Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prevalence of Microbial Indicators in Ready-to-Eat Strawberries and Gooseberries Sold in Retail Low-Cost Markets and Farm Growers
2.2. Prevalence of Microbial Indicators among Natural Juices Expanded in the Low-Cost Courts
2.3. AR Profile
2.4. Hemolytic Phenotype of Selected MDR Isolates
2.5. Origin of AR
3. Materials and Methods
3.1. Samples Selection and Processing
3.2. Bacteriological Analysis
3.3. Physicochemical Analysis
3.4. Antibiotic Susceptibility Testing
3.5. Hemolysis Test
3.6. “Plasmid Curing” Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagos-Burbano, T.C.; Mejía-España, D.F.; Arango-Bedoya, O.; Villaquirán-Samboni, Z.Y.; Lagos-Santander, L.K.; Duarte-Alvarado, D.E. Physicochemical properties of Colombian cape gooseberry hybrids in the selection of high-quality materials. Pesqui. Agropecu. Bras. 2020, 55. [Google Scholar] [CrossRef]
- Asao, T.; Asaduzzaman, M. Strawberry- Pre- and Post-Harvest Management Techniques for Higher Fruit Quality; IntechOpen: London, UK, 2019; p. 156. [Google Scholar] [CrossRef]
- González-Locarno, M.; Maza Pautt, Y.; Albis, A.; Florez López, E.; Grande Tovar, C.D. Assessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Quality. Appl. Sci. 2020, 10, 2684. [Google Scholar] [CrossRef]
- Domenico, B.; De Paula, B.A.; Lorenza, L.; La Torre, G.; Cocchira, R.A.; Sestili, C.; Del Cimmuto, A.; La tprre, G. The Impact of Environmental Alterations on Human Microbiota and Infectious Diseases. In Environmental Alteration Leads to Human Disease Sustainable Development Goals Series; Ingegnoli, V., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Panghal, A.; Mor, R.S.; Kamble, S.S.; Khan, S.A.R.; Kumar, D.; Soni, G. Global food security post COVID-19: Dearth or dwell in the developing world? Agron. J. 2022, 114, 878–884. [Google Scholar] [CrossRef]
- Zurita, J.; Yánez, F.; Sevillano, G.; Ortega-Paredes, D.; Paz, Y.; Miño, A. Ready-to-eat street food: A potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 2020, 70, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Hou, S.; Pan, X.; Xu, C.; Li, J.; Yu, H.; Chase, J.; Atwill, E.R.; Li, X.; Chen, K.; et al. Microbiological Contamination of Strawberries from U-Pick Farms in Guangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 4910. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.A.; Baraki, N.; Gobena Tesema, T. Pathogenic Bacterial Species in Locally Prepared Fresh Fruit Juices Sold in Juice Houses of Eastern Ethiopia. Microbiol. Insights 2021, 14, 11786361211060736. [Google Scholar] [CrossRef] [PubMed]
- NTE INEN 1529-8:2015; Control Microbiológico de los Alimentos. Detección y Recuento de Escherichia coli Presuntiva por la Técnica del Número Más Probable. Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2015; pp. 1–13. Available online: https://archive.org/stream/ec.nte.1529.8.1990#mode/2up (accessed on 30 April 2019).
- Ministerio de Producción, Comercio Exterior, Inversiones y Pesca. Oferta de Uvilla Ecuatoriana en Mercados Potenciales. 2020. Available online: https://www.proecuador.gob.ec/oferta-de-uvilla-ecuatoriana-en-mercados-potenciales-2020/ (accessed on 10 October 2021).
- Instituto Nacional de Estadisticas y Censos (INEC). 2019. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Sociales/Camas_Egresos_Hospitalarios/Cam_Egre_Hos_2019/Boletin%20tecnico%20ECEH_2019.pdf (accessed on 10 October 2020).
