Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth
Abstract
:1. Introduction
2. Interaction of Endogenous/Exogenous Compounds with Intestinal Bacteria
3. Diagnosis of SIBO by Cultural Analysis of Bacteria
3.1. Cultural Analysis of Bacteria in Duodenum/Jejunum Fluid Aspirates
3.2. Analysis by 16S Ribosomal RNA/DNA Gene Sequencing
3.3. Cultural Analysis of Fecal Bacteria
4. Diagnosis of SIBO by Breath Tests
4.1. Use of Hydrocarbons
4.2. Use of Carbon Isotope-Labelled Substrates
4.2.1. Use of 14C/13C-D-xylose
4.2.2. Use of lactose-13C-ureide
4.2.3. Use of glycine-1-14C-labeled Glycocholate
5. Development of Bile Acid Conjugates for SIBO Diagnosis
5.1. Biological and Pharmacokinetic Properties of Bile Acids
5.2. Biological and Pharmacokinetic Properties of PABA
5.3. Biological and Pharmacokinetic Properties of 5-ASA
6. Diagnosis of SIBO by Urinary Excretion Tests of Bile Acid Conjugates
6.1. Use of PABA-CA
6.2. Use of PABA-UDCA
6.3. Use of PABA-UDCA Disulfate
6.4. Use of 5-ASA-bile acid Conjugates
7. Treatment of SIBO
7.1. Treatment of SIBO with Antibiotics
7.2. Treatment of SIBO with Probiotics
7.3. Treatment of SIBO with Herbal Medicine
7.4. Treatment of SIBO with Fecal Microbiota Transplantation
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mitsuoka, T. Intestinal flora and human health. Asia Pac. J. Clin. Nutr. 1996, 5, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evaldson, G.; Heimdahl, A.; Kager, L.; Nord, C.E. The normal human anaerobic microflora. Scand. J. Infect. Dis. Suppl. 1982, 35, 9–15. [Google Scholar]
- Finegold, S.M. Intestinal bacteria. The role they play in normal physiology, pathologic physiology, and infection. Calif. Med. 1969, 110, 455–459. [Google Scholar] [PubMed]
- Hao, W.L.; Lee, Y.K. Microflora of the gastrointestinal tract: A review. Methods Mol. Biol. 2004, 268, 491–502. [Google Scholar] [PubMed]
- Bures, J.; Cyrany, J.; Kohoutova, D.; Förstl, M.; Rejchrt, S.; Kvetina, J.; Vorisek, V.; Kopacova, M. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 2010, 16, 2978–2990. [Google Scholar] [CrossRef]
- Quigley, E.M.M. The spectrum of small intestinal bacterial overgrowth (SIBO). Curr. Gastroenterol. Rep. 2019, 21, 3. [Google Scholar] [CrossRef]
- Pimentel, M.; Saad, R.J.; Long, M.D.; Rao, S.S.C. ACG Clinical guideline: Small intestinal bacterial overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Guzior, D.V.; Quinn, R.A. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.; Malik, A. Breath tests and irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 7587–7601. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American consensus. Am J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, M.; Quigley, E.M.M. The diagnosis of small intestinal bacterial overgrowth: Two steps forward, one step backwards? Neurogastroenterol. Motil. 2018, 30, e13494. [Google Scholar] [CrossRef] [PubMed]
- Takakura, W.; Pimentel, M. Small intestinal bacterial overgrowth and irritable bowel syndrome—An update. Front. Psychiatry 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y. Bile acids as metabolic regulators. Curr. Opin. Gastroenterol. 2015, 31, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiratterra, E.; Franco, P.; Porru, E.; Katsanos, K.H.; Christodoulou, D.K.; Roda, G. Role of bile acids in inflammatory bowel disease. Ann. Gastroenterol. 2018, 31, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, H.F.; Zhang, Y.; Zhang, Y.L.; Niu, B.Y.; Yao, S.K. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome. World J. Gastroenterol. 2020, 26, 7153–7172. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhan, S.; Tian, Z.; Liu, C.; Xie, Z.; Zhang, S.; Chen, M.; Zeng, Z.; Zhuang, X. Alterations in bile acid metabolism associated with inflammatory bowel disease. Inflamm. Bowel Dis. 2021, 27, 1525–1540. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.J.; Kosek, V.; Beltrán, D.; Tomás-Barberán, F.A.; Hajslova, J. Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules 2022, 12, 687. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudiandehkordi, S.; Bhattacharyya, S.; Brydges, C.R.; Jia, W.; Fiehn, O.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety—A role for bile acids. Front. Neurosci. 2022, 16, 937906. [Google Scholar] [CrossRef]
- Gasbarrini, A.; Corazza, G.R.; Gasbarrini, G.; Montalto, M.; Di Stefano, M.; Basilisco, G.; Parodi, A.; Usai-Satta, P.; Vernia, P.; Anania, C.; et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: The Rome Consensus Conference. Aliment. Pharmacol. Ther. 2009, 29 (Suppl. S1), 1–49. [Google Scholar]
- Massey, B.T.; Wald, A. Small intestinal bacterial overgrowth syndrome: A guide for the appropriate use of breath testing. Dig. Dis. Sci. 2021, 66, 338–347. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Sachdeva, S.; Ghoshal, U.; Misra, A.; Puri, A.S.; Pratap, N.; Shah, A.; Rahman, M.M.; Gwee, K.A.; Tan, V.P.Y.; et al. Asian-Pacific consensus on small intestinal bacterial overgrowth in gastrointestinal disorders: An initiative of the Indian Neurogastroenterology and Motility Association. Indian J. Gastroenterol. 2022, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hammer, H.F.; Fox, M.R.; Keller, J.; Salvatore, S.; Basilisco, G.; Hammer, J.; Lopetuso, L.; Benninga, M.; Borrelli, O. European guideline on indications, performance, and clinical impact of hydrogen and methane breath tests in adult and pediatric patients: European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Neurogastroenterology and Motility, and European Society for Paediatric Gastroenterology Hepatology and Nutrition consensus. United Eur. Gastroenterol. J. 2022, 10, 15–40. [Google Scholar]
