Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection, Bacterial Isolation and Identification
2.3. Antimicrobial Resistance Profile
2.3.1. Detection of Methicillin-Resistant Strains
2.3.2. Detection of β-Lactamase Producing Strains
2.3.3. Assay for Vancomycin Resistance
2.3.4. Assay for Inducible Clindamycin Resistance
2.4. Heavy Metal Tolerance
2.5. Detection of Virulence Potentials
2.5.1. Haemolysin Production
2.5.2. Gelatinase Activity
2.5.3. Casein Hydrolysis
2.5.4. Lipase Activity
2.5.5. Amylase Production
2.5.6. Biofilm Production
3. Data Analysis
4. Results
4.1. Occurrence of S. aureus and other Staphylococcus Species in Horses
4.2. Occurrence of Methicillin-Resistant and Methicillin-Susceptible S. aureus
4.3. Antimicrobial Resistance Profile S. aureus Isolates
4.3.1. Vancomycin and Inducible Clindamycin Resistance of S. aureus Isolates
4.3.2. β-Lactamase Production by S. aureus Isolates
4.4. Virulence Potentials of Isolates
4.5. Heavy Metal Tolerance of S. aureus Isolates
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aires-de-Sousa, M. Methicillin-Resistant Staphylococcus aureus among Animals: Current Overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Cadernos Pesqui. 2017, 43, 1–7. [Google Scholar]
- Alhmidi, H.; Cadnum, J.L.; Koganti, S.; Jencson, A.L.; Rutter, J.D.; Bonomo, R.A.; Wilson, B.M.; Mayer, J.; Samore, M.H.; Donskey, C.J. Shedding of Methicillin-Resistant Staphylococcus aureus by Colonized Patients during Procedures and Patient Care Activities. Infect. Control Hosp. Epidemiol. 2019, 40, 328–332. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Ugwu, I.C.; Onah, C.U. Occurrence and Antibiogram of Generic Extended-Spectrum Cephalosporin-Resistant and Extended-Spectrum β-Lactamase-Producing Enterobacteria in Horses. Maced. Vet. Rev. 2018, 41, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Odetokun, I.A.; Maurischat, S.; Adetunji, V.O.; Fetsch, A. Methicillin-Resistant Staphylococcus aureus from Municipal Abattoirs in Nigeria: Showing Highly Similar Clones and Possible Transmission from Slaughter Animals to Humans. Foodborne Pathog. Dis. 2022, 19, 56–61. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S.; et al. Molecular Epidemiology, Genetic Diversity and Antimicrobial Resistance of Staphylococcus aureus Isolated from Chicken and Pig Carcasses, and Carcass Handlers. PLoS ONE 2020, 15, e0232913. [Google Scholar] [CrossRef]
- Islam, M.Z.; Espinosa-Gongora, C.; Damborg, P.; Sieber, R.N.; Munk, R.; Husted, L.; Moodley, A.; Skov, R.; Larsen, J.; Guardabassi, L. Horses in Denmark Are a Reservoir of Diverse Clones of Methicillin-Resistant and -Susceptible Staphylococcus aureus. Front. Microbiol. 2017, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.E.C. Methicillin-Resistant Staphylococcus aureus in Horses: Aspects of Detection, Clinical Infection and the Potential for Zoonotic Transmission; Doctoral Dissertation, University of Guelph: Guelph, ON, Canada, 2008. [Google Scholar]
- Weese, J.S.; Rousseau, J.; Traub-Dargatz, J.L.; Willey, B.M.; McGeer, A.J.; Low, D.E. Community-Associated Methicillin-Resistant Staphylococcus aureus in Horses and Humans Who Work with Horses. J. Am. Vet. Med. Assoc. 2005, 226, 580–583. [Google Scholar] [CrossRef] [PubMed]