- Fischer, G.; Almanza-merchán, P.J.; Miranda, D. Importancia y cultivo de la Uchuva (Physalis peruviana L.). Rev. Bras. Frutic. 2014, 36, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Agricultura Ganaderia Acuacultura y Pesca. Zonificación Agroecologica Economica del Cultivo de Uvilla (Physalis peruviana L.) en el Ecuador Continental. Resumen Ejecutivo. 2014. Available online: https://fliphtml5.com/wtae/tszd/basic (accessed on 10 January 2022).
- Beltran, Á.; Ramos, M.; Álvarez, M. Estudio de la Vida Útil de Fresas (Fragaria vesca) Mediante Tratamiento con Radiación Ultravioleta de Onda Corta (UV-C). Rev. Tecnol. ESPOL 2010, 23, 17–24. [Google Scholar]
- Lado, J.; Vicente, E.; Manzzioni, A.; Ghelfi, B.; Ares, G. Obtenido de Evaluación de Calidad de Fruta y Aceptabilidad de Diferentes Cultivares de Frutilla. Scielo. 2012. Available online: http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482012000100007#1 (accessed on 21 May 2020).
- Walsh, C.; Fanning, S. Antimicrobial resistance in foodborne pathogens—A cause for concern? Curr. Drug. Targets 2008, 9, 808–815. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Cerna-Cortes, J.F.; Rangel-Vargas, E.; Torres-Vitela, M.R.; Villarruel-López, A.; Gutiérrez-Alcántara, E.J.; Castro-Rosas, J. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico. Foodborne Pathog. Dis. 2016, 13, 269–274. [Google Scholar] [CrossRef]
- Srisamran, J.; Atwill, E.R.; Chuanchuen, R.; Jeamsripong, S. Detection and analysis of indicator and pathogenic bacteria in conventional and organic fruits and vegetables sold in retail markets. Food Qual. Safety 2022, 6, fyac013. [Google Scholar] [CrossRef]
- Saksena, R.; Malik, M.; Gaind, R. Bacterial contamination and prevalence of antimicrobial resistance phenotypes in raw fruits and vegetables sold in Delhi, India. J. Food Saf. 2020, 40, 1. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Newman, M.C.; Archbold, D.D.; Hamilton-Kemp, T.R. Survival of Escherichia coli O157:H7 on strawberry fruit and reduction of the pathogen population by chemical agents. J Food Protect. 2001, 64, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- CPE INEN-CODEX CAC/GL 21. Principles for the Establishment and Application of Microbiological Criteria for Foods.(CAC/GL 21-1997, IDT). 2013. Available online: https://www.normalizacion.gob.ec/buzon/normas/cpe_inen_codex_cac_gl_21.pdf (accessed on 8 November 2022).
- NTE INEN 2 337:2008; Fruit Juice, Purees, Concentrates, Néctar, and Beverage. Specifications. Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2008. Available online: https://www.normalizacion.gob.ec/buzon/normas/2337.pdf (accessed on 15 January 2019).
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. 2.5. Vegetables, Fruits and Products Thereof. OJEU. L 338/23. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073&from=EN (accessed on 23 November 2022).