- Noh, K.; Kang, Y.R.; Nepal, M.R.; Shakya, R.; Kang, M.J.; Kang, W.; Lee, S.; Jeong, H.G.; Jeong, T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res. 2017, 40, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Bodor, E.; Bodor, N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Exp. Opin. Drug Metab. Toxicol. 2020, 16, 59–78. [Google Scholar] [CrossRef]
- Murakami, T.; Bodor, E.; Bodor, N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Exp. Opin. Drug Metab. Toxicol. 2021, 17, 555–580. [Google Scholar] [CrossRef] [PubMed]
- Saitta, K.S.; Zhang, C.; Lee, K.K.; Fujimoto, K.; Redinbo, M.R.; Boelsterli, U.A. Bacterial β- glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: Mode of action and pharmacokinetics. Xenobiotica 2014, 44, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem. 2018, 82, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev. 2018, 50, 357–368. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; He, F.; Li, L.; Guo, L.; Zhang, B.; Yu, S.; Zhao, W. Bioavailability Based on the Gut Microbiota: A New Perspective. Microbiol. Mol. Biol. Rev. 2020, 84, e00072-19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 2021, 11, 1789–1812. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [PubMed]
- Murakami, T.; Sasaki, Y.; Yamajo, R.; Yata, N. Effect of bile salts on the rectal absorption of sodium ampicillin in rats. Chem. Pharm. Bull. 1984, 32, 1948–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Gui, W.; Koo, I.; Smith, P.B.; Allman, E.L.; Nichols, R.G.; Rimal, B.; Cai, J.; Liu, Q.; Patterson, A.D. The microbiome modulating activity of bile acids. Gut Microbes. 2020, 11, 979–996. [Google Scholar] [CrossRef]
- Shah, A.; Talley, N.J.; Holtmann, G.J. Current and future approaches for diagnosing small intestinal dysbiosis in patients with symptoms of functional dyspepsia. Front. Neurosci. 2022, 16, 830356. [Google Scholar] [CrossRef]
- Khoshini, R.; Dai, S.C.; Lezcano, S.; Pimentel, M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig. Dis. Sci. 2008, 53, 1443–1454. [Google Scholar] [CrossRef]
- Vanner, S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: Implications for treatment. Gut 2008, 57, 1315–1321. [Google Scholar] [CrossRef]
- Siniewicz-Luzeńczyk, K.; Bik-Gawin, A.; Zeman, K.; Bąk-Romaniszyn, L. Small intestinal bacterial overgrowth syndrome in children. Prz. Gastroenterol. 2015, 10, 28–32. [Google Scholar] [CrossRef]
- Cangemi, D.J.; Lacy, B.E.; Wise, J. Diagnosing small intestinal bacterial overgrowth: A comparison of lactulose breath tests to small bowel aspirates. Dig. Dis. Sci. 2021, 66, 2042–2050. [Google Scholar] [CrossRef]
- Leite, G.; Morales, W.; Weitsman, S.; Celly, S.; Parodi, G.; Mathur, R.; Barlow, G.M.; Sedighi, R.; Millan, M.J.V.; Rezaie, A.; et al. The duodenal microbiome is altered in small intestinal bacterial overgrowth. PLoS ONE 2020, 15, e0234906. [Google Scholar] [CrossRef]
- Bamba, S.; Imai, T.; Sasaki, M.; Ohno, M.; Yoshida, S.; Nishida, A.; Takahashi, K.; Inatomi, O.; Andoh, A. Altered gut microbiota in patients with small intestinal bacterial overgrowth. J. Gastroenterol. Hepatol. 2023, 38, 61–69. [Google Scholar] [CrossRef]
- Gabrielli, M.; D’Angelo, G.; Di Rienzo, T.; Scarpellini, E.; Ojetti, V. Diagnosis of small intestinal bacterial overgrowth in the clinical practice. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 30–35. [Google Scholar] [PubMed]
- Sundin, O.H.; Mendoza-Ladd, A.; Zeng, M.; Diaz-Arévalo, D.; Morales, E.; Fagan, B.M.; Ordoñez, J.; Velez, P.; Antony, N.; McCallum, R.W. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 2017, 17, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.S.C.; Bhagatwala, J. Small intestinal bacterial overgrowth: Clinical features and therapeutic management. Clin. Transl. Gastroenterol. 2019, 10, e00078. [Google Scholar] [CrossRef] [PubMed]
- Ginnebaugh, B.; Chey, W.D.; Saad, R. Small intestinal bacterial overgrowth: How to diagnose and treat (and then treat again). Gastroenterol. Clin. N. Am. 2020, 49, 571–587. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.S.; Gao, X.; Bohm, M.; Lin, H.; Gupta, A.; Nelson, D.E.; Toh, E.; Teagarden, S.; Siwiec, R.; Dong, Q.; et al. Characterization of proximal small intestinal microbiota in patients with suspected small intestinal bacterial overgrowth: A cross-sectional study. Clin. Transl. Gastroenterol. 2019, 10, e00073. [Google Scholar] [CrossRef]
- Fida, M.; Wolf, M.J.; Hamdi, A.; Vijayvargiya, P.; Esquer Garrigos, Z.; Khalil, S.; Greenwood-Quaintance, K.E.; Thoendel, M.J.; Patel, R. Detection of Pathogenic Bacteria From Septic Patients Using 16S Ribosomal RNA Gene-Targeted Metagenomic Sequencing. Clin. Infect. Dis. 2021, 73, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Jiang W, A protocol for quantizing total bacterial 16S rDNA in plasma as a marker of microbial translocation in vivo. Cell Mol. Immunol. 2018, 15, 937–939. [CrossRef] [PubMed]