- McElwee, M.; Griffith, S.; Mediavilla, J.; Kreiswirth, B.; Voyich, J.; Moreaux, S. Characterization of Staphylococcus aureus in Horses and Horse Personnel in Southwest Montana. J. Equine Vet. Sci. 2009, 29, 490–491. [Google Scholar] [CrossRef]
- Pantosti, A. Methicillin-Resistant Staphylococcus aureus Associated with Animals and Its Relevance to Human Health. Front. Microbiol. 2012, 3, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuny, C.; Witte, W. Livestock Associated MRSA Detected from Livestock: The Impact on Humans. Fleischwirtschaft 2013, 93, 108–111. [Google Scholar]
- Álvarez–Narváez, S.; Berghaus, L.J.; Morris, E.R.A.; Willingham-Lane, J.M.; Slovis, N.M.; Giguere, S.; Cohen, N.D. A Common Practice of Widespread Antimicrobial Use in Horse Production Promotes Multi-Drug Resistance. Sci. Rep. 2020, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Isgren, C. Antimicrobial Resistance in Horses. Vet. Rec. 2018, 183, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Isgren, C.M. Improving Clinical Outcomes via Responsible Antimicrobial Use in Horses. Equine Vet. Educ. 2021, 34, 482–492. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C.; Mgbeahuruike, A.C.; Ikpendu, C.N.; Okafor, N.A.; Oguttu, J.W. Epidemiology and Traits of Mobile Colistin Resistance (Mcr) Gene-Bearing Organisms from Horses. Microorganisms 2022, 10, 1499. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Okorie-Kanu, O.J.; Ogugua, A.J.; Ezenduka, E.V.; Anidebe, C.O. Occurrence, Antibiogram and Vancomycin Resistance of Generic Enterococci in Horses in Nigeria. Rev. Med. Vet. 2019, 170, 46–52. [Google Scholar]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Anafo, R.B.; Atiase, Y.; Kotey, F.C.N.; Dayie, N.T.K.D.; Tetteh-Quarcoo, P.B.; Duodu, S.; Osei, M.M.; Alzahrani, K.J.; Donkor, E.S. Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Carriage among Patients with Diabetes at the Korle Bu Teaching Hospital. PLoS ONE 2021, 16, e0257004. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Singh, A.; David, M.Z.; Bartsch, S.M.; Slayton, R.B.; Huang, S.S.; Zimmer, S.M.; Potter, M.A.; Macal, C.M.; Lauderdale, D.S.; et al. The Economic Burden of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA). Clin. Microbiol. Infect. 2013, 19, 528–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uematsu, H.; Yamashita, K.; Kunisawa, S.; Fushimi, K.; Imanaka, Y. Estimating the Disease Burden of Methicillin-Resistant Staphylococcus aureus in Japan: Retrospective Database Study of Japanese Hospitals. PLoS ONE 2017, 12, e0179767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timsina, R.; Shrestha, U.; Singh, A.; Timalsina, B. Inducible Clindamycin Resistance and Erm Genes in Staphylococcus aureus in School Children in Kathmandu, Nepal. Future Sci. OA 2021, 7, FSO361. [Google Scholar] [CrossRef]
