomonasz aeruginosa mucoid strains. Eur. J. Med. Chem. 1992, 27, 149–154. [Google Scholar] [CrossRef]
- Franzen, B.; Carruba, C.; Ashcom, J.; Franzen, J.S.; Feingold, D.S. Amino acid sequence of the tryptic peptide containing the catalytic site thiol of bovine liver UDP-glucose dehydrogenase. Fed. Proc. 1980, 39, 2000–2008. [Google Scholar]
- Bitar, K.G.; Firca, J.R.; Loper, J.C. Histidinol dehydrogenase from Salmonella typhimurium and Escherichia coli. Purification, some characteristics and the amino acid sequence around a reactive thiol group. Biochim. Biophys. Acta 1977, 493, 429–440. [Google Scholar] [CrossRef]
- Freas, N.; Newton, P.; Perozich, J. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships. FEBS Open Bio 2016, 6, 77–89. [Google Scholar] [CrossRef]
- Barbosa, J.A.R.G.; Sivaraman, J.; Li, Y.; Larocque, R.; Matte, A.; Schrag, J.D.; Cygler, M. Mechanism of action and NAD+–mode revealed by the crystal structure of L-histidinol dehydrogenase. Proc. Natl. Acad. Sci. USA 2002, 99, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Egger, S.; Chaikuad, A.; Kavanagh, K.L.; Oppermann, U.; Nidetzky, B. Structure and mechanism of human UDP-glucose 6-dehydrogenase. J. Biol. Chem. 2011, 286, 23877–23887. [Google Scholar] [CrossRef] [PubMed]
- Ordman, A.B.; Kirkwood, S. UDP-glucose dehydrogenase kinetics and their mechanistic implications. Biochim. Biophys. Acta 1977, 481, 25–32. [Google Scholar] [CrossRef]
- Tatnell, P.J.; Russell, N.J.; Gacesa, P. A metabolic study of the activity of GDP-mannose dehydrogenase and concentrations of activated intermediates of alginate biosynthesis in Pseudomonas aeruginosa. J. Gen. Microbiol. 1993, 139, 119–127. [Google Scholar] [CrossRef]
- Simonart, F.C.; Salo, W.L.; Kirkwood, S. The mechanism of action of UDP-glucose dehydrogenase. Biochem. Biophys. Res. Commun. 1966, 24, 120–126. [Google Scholar] [CrossRef]
- Pugashetti, B.K.; Vadas, L.; Prihar, H.S.; Feingold, D.S. GDP-mannose dehydrogenase and biosynthesis of alginate-like polysaccharide in a mucoid strain of Pseudomonas aeruginosa. J. Bacteriol. 1983, 153, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.A.; Smith, S.E.; Dean, R.T. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J. Gen. Microbiol. 1988, 134, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ramphal, R.; Vishawanath, S. Why Pseudomonas the colonisateur and why does it persist? Infection 1987, 15, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, S.; Pergolizzi, G.; Rejzek, M.; Field, R.A.; Miller, G.J. Chemoenzymatic synthesis of C6-modified sugar nucleotides to probe the GDP-D-mannose dehydrogenase from Pseudomonas aeruginosa. Org. Lett. 2019, 21, 4415–4419. [Google Scholar] [CrossRef]
- Ahmadipour, S.; Wahart, A.J.C.; Dolan, J.P.; Beswick, L.; Hawes, C.S.; Field, R.A.; Miller, G.J. Synthesis of C6-modified mannose 1-phosphate and evaluation of derived sugar nucleotides against GDP-mannose dehydrogenase. Beilstein J. Org. Chem. 2022, 18, 1379–1384. [Google Scholar] [CrossRef]
- Beswick, L.; Dimitriou, E.; Ahmadipour, S.; Zafar, A.; Rejzek, M.; Reynisson, J.; Field, R.A.; Miller, G.J. Inhibition of the GDP-D-mannose dehydrogenase from Pseudomonas aeruginosa using targeted sugar nucleotide probes. ACS Chem. Biol. 2020, 15, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Piggot, N.H.; Sutherland, I.W.; Jarman, T.R. Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa. Eur. J. Appl. Microbiol. Biotechnol. 1981, 13, 179–183. [Google Scholar] [CrossRef]
- Preiss, J. Guanosine 5’-diphosphomannose. In Methods of Enzymatic Analysis; Bergmeyer, J., Gragl, M., Eds.; VCH Weinheim: Weinheim, Germany, 1985; Volume 7, pp. 510–515. [Google Scholar]
Inhibitors | Percentage of GMD Inhibition at the Final Concentration of | ||
---|---|---|---|
0.1 mM | 0.5 mM | 1 mM | |
Mannose | 0 | 0 | 0 |
Guanosine | 3 ± 0.2 | 9 ± 2 | 20 ± 3 |
5′AG | 18 ± 1 | 64 ± 3 | 75 ± 2 |
5′APG | 33 ± 1 | 72 ± 2 | 85 ± 2 |
M5′ASG | 62 ± 2 | 82 ± 2 | 92 ± 3 |
AM5′ASG | 73 ± 2 | 90 ± 3 | 98 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulen, C. The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics 2023, 12, 1649. https://doi.org/10.3390/antibiotics12121649
Hulen C. The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics. 2023; 12(12):1649. https://doi.org/10.3390/antibiotics12121649
Chicago/Turabian StyleHulen, Christian. 2023. "The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains" Antibiotics 12, no. 12: 1649. https://doi.org/10.3390/antibiotics12121649
APA StyleHulen, C. (2023). The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics, 12(12), 1649. https://doi.org/10.3390/antibiotics12121649