- Mello, C.S.; Rodrigues, M.S.D.C.; Filho, H.B.A.; Melli, L.C.F.L.; Tahan, S.; Pignatari, A.C.C.; de Morais, M.B. Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. J. Pediatr. 2018, 94, 483–490. [Google Scholar] [CrossRef]
- Donowitz, J.R.; Parikh, H.I.; Taniuchi, M.; Gilchrist, C.A.; Haque, R.; Kirkpatrick, B.D.; Alam, M.; Kakon, S.H.; Islam, B.Z.; Afreen, S.; et al. Increased fecal Lactobacillus is associated with a positive glucose hydrogen breath test in Bangladeshi children. Open Forum Infect. Dis. 2019, 6, ofz266. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Aziz, I.; Nordlander, S.; Polster, A.; Hu, Y.; Hugerth, L.W.; Pennhag, A.A.L.; Engstrand, L.; Törnblom, H.; Simrén, M.; et al. Evidence of altered mucosa-associated and fecal microbiota composition in patients with Irritable Bowel Syndrome. Sci. Rep. 2020, 10, 593. [Google Scholar] [CrossRef] [Green Version]
- Noh, C.K.; Lee, K.J. Fecal microbiota alterations and small intestinal bacterial overgrowth in functional abdominal bloating/distention. J. Neurogastroenterol. Motil. 2020, 26, 539–549. [Google Scholar] [CrossRef]
- Levin, D.; De Palma, G.; Zou, H.; Bazzaz, A.H.Z.; Verdu, E.; Baker, B.; Pinto-Sanchez, M.I.; Khalidi, N.; Larché, M.J.; Beattie, K.A.; et al. Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. J. Scleroderma. Relat. Disord. 2021, 6, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, Y.; Cai, Y.; Zhang, M.; Sun, Z.; Ban, Y.; Zgai, S.; Hao, Y.; Ouyang, Q.; Wu, B.; et al. Association of differential metabolites with small intestinal microflora and maternal outcomes in subclinical hypothyroidism during pregnancy. Front. Cell Infect. Microbiol. 2021, 11, 779659. [Google Scholar] [CrossRef] [PubMed]
- Bonfrate, L.; Grattagliano, I.; Palasciano, G.; Portincasa, P. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol. Rep. 2015, 3, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, J.R.; Kowdley, K.V.; Pedrosa, M.C.; Sepe, T.; Golner, B.; Perrone, G.; Russell, R.M. Bacterial overgrowth without clinical malabsorption in elderly hypochlorhydric subjects. Gastroenterology 1994, 106, 615–623. [Google Scholar] [CrossRef]
- Geboes, K.P.; Luypaerts, A.; Rutgeerts, P.; Verbeke, K. Inulin is an ideal substrate for a hydrogen breath test to measure the orocaecal transit time. Aliment. Pharmacol. Ther. 2003, 18, 721–729. [Google Scholar] [CrossRef]
- Schneider, A.R.; Jepp, K.; Murczynski, L.; Biniek, U.; Stein, J. The inulin hydrogen breath test accurately reflects orocaecal transit time. Eur. J. Clin. Invest. 2007, 37, 802–807. [Google Scholar] [CrossRef]
- Yu, D.; Cheeseman, F.; Vanner, S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut 2011, 60, 334–340. [Google Scholar] [CrossRef]
- Houben, E.; De Preter, V.; Billen, J.; Van Ranst, M.; Verbeke, K. Additional value of CH2 measurement in a combined (13)C/H4 lactose malabsorption breath test: A retrospective analysis. Nutrients 2015, 7, 7469–7485. [Google Scholar] [CrossRef] [Green Version]
- Watkins, J.B.; Klein, P.D.; Schoeller, D.A.; Kirschner, B.S.; Park, R.; Perman, J.A. Diagnosis and differentiation of fat malabsorption in children using 13C-labeled lipids: Trioctanoin, triolein, and palmitic acid breath tests. Gastroenterology 1982, 82 Pt 1, 911–917. [Google Scholar] [CrossRef]
- Gunnarsson, M.; Leide-Svegborn, S.; Stenström, K.; Skog, G.; Nilsson, L.E.; Thorsson, O.; Hellborg, R.; Mattsson, S. Long-term biokinetics and radiation exposure of patients undergoing 14C-glycocholic acid and 14C-xylose breath tests. Cancer Biother. Radiopharm. 2007, 22, 762–771. [Google Scholar] [PubMed]
- Berthold, H.K.; Schober, P.; Scheurlen, C.; Marklein, G.; Horré, R.; Gouni-Berthold, I.; Sauerbruch, T. Use of the lactose-[13C]ureide breath test for diagnosis of small bowel bacterial overgrowth: Comparison to the glucose hydrogen breath test. J. Gastroenterol. 2009, 44, 944–951. [Google Scholar] [CrossRef]
- Keller, J.; Hammer, H.F.; Afolabi, P.R.; Benninga, M.; Borrelli, O.; Dominguez-Munoz, E.; Dumitrascu, D.; Goetze, O.; Haas, S.L.; Hauser, B.; et al. European guideline on indications, performance and clinical impact of 13 C-breath tests in adult and pediatric patients: An EAGEN, ESNM, and ESPGHAN consensus, supported by EPC. United Eur. Gastroenterol. J. 2021, 9, 598–625. [Google Scholar] [CrossRef] [PubMed]
- King, C.E.; Toskes, P.P.; Guilarte, T.R.; Lorenz, E.; Welkos, S.L. Comparison of the one-gram d- [14C]xylose breath test to the [14C]bile acid breath test in patients with small-intestine bacterial overgrowth. Dig. Dis. Sci. 1980, 25, 53–58. [Google Scholar] [CrossRef]
- Riordan, S.M.; McIver, C.J.; Duncombe, V.M.; Bolin, T.D.; Thomas, M.C. Factors influencing the 1-g 14C-D-xylose breath test for bacterial overgrowth. Am. J. Gastroenterol. 1995, 90, 1455–1460. [Google Scholar]
- Chang, C.S.; Chen, G.H.; Kao, C.H.; Wang, S.J.; Peng, S.N.; Huang, C.K.; Poon, S.K. Increased accuracy of the carbon-14 D-xylose breath test in detecting small-intestinal bacterial overgrowth by correction with the gastric emptying rate. Eur. J. Nucl. Med. 1995, 22, 1118–1122. [Google Scholar] [CrossRef]
- Stotzer, P.O.; Kilander, A.F. Comparison of the 1-g (14)C-D-xylose breath test and the 50-g hydrogen glucose breath test for diagnosis of small intestinal bacterial overgrowth. Digestion 2000, 61, 165–171. [Google Scholar] [CrossRef]