- Amin, A.N.; Cerceo, E.A.; Deitelzweig, S.B.; Pile, J.C.; Rosenberg, D.J.; Sherman, B.M. Hospitalist Perspective on the Treatment of Skin and Soft Tissue Infections. Mayo Clin. Proc. 2014, 89, 1436–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, W.; Abou Fayad, A.G.; Nasser, A.; Haraoui, L.P.; Dewachi, O.; Abou-Sitta, G.; Nguyen, V.K.; Abara, A.; Karah, N.; Landecker, H.; et al. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. Baumannii by Selecting for Antibiotic and Heavy Metal Co-Resistance Mechanisms. Front. Microbiol. 2020, 11, 68. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Hugie, C.N.; Kile, M.L.; Navab-Daneshmand, T. Association between Heavy Metals and Antibiotic-Resistant Human Pathogens in Environmental Reservoirs: A Review. Front. Environ. Sci. Eng. 2019, 13, 46. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Zainulabdeen, S.M.S.; Dakl, A.A. Review Article Pathogenicity and Virulence Factors in Staphylococcus aureus. Almuthanna J. Pure Sci. 2021, 8, 109–119. [Google Scholar] [CrossRef]
- Singh, V.; Phukan, U.J. Interaction of Host and Staphylococcus aureus Protease-System Regulates Virulence and Pathogenicity. Med. Microbiol. Immunol. 2019, 208, 585–607. [Google Scholar] [CrossRef] [PubMed]
- Preda, M.; Mihai, M.M.; Popa, L.I.; Diţu, L.M.; Holban, A.M.; Manolescu, L.S.C.; Popa, G.L.; Muntean, A.A.; Gheorghe, I.; Chifiriuc, C.M.; et al. Phenotypic and Genotypic Virulence Features of Staphylococcal Strains Isolated from Difficult-to-Treat Skin and Soft Tissue Infections. PLoS ONE 2021, 16, e0246478. [Google Scholar] [CrossRef]
- Rynhoud, H.; Meler, E.; Gibson, J.S.; Price, R.; Maguire, T.; Farry, T.; Bennett, E.; Hartono, J.; Soares Magalhães, R.J. Epidemiology of Methicillin Resistant Staphylococcus Species Carriage in Companion Animals in the Greater Brisbane Area, Australia. Res. Vet. Sci. 2021, 136, 138–142. [Google Scholar] [CrossRef]
- Axon, J.E.; Carrick, J.B.; Barton, M.D.; Collins, N.M.; Russell, C.M.; Kiehne, J.; Coombs, G. Methicillin-Resistant Staphylococcus aureus in a Population of Horses in Australia. Aust. Vet. J. 2011, 89, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-K.; Hwang, J.-Y.; Park, C.-S.; Cho, G.-J. Frequencies and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Horses in South Korea. Open Agric. J. 2018, 12, 148–155. [Google Scholar] [CrossRef]
- Dastmalchi Saei, H.; Safari, E. Methicillin Resistance and Clonal Diversity of Staphylococcus aureus Isolated from Nasal Samples of Healthy Horses in Iran. Ann. Microbiol. 2019, 69, 923–931. [Google Scholar] [CrossRef]
- Zunita, Z.; Bashir, A.; Hafizal, A. Occurrence of Multidrug Resistant Staphylococcus aureus in Horses in Malaysia. Vet. World 2008, 1, 165. [Google Scholar]
- Tirosh-Levy, S.; Steinman, A.; Carmeli, Y.; Klement, E.; Navon-Venezia, S. Prevalence and Risk Factors for Colonization with Methicillin Resistant Staphylococcus aureus and Other Staphylococci Species in Hospitalized and Farm Horses in Israel. Prev. Vet. Med. 2015, 122, 135–144. [Google Scholar] [CrossRef]