- Pan, F.; Li, X.; Carabez, J.; Ragosta, G.; Fernandez, K.L.; Wang, E.; Thiptara, A.; Antaki, E.; Atwill, E.R. Cross-sectional survey of indicator and pathogenic bacteria on vegetables sold from Asian vendors at farmers’ markets in northern California. J. Food Protect. 2015, 78, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Mritunjay, S.K.; Kumar, V. A study on prevalence of microbial contamination on the surface of raw salad vegetables. 3 Biotech 2017, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krahulcová, M.; Micajová, B.; Olejníková, P.; Cverenkárová, K.; Bírošová, L. Microbial Safety of Smoothie Drinks from Fresh Bars Collected in Slovakia. Foods 2021, 10, 551. [Google Scholar] [CrossRef]
- Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48. [Google Scholar] [CrossRef]
- Al-Kharousi, Z.S.; Guizani, N.; Al-Sadi, A.M.; Al-Bulushi, I.M.; Shaharoona, B. Hiding in fresh fruits and vegetables: Opportunistic pathogens may cross geographical barriers. Int. J. Microbiol. 2016, 2016, 4292417. [Google Scholar] [CrossRef]
- da Silva, A.C.; Rodrigues, M.X.; Silva, N. Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: A review. Braz. J. Microbiol. 2020, 51, 347–356. [Google Scholar] [CrossRef]
- Soares, L.S.; Almeida, R.C.C.; Cerqueira, E.S.; Carvalho, J.S.; Nunes, I.L. Knowledge, attitudes and practices in food safety and the presence of coagulase positive staphylococci on hands of food handlers in the schools of Camaçari, Brazil. Food Control. 2012, 27, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Doulgeraki Agapi, I.; Di Ciccio, P.; Ianieri, A.; Nychas, G.E. Methicillin-resistant food-related Staphylococcus aureus: A review of current knowledge and biofilm formation for future studies and applications. Res. Microbiol. 2017, 168, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Delgado, S.; Vázquez-Sánchez, D.; Martínez, B.; Cabo, M.L.; Rodríguez, A.; Herrera, J.J.; García, P. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl. Environ. Microbiol. 2012, 78, 8547–8554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullen, J.J.; Rogers, H.J.; Spalding, P.B.; Ward, C.G. Iron and infection: The heart of the matter. FEMS Immunol. Med. Microbiol. 2005, 43, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Bhakdi, S.; Mackman, N.; Menestrina, G.; Gray, L.; Hugo, F.; Seeger, W.; Holland, I.B. The hemolysin of Escherichia coli. Eur. J. Epidemiol. 1988, 4, 135–143. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Gao, H.; Xu, P.; Wang, M.; Li, A.; Miao, M.; Xie, X.; Deng, Y.; Zhou, H.; et al. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype. Front. Cell. Infect. Microbiol. 2016, 18, 146. [Google Scholar] [CrossRef] [Green Version]
- Spengler, G.; Molnar, A.; Schelz, Z.; Amaral, L.; Sharples, D.; Molnar, J. The mechanism of plasmid curing in bacteria. Curr. Drug Targets 2006, 7, 823–841. [Google Scholar] [CrossRef]
- Kabir, A.; Das, A.; Kabir, M. Incidence of antibiotic resistant pathogenic bacteria in vegetable items sold by local and super shops in Dhaka city. Stamford J. Microbiol. 2015, 4, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Iwu, C.D.; Okoh, A.I. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4407. [Google Scholar] [CrossRef]
- Tenea, G.N.; Olmedo, D. Antimicrobial Cocktail Combining Specific Peptide Extracts from Native Probiotic Bacteria Hamper Adulteration of Ready-to-Eat Mango Wedges. Appl. Sci. 2021, 11, 2246. [Google Scholar] [CrossRef]
- NTE INEN 1529-15:2009; Control Microbiológico de los Alimentos. Toma, Envío y Preparación de Muestras Para el Análisis Microbiológico. Instituto Ecuatoriano de Normalización (INEN): Quito, Ecuador, 2009. Available online: https://archive.org/stream/ec.nte.1529.15.1996/ec.nte.1529.15.1996_djvu.txt (accessed on 10 April 2019).
- ISO 6579:2002; Microbiology-General Guidance on Methods for the Detection of Salmonella. International Organization for Standardization: Geneve, Switzerland, 2002.
- ISO 6888-1:1999/Amd 2:2018; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Technique Using Baird-Parker Agar Medium—Amendment 2: Inclusion of an Alternative Confirmation Test Using RPFA Stab Method. International Organization for Standardization: Geneve, Switzerland, 2018.
- European Food Safety authority (EFSA). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Buxton, R. Blood Agar Plates and Hemolysis Protocols. Am. Soc. Microbiol. 2005, 1–9. Available online: https://www.asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-2885.pdf (accessed on 10 October 2019).