- Schoeller, D.A.; Klein, P.D.; MacLean, W.C.; Watkins, J.B., Jr.; van Santen, E. Fecal 13C analysis for the detection and quantitation of intestinal malabsorption. Limits of detection and application to disorders of intestinal cholylglycine metabolism. J. Lab. Clin. Med. 1981, 97, 440–448. [Google Scholar]
- Bjørkhaug, S.T.; Skar, V.; Medhus, A.W.; Tollisen, A.; Bramness, J.G.; Valeur, J. Chronic alcohol overconsumption may alter gut microbial metabolism: A retrospective study of 719 13C-D-xylose breath test results. Microb. Ecol. Health Dis. 2017, 28, 1301725. [Google Scholar] [CrossRef] [Green Version]
- Sutton, D.G.; Preston, T.; Love, S. Application of the lactose 13C-ureide breath test for measurement of equine orocaecal transit time. Equine Vet. J. Suppl. 2011, 39, 49–55. [Google Scholar] [CrossRef]
- Hepner, G.W. Increased sensitivity of the cholylglycine breath test for detecting ileal dysfunction. Gastroenterology 1975, 68, 8–16. [Google Scholar] [CrossRef]
- Caspary, W.F.; Reimold, W.V. [Clinical significance of the 14C-glycocholate breath test in the diagnosis of gastro-enterological diseases (author’s transl)]. Dtsch. Med. Wochenschr. 1976, 101, 353–360. [Google Scholar] [CrossRef]
- Watson, W.S.; McKenzie, I.; Holden, R.J.; Craig, L.; Sleigh, J.D.; Crean, G.P. An evaluation of the 14C-glycocholic acid breath test in the diagnosis of bacterial colonisation of the jejunum. Scott. Med. J. 1980, 25, 27–32. [Google Scholar] [CrossRef]
- Shindo, K.; Machida, M.; Miyakawa, K.; Fukumura, M. A syndrome of cirrhosis, achlorhydria, small intestinal bacterial overgrowth, and fat malabsorption. Am. J. Gastroenterol. 1993, 88, 2084–2091. [Google Scholar]
- Fromm, H.; Hofmann, A.F. Breath test for altered bile-acid metabolism. Lancet 1971, 2, 621–625. [Google Scholar] [CrossRef]
- Rosenbaum, C.L.; Cluxton, R.J., Jr. Ursodiol: A cholesterol gallstone solubilizing agent. Drug Intell. Clin. Pharm. 1988, 22, 941–945. [Google Scholar] [CrossRef]
- Rubin, R.A.; Kowalski, T.E.; Khandelwal, M.; Malet, P.F. Ursodiol for hepatobiliary disorders. Ann. Intern. Med. 1994, 121, 207–218. [Google Scholar] [CrossRef]
- Winston, J.A.; Rivera, A.J.; Cai, J.; Thanissery, R.; Montgomery, S.A.; Patterson, A.D.; Theriot, C.M. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect. Immun. 2020, 88, e00045-20. [Google Scholar] [CrossRef]
- Lajczak-McGinley, N.K.; Porru, E.; Fallon, C.M.; Smyth, J.; Curley, C.; McCarron, P.A.; Tambuwala, M.M.; Roda, A.; Keely, S.J. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol. Rep. 2020, 8, e14456. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Chen, P.; Zhou, C.; Zhang, X.; Chen, L. Ursodeoxycholic acid treatment restores gut microbiota and alleviates liver inflammation in non-alcoholic steatohepatitic mouse model. Front. Pharmacol. 2021, 12, 788558. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.T.; Kim, K.M.; Kim, K.N. The Effect of ursodeoxycholic acid on small intestinal bacterial overgrowth in patients with functional dyspepsia: A pilot randomized controlled trial. Nutrients 2020, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Ovadia, C.; Perdones-Montero, A.; Fan, H.M.; Mullish, B.H.; McDonald, J.A.K.; Papacleovoulou, G.; Wahlström, A.; Ståhlman, M.; Tsakmaki, A.; Clarke, L.C.D.; et al. Ursodeoxycholic acid enriches intestinal bile salt hydrolase-expressing Bacteroidetes in cholestatic pregnancy. Sci. Rep. 2020, 10, 3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jiang, R.; Zheng, X.; Lei, S.; Huang, F.; Xie, G.; Kwee, S.; Yu, H.; Farrar, C.; Sun, B.; et al. Ursodeoxycholic acid accelerates bile acid enterohepatic circulation. Br. J. Pharmacol. 2019, 176, 2848–2863. [Google Scholar] [CrossRef] [PubMed]
- Pike, C.M.; Tam, J.; Melnyk, R.A.; Theriot, C.M. Tauroursodeoxycholic acid inhibits Clostridioides difficile toxin-induced apoptosis. Infect. Immun. 2022, 90, e0015322. [Google Scholar] [CrossRef]
- Aldini, R.; Roda, A.; Lenzi, P.L.; Ussia, G.; Vaccari, M.C.; Mazzella, G.; Festi, D.; Bazzoli, F.; Galletti, G.; Casanova, S.; et al. Bile acid active and passive ileal transport in the rabbit: Effect of luminal stirring. Eur. J. Clin. Invest. 1992, 22, 744–750. [Google Scholar] [CrossRef]
- Aldini, R.; Montagnani, M.; Roda, A.; Hrelia, S.; Biagi, P.L.; Roda, E. Intestinal absorption of bile acids in the rabbit: Different transport rates in jejunum and ileum. Gastroenterology 1996, 110, 459–468. [Google Scholar] [CrossRef]
- Parquet, M.; Metman, E.H.; Raizman, A.; Rambaud, J.C.; Berthaux, N.; Infante, R. Bioavailability, gastrointestinal transit, solubilization and faecal excretion of ursodeoxycholic acid in man. Eur. J. Clin. Invest. 1985, 15, 171–178. [Google Scholar] [CrossRef]
- Walker, S.; Rudolph, G.; Raedsch, R.; Stiehl, A. Intestinal absorption of ursodeoxycholic acid in patients with extrahepatic biliary obstruction and bile drainage. Gastroenterology 1992, 102, 810–815. [Google Scholar] [CrossRef]
- Sauer, P.; Benz, C.; Rudolph, G.; Klöters-Plachky, P.; Stremmel, W.; Stiehl, A. Influence of cholestasis on absorption of ursodeoxycholic acid. Dig. Dis. Sci. 1999, 44, 817–822. [Google Scholar] [CrossRef]