- Little, S.V.; Hillhouse, A.E.; Lawhon, S.D.; Bryan, L.K. Analysis of Virulence and Antimicrobial Resistance Gene Carriage in Staphylococcus aureus Infections in Equids Using Whole-Genome Sequencing. mSphere 2021, 6, e00196-20. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Caruso, M.; Normanno, G.; Latorre, L.; Miccolupo, A.; Fraccalvieri, R.; Intini, F.; Manginelli, T.; Santagada, G. High Occurrence of Methicillin-Resistant Staphylococcus aureus in Horses at Slaughterhouses Compared with Those for Recreational Activities: A Professional and Food Safety Concern? Foodborne Pathog. Dis. 2017, 14, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, U.; von Lützau, K.; Schlattmann, A.; Rösler, U.; Köck, R.; Becker, K. Zoonotic Multidrug-Resistant Microorganisms among Non-Hospitalized Horses from Germany. One Health 2019, 7, 100091. [Google Scholar] [CrossRef] [PubMed]
- Mallardo, K.; Nizza, S.; Fiorito, F.; Pagnini, U.; de Martino, L. A Comparative Evaluation of Methicillin-Resistant Staphylococci Isolated from Harness Racing-Horses, Breeding Mares and Riding-Horses in Italy. Asian Pac. J. Trop. Biomed. 2013, 3, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanda, M.I.; Idris, A.M. Nasopharyngeal Carriage of Staphylococcus aureus among Horses and Horse Handlers in Kano Metropolis, Nigeria. UMYU J. Microbiol. Res. (UJMR) 2021, 6, 195–200. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100, 31st ed.; Clinical and Laboratory Standards InstitutePublisher: Wayne, PA, USA, 2021. [Google Scholar]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adekanmbi, A.O.; Falodun, O.I. Heavy Metals and Antibiotics Susceptibility Profiles of Staphylococcus aureus Isolated from Several Points Receiving Daily Input from the Bodija Abattoir in Ibadan, Oyo State, Nigeria. Adv. Microbiol. 2015, 5, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Dweba, C.C.; Zishiri, O.T.; el Zowalaty, M.E. Isolation and Molecular Identification of Virulence, Antimicrobial and Heavy Metal Resistance Genes in Livestock-Associated Methicillin-Resistant Staphylococcus aureus. Pathogens 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, E.O.; Beshiru, A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation of Enterococcus Species from Ready-to-Eat Seafood. Front. Microbiol. 2019, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Ramnath, L.; Sithole, B.; Govinden, R. Identification of Lipolytic Enzymes Isolated from Bacteria Indigenous to Eucalyptus Wood Species for Application in the Pulping Industry. Biotechnol. Rep. 2017, 15, 114–124. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Ghilan, A.K.M.; Arasu, M.V.; Duraipandiyan, V.; Ponmurugan, K. Isolation and Purification of Starch Hydrolysing Amylase from Streptomyces Sp. Al-Dhabi-46 Obtained from the Jazan Region of Saudi Arabia with Industrial Applications. J. King Saud. Univ. Sci. 2020, 32, 1226–1232. [Google Scholar] [CrossRef]
- Lee, J.S.; Bae, Y.M.; Han, A.; Lee, S.Y. Development of Congo Red Broth Method for the Detection of Biofilm-Forming or Slime-Producing Staphylococcus sp. LWT 2016, 73, 707–714. [Google Scholar] [CrossRef]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- van den Eede, A.; Hermans, K.; van den Abeele, A.; Floré, K.; Dewulf, J.; Vanderhaeghen, W.; Crombé, F.; Butaye, P.; Gasthuys, F.; Haesebrouck, F.; et al. Methicillin-Resistant Staphylococcus aureus (MRSA) on the Skin of Long-Term Hospitalised Horses. Vet. J. 2012, 193, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Burton, S.; Reid-Smith, R.; McClure, J.T.; Weese, J.S. Staphylococcus aureus Colonization in Healthy Horses in Atlantic Canada. Can. Vet. J. 2008, 49, 797–799. [Google Scholar] [PubMed]