- Bouanchaud, D.H.; Scavizzi, M.R.; Chabbert, Y.A. Elimination by Ethidium Bromide of Antibiotic Resistance in Enterobacteria and Staphylococci. J. Gen. Microbiol. 1968, 54, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaman, M.A.; Pasha, M.H.; Akhter, M.Z. Plasmid curing of Escherichia coli cells with ethidium bromide, sodium dodecyl sulfate and acridine Orange. Bangladesh J. Microbiol. 2011, 27, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Poppe, C.; Gyles, C.L. Tagging and Elimination of Plasmids in Salmonella of Avian Origin. Vet. Microbiol. 1988, 18, 73–87. [Google Scholar] [CrossRef]
- RStudio: Integrated Development for R, Version 1.2.1335; RStudio, Inc.: Boston, MA, USA, 2018; Available online: http://www.rstudio.com/ (accessed on 10 September 2022).
Fruit | Sample Code | Total Solids (°Brix) | pH | Total Coliforms | Total Aerobes | E. coli spp. | Enterobacter spp. | Staphylococcus spp. | Shigella spp. | Yeasts | Molds |
---|---|---|---|---|---|---|---|---|---|---|---|
log CFU/ g | |||||||||||
Strawberry | SFS | 9.02 ± 0.15 | 3.38 ± 0.37 | 3.61 ± 0.18 | 2.24 ± 0.34 | 1.99 ± 0.22 | 2.19 ± 0.22 | 2.61 ± 0.15 | 0.74 ± 0.19 | 0.89 ± 0.16 | 1.45 ± 0.18 |
SFM | 9.24 ± 0.29 | 3.53 ± 0.24 | 3.66 ± 0.16 | 2.35 ± 0.16 | 3.61 ± 0.34 | 2.17 ± 0.18 | 2.01 ± 0.37 | 0.59 ± 0.33 | 1.23 ± 0.18 | 1.99 ± 0.24 | |
Gooseberry | PFS | 12.91 ± 0.37 | 4.32 ± 0.15 | 3.08 ± 0.22 | 2.71± 0.17 | (-) | 2.48 ± 0.37 | 2.92 ± 0.15 | (-) | 3.08 ± 0.22 | 1.02 ± 0.25 |
PFM | 12.78 ± 0.22 | 3.38 ± 0.22 | 3.85 ± 0.37 | 2.76 ± 0.18 | (-) | 3.01 ± 0.24 | 2.11± 0.24 | (-) | 4.53 ± 0.37 | 1.57 ± 0.26 |
Juice Code | °Brix | pH | Total Coliforms | Total Aerobes | E. coli | Enterobacter spp. | Salmonella spp. | Shigella spp. | Yeasts/Molds |
---|---|---|---|---|---|---|---|---|---|
log CFU/mL | |||||||||
B1 | 4.01 ± 0.01 | 4.15 ± 0.01 | 3.01 ± 0.24 | 5.18 ± 0.15 | (-) | 2.78 ± 0.37 | (-) | 2.01 ± 0.24 | (-)/(-) |
B2 | 4.82 ± 0.01 | 3.89 ± 0.01 | 2.14 ± 0.15 | 2.85 ± 0.37 | 2.71 ± 0.24 | 3.09 ± 0.22 | 2.47 ± 0.37 | 1.41 ± 0.24 | (-)/(-) |
B3 | 7.91 ± 0.01 | 4.32 ± 0.01 | 3.25 ± 0.37 | 4.36 ± 0.15 | (-) | 3.05 ± 0.18 | 2.01 ± 0.37 | 1.91 ± 0.24 | (-)/(-) |