- Rudolph, G.; Kloeters-Plachky, P.; Sauer, P.; Stiehl, A. Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate. Eur. J, Clin. Invest. 2002, 32, 575–580. [Google Scholar] [CrossRef]
- Wolgemuth, R.L.; Hanson, K.M.; Zassenhaus, P.H. A new substrate for the rapid evaluation of enteric microbial overgrowth. Am. J. Dig. Dis. 1976, 21, 821–826. [Google Scholar] [CrossRef]
- Arvanitakis, C.; Longnecker, M.P.; Folscroft, J. Characterization of p-aminobenzoic acid transport across the rat intestine. J. Lab. Clin. Med. 1978, 91, 467–472. [Google Scholar] [PubMed]
- Kluczyk, A.; Popek, T.; Kiyota, T.; de Macedo, P.; Stefanowicz, P.; Lazar, C.; Konishi, Y. Drug evolution: P-aminobenzoic acid as a building block. Curr. Med. Chem. 2002, 9, 1871–1892. [Google Scholar] [CrossRef] [PubMed]
- Mutch, C.A.; Ordonez, A.A.; Qin, H.; Parker, M.; Bambarger, L.E.; Villanueva-Meyer, J.E.; Blecha, J.; Carroll, V.; Taglang, C.; Flavell, R.; et al. [11C]Para-aminobenzoic acid: A positron emission tomography tracer targeting bacteria specific metabolism. ACS Infect. Dis. 2018, 4, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.; Parker, M.F.; Miller, R.J.; Plyku, D.; Ruiz-Bedoya, C.A.; Tucker, E.W.; Luu, J.M.; Dikeman, D.A.; Lesniak, W.G.; Holt, D.P.; et al. 11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight. 2022, 7, e154117. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Wakasugi, H.; Ibayashi, H. Clinical study of exocrine pancreatic function test by oral administration by N-benzoyl-L-tyrosyl-p-aminobenzoic acid. Digestion 1981, 21, 133–139. [Google Scholar] [PubMed]
- Wakasugi, H.; Funakoshi, T.; Ibayashi, H. Evaluation of exocrine pancreatic function by oral administration of N-benzoyl-L-tyrosyl-p-aminobenzoic acid (PFD test) in primary diabetes mellitus. Digestion 1983, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Noda, A.; Hayakawa, T.; Kondo, T.; Katada, N.; Kameya, A. Clinical evaluation of pancreatic excretion test with dimethadione and oral BT-PABA test in chronic pancreatitis. Dig. Dis. Sci. 1983, 28, 230–235. [Google Scholar] [CrossRef]
- Imai, T.; Tanaka, K.; Yonemitsu, T.; Yakushiji, Y.; Ohura, K. Elucidation of the intestinal absorption of para-aminobenzoic acid, a marker for dietary intake. J. Pharm. Sci. 2017, 106, 2881–2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.S.; Joy, R.C.; Boushey, C.J.; Ferruzzi, M.G.; Leonov, A.P.; McCrory, M.A. Effects of para- aminobenzoic acid (PABA) form and administration mode on PABA recovery in 24-h urine collections. J. Acad. Nutr. Diet. 2014, 114, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Chan, K. High performance liquid chromatographic characterisation and quantitation of p- aminobenzoic acid N-acetylation in Chinese subjects. Eur. J. Drug Metab. Pharmacokinet. 1986, 11, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Miners, J.O.; Birkett, D.J. Direct and simultaneous high-performance liquid chromatographic assay for the determination of p-aminobenzoic acid and its conjugates in human urine. J. Chromatogr. 1988, 426, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Klotz, U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5- aminosalicylic acid. Clin. Pharmacokinet. 1985, 10, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, J.B.; Rajapakse, R. Balsalazide: A novel 5-aminosalicylate prodrug for the treatment of active ulcerative colitis. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1279–1284. [Google Scholar] [CrossRef]
- Dhaneshwar, S.S. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 3564–3571. [Google Scholar] [CrossRef]
- Tjørnelund., J.; Hansen, S.H. High-performance liquid chromatographic assay of 5-aminosalicylic acid (5-ASA) and its metabolites N-beta-D-glucopyranosyl-5-ASA, N-acetyl-5-ASA, N-formyl-5-ASA and N-butyryl-5-ASA in biological fluids. J. Chromatogr 1991, 570, 109–117. [Google Scholar] [CrossRef]
- Nobilis, M.; Vybíralová, Z.; Sládková, K.; Lísa, M.; Holcapek, M.; Kvetina, J. High-performance liquid-chromatographic determination of 5-aminosalicylic acid and its metabolites in blood plasma. J. Chromatogr. A 2006, 1119, 299–308. [Google Scholar] [CrossRef]
- Smetanová, L.; Stětinová, V.; Kholová, D.; Kuneš, M.; Nobilis, M.; Svoboda, Z.; Květina, J. Transintestinal transport mechanisms of 5-aminosalicylic acid (in situ rat intestine perfusion, Caco-2 cells) and Biopharmaceutics Classification System. Gen. Physiol. Biophys. 2013, 32, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.; Takano, M. Intestinal efflux transporters and drug absorption. Exp Opin. Drug Metab. Toxicol. 2008, 4, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T. Absorption sites of orally administered drugs in the small intestine. Exp. Opin. Drug Discov. 2017, 12, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.W.; Schwab, M.; Klotz, U. Transport studies with 5-aminosalicylate. Eur. J. Clin. Pharmacol. 2006, 62, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, S.; Kawano, K.; Matsumura, R.; Sugihara, N.; Furuno, K. Inhibitory effect of flavonoids on the efflux of N-acetyl 5-aminosalicylic acid intracellularly formed in Caco-2 cells. J. Biomed. Biotechnol. 2009, 2009, 467489. [Google Scholar] [CrossRef] [Green Version]
- Kamishikiryo, J.; Matsumura, R.; Takamori, T.; Sugihara, N. Effect of quercetin on the transport of N- acetyl 5-aminosalicylic acid. J. Pharm. Pharmacol. 2013, 65, 1037–1043. [Google Scholar] [CrossRef]