- Claus, F.; Sachse, A.; Ried, W. On the Economic Burden of MRSA in Germany. Gesundheitswesen 2014, 76, 800–806. [Google Scholar]
- Weese, J.S.; Rousseau, J.; Willey, B.M.; Archambault, M.; McGeer, A.; Low, D.E. Methicillin-Resistant Staphylococcus aureus in Horses at a Veterinary Teaching Hospital: Frequency, Characterization, and Association with Clinical Disease. J. Vet. Intern. Med. 2006, 20, 182–186. [Google Scholar] [CrossRef]
- Soimala, T.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T.; Huber, C.; Semmler, T.; Merle, R.; Gehlen, H.; Eule, J.C.; Walther, B. Occurrence and Molecular Composition of Methicillin-Resistant Staphylococcus aureus Isolated from Ocular Surfaces of Horses Presented with Ophthalmologic Disease. Vet. Microbiol. 2018, 222, 1–6. [Google Scholar] [CrossRef]
- Baptiste, K.E.; Williams, K.; Willams, N.J.; Wattret, A.; Clegg, P.D.; Dawson, S.; Corkill, J.E.; O’neill, T.; Hart, C.A. Methicillin-Resistant Staphylococci in Companion Animals. Emerg. Infect. Dis. 2005, 11, 1942. [Google Scholar] [CrossRef]
- Maddox, T.W.; Clegg, P.D.; Diggle, P.J.; Wedley, A.L.; Dawson, S.; Pinchbeck, G.L.; Williams, N.J. Cross-Sectional Study of Antimicrobial-Resistant Bacteria in Horses. Part 1: Prevalence of Antimicrobial-Resistant Escherichia Coli and Methicillin-Resistant Staphylococcus aureus. Equine Vet. J. 2012, 44, 289–296. [Google Scholar] [CrossRef]
- Momoh, A.H.; Kwaga, J.K.P.; Bello, M.; Sackey, A.K.B.; Larsen, A.R. Antibiotic Resistance and Molecular Characteristics of Staphylococcus aureus Isolated from Backyard-Raised Pigs and Pig Workers. Trop. Anim. Health Prod. 2018, 50, 1565–1571. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-Resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T. Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guérin, F.; Fines-Guyon, M.; Meignen, P.; Delente, G.; Fondrinier, C.; Bourdon, N.; Cattoir, V.; Léon, A. Nationwide Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus Responsible for Horse Infections in France. BMC Microbiol. 2017, 17, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically Important Antibiotics: Criteria and Approaches for Measuring and Reducing Their Use in Food Animal Agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef]
- World Health Organization. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List); World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bordin, A.I.; Huber, L.; Sanz, M.G.; Cohen, N.D. Rhodococcus Equi Foal Pneumonia: Update on Epidemiology, Immunity, Treatment and Prevention. Equine Vet. J. 2022, 54, 481–494. [Google Scholar] [CrossRef]
- Nehal, M.F.; Kamelia, M.O.; Azza, N.F.; Shaimaa, R.A.A.E.; el Shafii Soumaya, S.A.; Shahein, M.A.; Ibraheem, E.M. Phenotypic Study on the Bacterial Isolates from Equine with Respiratory Disorders Regarding Antimicrobial Drug Resistance. World’s Vet. J. 2021, 11, 98–109. [Google Scholar] [CrossRef]
- Weese, J.S.; Archambault, M.; Willey, B.M.; Dick, H.; Hearn, P.; Kreiswirth, B.N.; Said-Salim, B.; McGeer, A.; Likhoshvay, Y.; Prescott, J.F.; et al. Methicillin-Resistant Staphylococcus aureus in Horses and Horse Personnel, 2000–2002. Emerg. Infect. Dis. 2005, 11, 430–435. [Google Scholar] [CrossRef]