B4 | 4.02 ± 0.01 | 4.02 ± 0.01 | 1.02 ± 0.02 | 3.95 ± 0.37 | 2.59 ± 0.22 | 4.09 ± 0.22 | 1.69 ± 0.37 | 2.01 ± 0.33 | (-)/(-) |
B5 | 2.02 ± 0.01 | 2.05 ± 0.01 | 1.47 ± 0.38 | 3.91 ± 0.24 | (-) | 1.39 ± 0.22 | 1.89 ± 0.38 | 1.88 ± 0.34 | (-)/(-) |
B6 | 4.01 ± 0.01 | 5.01 ± 0.01 | 1.38 ± 0.02 | 4.94 ± 0.24 | (-) | 1.48 ± 0.38 | 2.08 ± 0.37 | (-) | 2.03 ± 0.33/ (-) |
B7 | 9.81 ± 0.01 | 3.95 ± 0.01 | 3.31 ± 0.24 | 2.19 ± 0.22 | 3.01 ± 0.24 | 2.04 ± 0.24 | 1.91 ± 0.37 | (-) | 2.18 ± 0.17/(-) |
B8 | 8.41 ± 0.01 | 4.81± 0.01 | 2.75 ± 0.37 | 2.69 ± 0.22 | (-) | 1.95 ± 0.37 | 1.53 ± 0.33 | 1.94 ± 0.33 | 1.54 ± 0.37/(-) |
B9 | 7.51 ± 0.01 | 3.97 ± 0.01 | 3.89 ± 0.22 | 4.08 ± 0.38 | (-) | 3.06 ± 0.15 | (-) | 1.83 ± 0.33 | 3.63 ± 0.33/(-) |
B10 | 8.91 ± 0.01 | 3.58 ± 0.01 | 4.49 ± 0.22 | 1.78 ± 0.38 | 2.13 ± 0.18 | 3.19 ± 0.38 | 1.95 ± 0.18 | 1.95 ± 0.18 | 4.26 ± 0.15/(-) |
B11 | 7.01 ± 0.01 | 3.99 ± 0.01 | 4.29 ± 0.22 | 5.05 ± 0.24 | 3.95 ± 0.37 | 4.05 ± 0.18 | 2.26 ± 0.15 | 2.31 ± 0.38 | 3.45 ± 0.18/(-) |
B12 | 12.2 ± 0.01 | 6.74 ± 0.01 | 2.78 ± 0.38 | 4.94 ± 0.15 | (-) | 2.53 ± 0.33 | 2.04 ± 0.33 | (-) | 3.17 ± 0.18/(-) |
B13 | 8.11 ± 0.01 | 3.77 ± 0.01 | 3.38 ± 0.38 | 4.87 ± 0.38 | (-) | 3.89 ± 0.22 | 1.78 ± 0.37 | 1.54 ± 0.17 | 2.72 ± 0.33/(-) |
B14 | 7.01 ± 0.01 | 4.32 ± 0.01 | 3.81 ± 0.24 | 2.81 ± 0.24 | (-) | 3.08 ± 0.38 | 1.48 ± 0.37 | 1.94 ± 0.17 | 3.81 ± 0.24/(-) |
B15 | 8.71 ± 0.01 | 4.07 ± 0.01 | 2.95 ± 0.37 | 2.85 ± 0.15 | (-) | 2.94 ± 0.17 | 1.31 ± 0.24 | 1.95 ± 0.18 | 3.12 ± 0.22/(-) |
B16 | 9.62 ± 0.01 | 4.01 ± 0.01 | 3.81 ± 0.24 | 2.93 ± 0.17 | 2.61 ± 0.24 | 2.81 ± 0.24 | 1.02 ± 0.22 | 2.04 ± 0.17 | 3.08 ± 0.18/(-) |
B17 | 9.01 ± 0.01 | 4.56 ± 0.01 | 3.06 ± 0.15 | 3.69 ± 0.22 | 2.95 ± 0.37 | 2.73 ± 0.17 | 1.93 ± 0.33 | 1.45 ± 0.37 | (-)/(-) |
B18 | 11.31 ± 0.01 | 5.61± 0.01 | 3.05 ± 0.24 | 2.48 ± 0.02 | 2.31 ± 0.24 | (-) | (-) | 1.74 ± 0.24 | 2.31 ± 0.24/(-) |
B19 | 11.61 ± 0.01 | 3.51 ± 0.01 | 3.30 ± 0.24 | 2.31 ± 0.24 | 2.01 ± 0.24 | 2.64 ± 0.24 | 1.78 ± 0.33 | (-) | 2.48 ± 0.37/(-) |
B20 | 16.51 ± 0.01 | 5.62 ± 0.01 | 2.99 ± 0.37 | 2.01 ± 0.24 | 1.18 ± 0.15 | (-) | (-) | 2.81 ± 0.24 | 2.47 ± 0.18/(-) |
Variables | °Brix | pH | TCOL | AEROB | EC | ENT | SALM | SHIGA | YE&M |