- Yuri, T.; Kono, Y.; Fujita, T. Transport characteristics of 5-aminosalicylic acid into colonic epithelium: Involvement of sodium-coupled monocarboxylate transporter SMCT1-mediated transport system. Biochem. Biophys. Res. Commun. 2020, 524, 561–566. [Google Scholar] [CrossRef]
- Takano, M.; Yumoto, R.; Murakami, T. Expression and function of efflux drug transporters in the intestine. Phar. Macol. Ther. 2006, 109, 137–161. [Google Scholar] [CrossRef]
- Gionchetti, P.; Campieri, M.; Belluzzi, A.; Boschi, S.; Brignola, C.; Miglioli, M.; Barbara, L. Bioavailability of single and multiple doses of a new oral formulation of 5-ASA in patients with inflammatory bowel disease and healthy volunteers. Aliment. Pharmacol. Ther. 1994, 8, 535–540. [Google Scholar] [CrossRef]
- Christensen, L.A.; Fallingborg, J.; Jacobsen, B.A.; Abildgaard, K.; Rasmussen, H.H.; Rasmussen, S.N.; Hansen, S.H. Bioavailability of 5-aminosalicyclic acid from slow release 5-aminosalicyclic acid drug and sulfasalazine in normal children. Dig. Dis. Sci. 1993, 38, 1831–1836. [Google Scholar] [CrossRef]
- Myers, B.; Evans, D.N.; Rhodes, J.; Evans, B.K.; Hughes, B.R.; Lee, M.G.; Richens, A.; Richards, D. Metabolism and urinary excretion of 5-amino salicylic acid in healthy volunteers when given intravenously or released for absorption at different sites in the gastrointestinal tract. Gut 1987, 28, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Bardhan, P.K.; Feger, A.; Kogon, M.; Muller, J.; Gillessen, D.; Beglinger, C.; Gyr, N. Urinary choloyl- PABA excretion in diagnosing small intestinal bacterial overgrowth: Evaluation of a new noninvasive method. Dig. Dis. Sci. 2000, 45, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Takahashi, M. Hydrolysis and absorption of a conjugate of ursodeoxycholic acid with para-aminobenzoic acid. J. Pharmacobiodyn. 1989, 12, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Takahashi, M.; Tashiro, H.; Akazawa, F. The rapid evaluation of intestinal bacterial growth using a conjugate of ursodeoxycholic acid with para-aminobenzoic acid. J. Pharmacobiodyn. 1989, 12, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Maeda, Y.; Tashiro, H.; Eto, T.; Goto, T.; Sanada, O. A new simple test for evaluation of intestinal bacteria. World J. Surg. 1990, 14, 628–634. [Google Scholar] [CrossRef]
- Takahashi, M.; Maeda, Y.; Tashiro, H.; Akazawa, F.; Okajima, M.; Yoshioka, S.; Matsugu, Y.; Toyota, K.; Masaoka, Y. Basic studies on ursodeoxycholyl-para-aminobenzoic acid for evaluation of intestinal microflora. Scand. J. Gastroenterol. 1991, 26, 577–588. [Google Scholar] [CrossRef]
- Takahashi, M.; Konishi, T.; Maeda, Y.; Matsugu, Y.; Akazawa, F.; Eto, T.; Okajima, M.; Uchida, K.; Masaoka, Y.; Okada, K. Use of the conjugate of disulphated ursodeoxycholic acid with p-aminobenzoic acid for the detection of intestinal bacteria. Gut 1993, 34, 823–828. [Google Scholar] [CrossRef]
- Kiss, Z.; Wölfling, J.; Csáti, S.; Nagy, F.; Lonovics, J.; Schneider, G. [The ursodeoxycholic acid-p- aminobenzoic acid test in the diagnosis of small bowel bacterial overgrowth syndrome]. Orv. Hetil. 1997, 138, 1255–1258. [Google Scholar]
- Kiss, Z.F.; Wölfling, J.; Csáti, S.; Nagy, F.; Wittmann, T.; Schneider, G.; Lonovics, J. The ursodeoxycholic acid-p-aminobenzoic acid deconjugation test, a new tool for the diagnosis of bacterial overgrowth syndrome. Eur. J. Gastroenterol. Hepatol. 1997, 9, 679–682. [Google Scholar] [CrossRef]
- Konishi, T.; Takahashi, M.; Ohta, S. Basic studies on 5-(7-hydroxy-3-Ophosphonocholyl)aminosalicylic acid for the evaluation of microbial overgrowth. Biol. Pharm. Bull. 1997, 20, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Konishi, T. [Basic studies on the utility of ursodeoxycholic acid derivatives for clinical medicine]. Yakugaku Zasshi 2000, 120, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Batta, A.K.; Tint, G.S.; Xu, G.; Shefer, S.; Salen, G. Synthesis and intestinal metabolism of ursodeoxycholic acid conjugate with an antiinflammatory agent, 5-aminosalicylic acid. J. Lipid Res. 1998, 39, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Okamoto, Y.; Yamamoto, M.; Aki, H. Anti-inflammatory effects of 5-aminosalicylic acid conjugates with chenodeoxycholic acid and ursodeoxycholic acid on carrageenan-induced colitis in guineapigs. J. Pharm. Pharmacol. 2001, 53, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Narisawa, T.; Fukaura, Y.; Takeba, N.; Nakai, K. Chemoprevention of N-methylnitrosourea-induced colon carcinogenesis by ursodeoxycholic acid-5-aminosalicylic acid conjugate in F344 rats. Jpn. J. Cancer Res. 2002, 93, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Chedid, V.; Dhalla, S.; Clarke, J.O.; Roland, B.C.; Dunbar, K.B.; Koh, J.; Justino, E.; Tomakin, E.; Mullin, G.E. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob. Adv. Health Med. 2014, 3, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittman, N.; Rawn, S.M.; Wang, M.; Masetto, A.; Beattie, K.A.; Larché, M. Treatment of small intestinal bacterial overgrowth in systemic sclerosis: A systematic review. Rheumatology 2018, 57, 1802–1811. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.; Rocha, R.; Cotrim, H.P. Diet and intestinal bacterial overgrowth: Is there evidence? World J. Clin. Cases. 2022, 10, 4713–4716. [Google Scholar] [CrossRef]