- Xue, H.; Wu, Z.; Li, L.; Li, F.; Wang, Y.; Zhao, X. Coexistence of Heavy Metal and Antibiotic Resistance within a Novel Composite Staphylococcal Cassette Chromosome in a Staphylococcus Haemolyticus Isolate from Bovine Mastitis Milk. Antimicrob. Agents Chemother. 2015, 59, 5788–5792. [Google Scholar] [CrossRef] [Green Version]
- Edogbo, B.; Okolocha, E.; Maikai, B.; Aluwong, T.; Uchendu, C. Risk Analysis of Heavy Metal Contamination in Soil, Vegetables and Fish around Challawa Area in Kano State, Nigeria. Sci. Afr. 2020, 7, e00281. [Google Scholar] [CrossRef]
- Anyanwu, B.O.; Ezejiofor, A.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. Toxics 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602. [Google Scholar] [CrossRef] [PubMed]
- Płusa, T. The Importance of Biofilm in the Context of Increasing Bacterial Resistance to Antibiotics. Pol. Merkur. Lekarski 2019, 47, 197–202. [Google Scholar] [PubMed]
- Pietrocola, G.; Nobile, G.; Rindi, S.; Speziale, P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front. Cell. Infect. Microbiol. 2017, 7, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotar, A.I.; Chifiriuc, M.C.; Dinu, S.; Bucur, M.; Iordache, C.; Banu, O.; Dracea, O.; Larion, C.; Lazar, V. Screening of Molecular Virulence Markers in Staphylococcus aureus and Pseudomonas Aeruginosa Strains Isolated from Clinical Infections. Int. J. Mol. Sci. 2010, 11, 5273–5291. [Google Scholar] [CrossRef] [Green Version]
Sample | Number of Samples Processed | Total Staphylococcus Isolated | S. aureus | Other Staphylococcus Species | p Value | Odds Ratio | 95% Confidence Interval |
---|---|---|---|---|---|---|---|
Skin swab | 180 | 40 (22.2) | 28 (15.6) | 12 (6.7) | 0.0007 | 5.4 | 2.01–13.26 |
Nasal swab | 180 | 61 (33.8) | 43 (23.9) | 18 (10) | 0.0016 | 3.7 | 1.64–8.33 |
Total | 360 | 101 (28.2) | 71 (19.7) | 30 (8.3) |
Sample | S. aureus | MRSA (%) | MSSA (%) | p Value | Odds Ratio | 95% CI |
---|---|---|---|---|---|---|
Nasal swab | 43 | 1 (2.3) | 42 (97.7) | 0.999 | 0.64 | 0.03–12.63 |
Skin swab | 28 | 1 (3.6) | 27 (96.4) | 0.999 | 0.64 | 0.03–12.63 |
Antimicrobial Class | Antimicrobial Agent | Number (%) of Isolates Resistant (N = 71) | ||
---|---|---|---|---|
Nasal Cavity (n = 43) | Groin (n = 28) | Total (%) | ||
Folate pathway antagonists | Trimethoprim-sulphamethoxazole | 0 | 3 | 3 (4.2) |
Fluoroquinolones | Ciprofloxacin | 0 | 0 | 0 (0.0) |
Tetracyclines | Tetracycline | 2 | 2 | 4 (5.6) |
Oxazolidinones | Linezolid | 0 | 0 | 0 (0.0) |
Ansamycins | Rifampicin | 4 | 2 | 6 (8.5) |
β-lactams | Penicillin | 24 | 14 | 38 (53.5) |
Cefoxitin | 1 | 1 | 2 (2.8) | |
Macrolides | Erythromycin | 6 | 6 | 12 (16.9) |
Glycopeptides | Vancomycin | 0 | 0 | 0 (0.0) |
Aminoglycosides | Gentamicin | 0 | 0 | 0 (0.0) |
Lincosamides | Clindamycin | 0 | 0 | 0 (0.0) |
SN | No. of Antimicrobials (MARI) | Antimicrobial Resistance Pattern | Nostril (N = 25) | Skin (N = 18) | Total (N = 43) | No. of Antimicrobial Classes | No. (%) of MDR Strains |
---|---|---|---|---|---|---|---|
1 | 1 (0.09) | ERY | 1 | 1 | 2 | 1 | |
2 | PEN | 15 | 7 | 22 | |||