---|---|---|---|---|---|---|---|---|---|
°Brix | 1 | 0.576 | 0.457 | −0.486 | 0.299 | −0.346 | −0.314 | 0.446 | 0.467 |
pH | 0.576 | 1 | 0.005 | 0.068 | 0.202 | −0.255 | −0.032 | 0.458 | 0.196 |
TCOL | 0.457 | 0.005 | 1 | −0.227 | 0.285 | 0.275 | 0.178 | 0.469 | 0.664 |
AEROB | −0.486 | 0.068 | −0.227 | 1 | 0.050 | 0.323 | 0.415 | −0.098 | −0.246 |
EC | 0.299 | 0.202 | 0.285 | 0.050 | 1 | 0.378 | 0.284 | 0.289 | 0.258 |
ENT | −0.346 | −0.255 | 0.275 | 0.323 | 0.378 | 1 | 0.564 | 0.155 | 0.085 |
SALM | −0.314 | −0.032 | 0.178 | 0.415 | 0.284 | 0.564 | 1 | 0.021 | −0.008 |
SHIGA | 0.446 | 0.458 | 0.469 | −0.098 | 0.289 | 0.155 | 0.021 | 1 | 0.277 |
YE&M | 0.467 | 0.196 | 0.664 | −0.246 | 0.258 | 0.085 | −0.008 | 0.277 | 1 |
Samples | Selected Isolates | Hemolysis (%) | ||
---|---|---|---|---|
Beta | Alfa | Gamma | ||
Strawberries | E. coli (n = 72) | 88.89 | 11.11 | 0 |
Shigella ssp. (n = 72) | 4.17 | 95.83 | 0 | |
Enterobacter spp. (n = 90) | 61.11 | 37.50 | 1.39 | |
Staphylococcus spp. (n = 40) | 100.00 | 0.00 | 0 | |
Gooseberries | Enterobacter spp. (n = 40) | 62.50 | 37.50 | 0 |
Staphylococcus spp. (n = 40) | 100.00 | 0.00 | 0 | |
Juices | Enterobacter spp. (n = 235) | 82.55 | 17.45 | 0 |
E. coli (n = 134) | 76.87 | 23.13 | 0 | |
Shigella spp. (n = 194) | 0.00 | 100.00 | 0 | |
Salmonella spp. (n = 149) | 0.00 | 100.00 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenea, G.N.; Reyes, P.; Molina, D.; Ortega, C. Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance. Antibiotics 2023, 12, 236. https://doi.org/10.3390/antibiotics12020236
Tenea GN, Reyes P, Molina D, Ortega C. Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance. Antibiotics. 2023; 12(2):236. https://doi.org/10.3390/antibiotics12020236
Chicago/Turabian StyleTenea, Gabriela N., Pamela Reyes, Diana Molina, and Clara Ortega. 2023. "Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance" Antibiotics 12, no. 2: 236. https://doi.org/10.3390/antibiotics12020236
APA StyleTenea, G. N., Reyes, P., Molina, D., & Ortega, C. (2023). Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance. Antibiotics, 12(2), 236. https://doi.org/10.3390/antibiotics12020236