- Baker, D.E. Rifaximin: A nonabsorbed oral antibiotic. Rev. Gastroenterol. Disord. 2005, 5, 19–30. [Google Scholar] [PubMed]
- Pimentel, M. Review of rifaximin as treatment for SIBO and IBS. Expert Opin. Investig. Drugs 2009, 18, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, L.; Foti, M.; Ruggia, O.; Chiecchio, A. Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin. Gastroenterol. Hepatol. 2010, 8, 504–508. [Google Scholar] [CrossRef]
- Scarpellini, E.; Gabrielli, M.; Lauritano, C.E.; Lupascu, A.; Merra, G.; Cammarota, G.; Cazzato, I.A.; Gasbarrini, G.; Gasbarrini, A. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment. Pharmacol. Ther. 2007, 25, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, E.C.; Gabrielli, M.; Scarpellini, E.; Lupascu, A.; Novi, M.; Sottili, S.; Vitale, G.; Cesario, V.; Serricchio, M.; Cammarota, G.; et al. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am. J. Gastroenterol. 2008, 103, 2031–2035. [Google Scholar] [CrossRef]
- Pimentel, M.; Morales, W.; Lezcano, S.; Sun-Chuan, D.; Low, K.; Yang, J. Low-dose nocturnal tegaserod or erythromycin delays symptom recurrence after treatment of irritable bowel syndrome based on presumed bacterial overgrowth. Gastroenterol. Hepatol. 2009, 5, 435–442. [Google Scholar]
- Khalighi, A.R.; Khalighi, M.R.; Behdani, R.; Jamali, J.; Khosravi, A.; Kouhestani, S.; Radmanesh, H.; Esmaeelzadeh, S.; Khalighi, N. Evaluating the efficacy of probiotic on treatment in patients with small intestinal bacterial overgrowth (SIBO)--a pilot study. Indian J. Med. Res. 2014, 140, 604–608. [Google Scholar]
- Leventogiannis, K.; Gkolfakis, P.; Spithakis, G.; Tsatali, A.; Pistiki, A.; Sioulas, A.; Giamarellos- Bourboulis, E.J.; Triantafyllou, K. Effect of a preparation of four probiotics on symptoms of patients with irritable bowel syndrome: Association with intestinal bacterial overgrowth. Probiotics Antimicrob. Proteins 2019, 11, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Qu, C.; Wang, B.; Liang, S.; Zeng, B. Probiotics for preventing and treating small intestinal bacterial overgrowth: A meta-analysis and systematic review of current evidence. J. Clin. Gastroenterol. 2017, 51, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Di, Z.; Zhang, Z.; Fu, B.; Wang, Y.; Huang, C.; Du, Y. Chinese herbal medicine for the treatment of small intestinal bacterial overgrowth (SIBO): A protocol for systematic review and meta-analysis. Medicine 2020, 99, e23737. [Google Scholar] [CrossRef]
- Nickles, M.A.; Hasan, A.; Shakhbazova, A.; Wright, S.; Chambers, C.J.; Sivamani, R.K. Alternative treatment approaches to small intestinal bacterial overgrowth: A systematic review. J. Altern. Complement Med. 2021, 27, 108–119. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kassam, Z.; Chan, W.W. Small intestinal bacterial overgrowth: Should screening be included in the pre-fecal microbiota transplantation evaluation? Dig. Dis. Sci. 2018, 63, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, N.; Wang, C.; Xing, H.; Chen, D.; Wei, Y. Clinical efficacy of fecal microbiota transplantation for patients with small intestinal bacterial overgrowth: A randomized, placebo-controlled clinic study. BMC Gastroenterol. 2021, 21, 54. [Google Scholar] [CrossRef]
- Bayeli, P.F.; Mariottini, M.; Lisi, L.; Ferrari, P.; Tedone, F. [Guidelines on intestinal dysmicrobism (SIBO Small Intestine Bacterial Overgrowth)]. Minerva Gastroenterol. Dietol. 1999, 45, 297–308. [Google Scholar]
- Swart, G.R.; van den Berg, J.W. 13C breath test in gastroenterological practice. Scand. J. Gastroenterol.Suppl. 1998, 225, 13–18. [Google Scholar] [PubMed]
- Satta, P.V.; Giannetti, C.; Oppia, F.; Cabras, F. The North American Consensus on breath testing: The controversial diagnostic role of lactulose in SIBO. Am. J. Gastroenterol. 2018, 113, 440. [Google Scholar] [CrossRef] [PubMed]
- de Lacy Costello, B.P.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: A review. J. Breath Res. 2013, 7, 024001. [Google Scholar] [CrossRef]
- Saad, R.J.; Chey, W.D. Breath testing for small intestinal bacterial overgrowth: Maximizing test accuracy. Clin. Gastroenterol. Hepatol. 2014, 12, 1964–1972. [Google Scholar] [CrossRef]
- Sanjeevi, R.; Jamwal, K.D.; Dhar Chowdhury, S.; Ramadass, B.; Gayathri, R.; Dutta, A.K.; Joseph, A.; Ramakrishna, B.S.; Chacko, A. Assessment of small intestinal bacterial overgrowth in chronic pancreatitis patients using jejunal aspirate culture and glucose hydrogen breath test. Scand. J. Gastroenterol. 2021, 56, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.K.; Elvin, A.T.; Morrill, B.; Eichmeier, L.S.; Lanman, R.C.; Lanman, M.B.; Giesing, D.H. Effect of food coadministration on 5-aminosalicylic acid oral suspension bioavailability. Clin. Pharmacol. Ther. 1990, 48, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.K.; Morrill, B.; Eichmeier, L.S.; Lanman, R.C.; Lanman, M.B.; Giesing, D.H.; Weir, S.J. Pharmacokinetics of 5-aminosalicylic acid from controlled-release capsules in man. Eur. J. Clin. Pharmacol. 1995, 48, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Matthis, A.L.; Zhang, B.; Denson, L.A.; Yacyshyn, B.R.; Aihara, E.; Montrose, M.H. Importance of the evaluation of N-acetyltransferase enzyme activity prior to 5-aminosalicylic acid medication for ulcerative colitis. Inflamm. Bowel Dis. 2016, 22, 1793–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berggren, S.; Gall, C.; Wollnitz, N.; Ekelund, M.; Karlbom, U.; Hoogstraate, J.; Schrenk, D.; Lennernäs, H. Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol. Pharm. 2007, 4, 252–257. [Google Scholar] [CrossRef]
