Changes in the Use of Antibiotics for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Children: A 5-Year Retrospective, Single Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard of Care for MRSA Bacteremia
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.E.; Jevons, M.P.; Shooter, R.A.; Hunter, C.J.; Girling, J.A.; Griffiths, J.D.; Taylor, G.W. Nasal staphylococci and sepsis in hospital patients. Br. Med. J. 1959, 2, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.Y.; Sun, L.; Smith, D.L.; Laxminarayan, R. The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: A national observational study. Am. J. Epidemiol. 2013, 177, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Hammerschlag, M.R. Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Children: A Reappraisal of Vancomycin. Curr. Infect. Dis. Rep. 2019, 21, 37. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2020, 71, 1361–1364. [Google Scholar] [CrossRef] [PubMed]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef] [PubMed]
- Segala, F.V.; Bavaro, D.F.; Di Gennaro, F.; Salvati, F.; Marotta, C.; Saracino, A.; Murri, R.; Fantoni, M. Impact of SARS-CoV-2 Epidemic on Antimicrobial Resistance: A Literature Review. Viruses 2021, 13, 2110. [Google Scholar] [CrossRef] [PubMed]
- Garazzino, S.; Lo Vecchio, A.; Pierantoni, L.; Calò Carducci, F.I.; Marchetti, F.; Meini, A.; Castagnola, E.; Vergine, G.; Donà, D.; Bosis, S.; et al. Italian SITIP-SIP Pediatric Infection Study Group. Epidemiology, Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results from an Italian Multicenter Study. Front. Pediatr. 2021, 9, 649358. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Lorenzi, I.; Barabino, P.; Pistorio, A. Antibiotic defined daily dose in pediatrics. A single center study to proof the principle that a specific pediatric definition could be not needed. Enferm. Infecc. Microbiol. Clín. 2022. in press (In English) [Google Scholar] [CrossRef]
- ATC/DDD Index 2022. Available online: https://www.whocc.no/atc_ddd_index (accessed on 27 February 2022).
- Gustinetti, G.; Cangemi, G.; Bandettini, R.; Castagnola, E. Pharmacokinetic/pharmacodynamic parameters for treatment optimization of infection due to antibiotic resistant bacteria: A summary for practical purposes in children and adults. J. Chemother. 2018, 30, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Geriak, M.; Haddad, F.; Rizvi, K.; Rose, W.; Kullar, R.; LaPlante, K.; Yu, M.; Vasina, L.; Ouellette, K.; Zervos, M.; et al. Clinical Data on Daptomycin plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2019, 63, e02483-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royston, P. PTREND: Stata Module for Trend Analysis for Proportions; Statistical Software Components S426101; Boston College Department of Economics: Chestnut Hill, MA, USA, 2014. [Google Scholar]
- Racine, J.; Li, Q. Nonparametric estimation of regression functions with both categorical and continuous data. J. Econom. 2004, 119, 99–130. [Google Scholar] [CrossRef]
- Cuzick, J. A Wilcoxon-type test for trend. Stat. Med. 1985, 4, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Van Schooneveld, T.C.; Fey, P.D.; Rupp, M.E. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: A systematic review and meta-analysis. JAMA 2014, 312, 1552–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hal, S.J.; Lodise, T.P.; Paterson, D.L. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2012, 54, 755–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.H.; Kim, M.; Kim, C.J.; Cho, J.E.; Choi, Y.J.; Park, J.S.; Ahn, S.; Jang, H.C.; Park, K.H.; Jung, S.I.; et al. Impact of Vancomycin MIC on Treatment Outcomes in Invasive Staphylococcus aureus Infections. Antimicrob. Agents Chemother. 