3 | RIF | 0 | 1 | 1 | |||
4 | 2 (0.18) | RIF-PEN | 2 | 0 | 2 | 2 | |
5 | PEN-ERY | 2 | 3 | 5 | |||
6 | PEN-CFT | 1 | 0 | 1 | |||
7 | TET-PEN | 1 | 1 | 2 | |||
8 | PEN-GEN | 0 | 1 | 1 | |||
9 | RIF-ERY | 0 | 1 | 1 | |||
10 | SXT-TET | 0 | 1 | 1 | |||
11 | SXT-PEN | 0 | 1 | 1 | |||
12 | 3 (0.27) | RIF-PEN-ERY | 2 | 0 | 2 | 3 | 4 (9.3) |
13 | TET-PEN-ERY | 1 | 0 | 1 | |||
14 | 4 (0.36) | SXT-PEN-CFT-ERY | 0 | 1 | 1 | 3 |
Virulence Factor | Number of Isolates | Total (N = 71) | % Frequency | |
---|---|---|---|---|
Nasal Cavity (N = 43) | Groin (N = 28) | |||
Clumping factor | 43 | 28 | 71 | 100 |
Catalase | 43 | 28 | 71 | 100 |
Haemolysin | 19 | 12 | 31 | 43.7 |
Biofilm | 10 | 7 | 17 | 23.9 |
Gelatinase | 24 | 14 | 38 | 53.5 |
Casienase | 7 | 6 | 13 | 18.3 |
Amylase | 0 | 0 | 0 | 0.0 |
Lipase | 0 | 0 | 0 | 0.0 |
S/N | Phenotypic Virulence Pattern | Number of Isolates | Total (N = 71) | % Frequency | |
---|---|---|---|---|---|
Nasal Cavity (N = 43) | Groin (N = 28) | ||||
1. | Clf-Cat-Hyl-Bfm-Gel-Cas | 3 | 2 | 5 | 7.0 |
2. | Clf-Cat-Hyl-Gel | 13 | 5 | 18 | 25.4 |
3. | Clf-Cat-Hyl-Bfm-Gel | 9 | 3 | 12 | 16.9 |
4. | Clf-Cat-Gel | 3 | 2 | 5 | 7.0 |
5 | Clf-Cat-Bfm-Gel | 3 | 3 | 6 | 8.5 |
6. | Clf-Cat-Gel-Cas | 3 | 1 | 4 | 5.6 |
7. | Clf-Cat-Hyl | 0 | 5 | 5 | 7.0 |
8. | Clf-Cat-Hyl-Cas | 2 | 0 | 2 | 2.8 |
9. | Clf-Cat-Hyl-Bfm | 2 | 0 | 2 | 2.8 |
10. | Clf-Cat-Hyl-Gel-Cas | 5 | 5 | 10 | 14.1 |
11. | Clf-Cat-Bfm-Cas | 0 | 2 | 2 | 2.8 |
Concentration | Number (%) of Isolates that Grew on Agar Containing Heavy Metal (N = 71) | χ2 Value | p Value | |||
---|---|---|---|---|---|---|
Cadmium | Copper | Lead | Zinc | |||
50 µg/mL | 42 (59.2%) | 50 (70.4%) | 44 (62.0%) | 50 (70.4%) | 8.00 a | 0.24 |
100 µg/mL | 40 (56.3%) | 42 (59.2%) | 44 (62.0%) | 50 (70.4%) | 12.00 a | 0.21 |
500 µg/mL | 39 (54.9%) | 38 (53.5%) | 36 (50.7%) | 47 (66.2%) | 12.00 a | 0.21 |
1000 µg/mL | 28 (39.4%) | 38 (53.5%) | 35 (49.3%) | 45 (63.4%) | 12.00 a | 0.21 |
1500 µg/mL | 28 (39.4%) | 36 (50.7%) | 35 (49.3%) | 43 (60.6%) | 12.00 a | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwobi, O.C.; Anyanwu, M.U.; Jaja, I.F.; Nwankwo, I.O.; Okolo, C.C.; Nwobi, C.A.; Ezenduka, E.V.; Oguttu, J.W. Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials. Antibiotics 2023, 12, 242. https://doi.org/10.3390/antibiotics12020242
Nwobi OC, Anyanwu MU, Jaja IF, Nwankwo IO, Okolo CC, Nwobi CA, Ezenduka EV, Oguttu JW. Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials. Antibiotics. 2023; 12(2):242. https://doi.org/10.3390/antibiotics12020242
Chicago/Turabian StyleNwobi, Obichukwu Chisom, Madubuike Umunna Anyanwu, Ishmael Festus Jaja, Innocent Okwundu Nwankwo, Chukwuemeka Calistus Okolo, Chibundo Adaobi Nwobi, Ekene Vivienne Ezenduka, and James Wabwire Oguttu. 2023. "Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials" Antibiotics 12, no. 2: 242. https://doi.org/10.3390/antibiotics12020242
APA StyleNwobi, O. C., Anyanwu, M. U., Jaja, I. F., Nwankwo, I. O., Okolo, C. C., Nwobi, C. A., Ezenduka, E. V., & Oguttu, J. W. (2023). Staphylococcus aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials. Antibiotics, 12(2), 242. https://doi.org/10.3390/antibiotics12020242