- Yokooji, T.; Murakami, T.; Yumoto, R.; Nagai, J.; Takano, M. Site-specific bidirectional efflux of 2,4- dinitrophenyl-S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells. J. Pharm. Pharmacol. 2007, 59, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.N.; Bondesen, S.; Hvidberg, E.F.; Hansen, S.H.; Binder, V.; Halskov, S.; Flachs, H. 5-aminosalicylic acid in a slow-release preparation: Bioavailability, plasma level, and excretion in humans. Gastroenterology 1982, 83, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
Tests | Diagnostic Procedure | Refs. |
---|---|---|
Cultural analysis | A sampling of duodenum/jejunum fluid aspirates, the culture of bacteria in aspirates, and counting of colony-forming units (CFU) of bacteria. >103 or ≥103 CFU/mL are generally considered SIBO positive. | [7,10,41,44,47,51] |
Analysis of the mucosal microbiota composition by 16S ribosomal RNA (rRNA) gene sequencing for identification, DNA-based cell counting, and characterization. | ||
Breath Test (BT) | Detection of H2 and/or CH4 gases excreted in the breath after oral ingestion of a certain amount of carbohydrates. Consensus oral doses for lactulose, glucose, fructose, and lactose BT are 10, 75, 25, and 25 g, respectively. Positive lactulose or glucose BT for H2: rise above baseline ≥20 ppm by 90 min and bloating. Positive lactulose or glucose BT for CH4: ≥10 ppm at any point during testing and stool M. smithii (methane-producing organism). Carbon isotope-labelled (13C or 14C) D-xylitol, lipids, such as triolein and palmitic acid, glycocholate, and lactose-ureide (LU), were used as substrates of BT for SIBO diagnosis (detection of 13CO2 or 14CO2 gases). LUBT was also used to assess orocaecal transit time. | [7,10,56,64,70,71,150] |
Urinary excretion tests | Oral administration of PABA-bile acid-conjugates; PABA-CA, PABA-UDCA, or PABA-UDCA disulfate, and urinary excretion rates of total PABA including N-acetyl-PABA that was split by bacterial-bile salt hydrolase are determined. | [121,122,123,124,125,126,130] |
Oral administration of 5-ASA-UDCA monophosphate and urinary excretion rate of N- acetyl-5-ASA, a metabolite, that was split by bacterial bile salt hydrolase is determined. In addition, 5-ASA-bile acid conjugates are effective in the delivery of both 5-ASA and UDCA to the colon to treat inflammatory bowel diseases. |
Compounds | Pharmacokinetic Properties | Ref. |
---|---|---|
PABA-UDCA | This compound is absorbed actively in the terminal ileum in rats. In other intestinal regions, active transport is not observed. This compound is cleaved by intestinal bacterial bile salt hydrolase and releases PABA, but not by other enzymes such as pancreatin, carboxypeptidase A/B, plasma, and intestinal/liver homogenates. | [122,123] |
PABA-UDCA disulfate | This compound is not absorbed by the intestine of rats (a single-pass type substance). This compound is cleaved by intestinal bacterial bile salt hydrolase and releases PABA. | [124,125,126] |
5-ASA-UDCA monophosphate | The intact compound is not absorbed by the small intestine of rats, cleaved by intestinal bacterial bile salt hydrolase, and releases PABA, but not by other enzymes such as pancreatin, carboxypeptidase, plasma, and intestinal/liver homogenates. After oral ingestion, the un-deconjugated fraction is delivered to the colonic region. | [129,130] |
PABA | PABA is absorbed by passive diffusion in the small intestine at a rate of approximately 100% and total PABA, including its metabolites, is excreted into urine at approximately 100%. PABA is metabolized mostly to N-acetyl-PABA by arylamine N-acetyltransferase (NAT) in the liver and intestine in a saturable manner. | [101,102,156,157] |
5-ASA | Transport of 5-ASA is saturable at low doses, dominated by passive, paracellular processes at higher doses in Caco-2 cells. 5-ASA is metabolized to N-acetyl-5-ASA, and N-acetyl-5-ASA is refluxed into the intestinal lumen by efflux transporter, MRP2, or excreted into urine. The elimination of the half-lives of 5-ASA and N-acetyl-5-ASA are short (0.5 to 1.5 h) and slow (5 to 10 h), respectively. 5-ASA is a BCS class IV drug with low solubility and low permeability. | [105,114,115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, Y.; Murakami, T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics 2023, 12, 263. https://doi.org/10.3390/antibiotics12020263
Maeda Y, Murakami T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics. 2023; 12(2):263. https://doi.org/10.3390/antibiotics12020263
Chicago/Turabian StyleMaeda, Yorinobu, and Teruo Murakami. 2023. "Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth" Antibiotics 12, no. 2: 263. https://doi.org/10.3390/antibiotics12020263
APA StyleMaeda, Y., & Murakami, T. (2023). Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics, 12(2), 263. https://doi.org/10.3390/antibiotics12020263