2017, 61, e01845-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridharan, K.; Al Daylami, A.; Ajjawi, R.; Al-Ajooz, H.; Veeramuthu, S. Clinical Pharmacokinetics of Vancomycin in Critically Ill Children. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Brisca, G.; Buratti, S.; Basso, L.; Miano, M.; Salvati, P.; Castagnola, E.; Moscatelli, A. Necrotizing pneumonia and severe COVID-19 in an infant with CR-BSI by MSSA. Pediatr. Int. 2022, 28, e15401. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, F.; Marotta, C.; Amicone, M.; Bavaro, D.F.; Bernaudo, F.; Frisicale, E.M.; Kurotschka, P.K.; Mazzari, A.; Veronese, N.; Murri, R.; et al. Italian young doctors’ knowledge, attitudes and practices on antibiotic use and resistance: A national cross-sectional survey. J. Glob. Antimicrob. Resist. 2020, 23, 167–173. [Google Scholar] [CrossRef] [PubMed]
Year | 2017 | 2018 | 2019 | 2020 | 2021 | Total | p-Value | Kendall’s Rank Correlation Coefficient |
---|---|---|---|---|---|---|---|---|
Total amount of delivered antibiotics, g DDD, n | Median (IQR) | |||||||
Vancomycin, DDD: 2 g | 2488.5 1244 | 2363.5 1182 | 1603 802 | 1903.5 952 | 1587.5 794 | 1903.5 (1603–2363.5) 952 (802–1182) | 0.086 1 0.086 2 | −0.800 |
Teicoplanin, DDD: 0.4 g | 253 633 | 332.8 832 | 171.4 429 | 257.8 645 | 133.4 334 | 253 (171.4–257.8) 633 (429–645) | 0.340 1 0.426 2 | −0.400 |
Daptomycin, DDD: 0.28 g | 19.6 70 | 96.2 344 | 108.4 387 | 176.6 631 | 225.9 807 | 108.4 (96.2–176.6) 387 (344–387) | 0.057 1 0.027 2 | 1.000 |
Ceftaroline, DDD: 1.2 g | 0 | 46.6 41 | 92.4 77 | 126 105 | 373.8 312 | 92.4 (46.6–126) 77 (41–105) | 0.057 1 0.027 2 | 1.000 |
Linezolid, DDD: 1.2 g | 126 105 | 444.6 371 | 267.6 223 | 196.8 164 | 237 198 | 237 (196.8–267.6) 198 (164–223) | 0.849 1 1.000 2 | 0.000 |
MRSA BSI, n (%) | ||||||||
Vancomycin MIC ≤ 0.5 mg/L | 2 (40.0) | 5 (45.4) | 2 (25.0) | 2 (14.3) | 0 | 11 (24.4) | 0.017 3 | - |
Vancomycin MIC = 1 mg/L | 3 (60.0) | 6 (54.5) | 6 (75.0) | 12 (85.7) | 7 (100) | 34 (75.6) | - | |
Total | 5 (100) | 11 (100) | 8 (100) | 14 (100) | 7 (100) | 45 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentino, M.S.; Borgia, P.; Deut, V.; Lorenzi, I.; Barabino, P.; Ugolotti, E.; Mariani, M.; Bagnasco, F.; Castagnola, E. Changes in the Use of Antibiotics for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Children: A 5-Year Retrospective, Single Center Study. Antibiotics 2023, 12, 216. https://doi.org/10.3390/antibiotics12020216
Valentino MS, Borgia P, Deut V, Lorenzi I, Barabino P, Ugolotti E, Mariani M, Bagnasco F, Castagnola E. Changes in the Use of Antibiotics for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Children: A 5-Year Retrospective, Single Center Study. Antibiotics. 2023; 12(2):216. https://doi.org/10.3390/antibiotics12020216
Chicago/Turabian StyleValentino, Maria Sole, Paola Borgia, Virginia Deut, Ines Lorenzi, Paola Barabino, Elisabetta Ugolotti, Marcello Mariani, Francesca Bagnasco, and Elio Castagnola. 2023. "Changes in the Use of Antibiotics for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Children: A 5-Year Retrospective, Single Center Study" Antibiotics 12, no. 2: 216. https://doi.org/10.3390/antibiotics12020216
APA StyleValentino, M. S., Borgia, P., Deut, V., Lorenzi, I., Barabino, P., Ugolotti, E., Mariani, M., Bagnasco, F., & Castagnola, E. (2023). Changes in the Use of Antibiotics for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Children: A 5-Year Retrospective, Single Center Study. Antibiotics, 12(2), 216. https://doi.org/10.3390/antibiotics12020216