Impact of Persistent Multidrug-Resistant Gram-Negative Bacteremia on Clinical Outcome and Mortality
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of PB between Enterobacterales and NF-GNRs and in Terms of AMR Status
2.2. Clinical Characteristics of Enterobacterales and NF-GNR-PB in Terms of PB Clearance
3. Discussion
3.1. Differences in Clinical Characteristics of PB between Enterobacterales and NF-GNR and in Terms of AMR
3.1.1. Enterobacterales vs. NF-GNRs
3.1.2. AMR Status
3.2. Differences in Clinical Characteristics of Enterobacterales and NF-GNR-PB in Terms of PB Clearance
4. Materials and Methods
4.1. Study Design and Setting
4.2. Definitions and Outcomes
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maskarinec, S.A.; Park, L.P.; Ruffin, F.; Turner, N.A.; Patel, N.; Eichenberger, E.M.; van Duin, D.; Lodise, T.; Fowler, V.G., Jr.; Thaden, J.T. Positive follow-up blood cultures identify high mortality risk among patients with gram-negative bacteraemia. Clin. Microbiol. Infect. 2020, 26, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, S.; Kanamori, H.; Baba, H.; Oshima, K.; Takei, K.; Seike, I.; Katsumi, M.; Katori, Y.; Tokuda, K. Clinical and Epidemiological Characteristics of Persistent Bacteremia: A Decadal Observational Study. Pathogens 2023, 12, 212. [Google Scholar] [CrossRef]
- Wiggers, J.B.; Xiong, W.; Daneman, N. Sending repeat cultures: Is there a role in the management of bacteremic episodes? (SCRIBE Study). BMC Infect. Dis. 2016, 16, 286. [Google Scholar] [CrossRef]
- Mitaka, H.; Gomez, T.; Lee, Y.I.; Perlman, D.C. Risk factors for positive follow-up blood cultures in Gram-negative Bacilli bacteremia: Implications for selecting who needs follow-up blood cultures. Open Forum Infect. Dis. 2020, 7, ofaa110. [Google Scholar] [CrossRef]
- Spaziante, M.; Oliva, A.; Ceccarelli, G.; Alessandri, F.; Pugliese, F.; Venditti, M. Follow-up blood cultures in Gram-negative Bacilli bacteremia: Are they needed for critically ill patients? Minerva Anestesiol. 2020, 86, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Seo, H.; Chung, H.; Park, S.; Sung, H.; Kim, M.N.; Bae, S.; Jung, J.; Kim, M.J.; Kim, S.H.; et al. Bedside risk prediction for positive follow-up blood culture in Gram-negative Bacilli bacteremia: For whom is follow-up blood culture useful? Infection 2022, 50, 689–697. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Vital signs: Carbapenem-resistant Enterobacteriaceae. MMWR Morb. Mortal. Wkly Rep. 2013, 62, 165–170. [Google Scholar]
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef]
- Evans, B.A.; Hamouda, A.; Amyes, S.G.B. The rise of carbapenem-resistant Acinetobacter baumannii. Curr. Pharm. Des. 2013, 19, 223–238. [Google Scholar] [CrossRef]
- Tomczyk, S.; Zanichelli, V.; Grayson, M.L.; Twyman, A.; Abbas, M.; Pires, D.; Allegranzi, B.; Harbarth, S. Control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in healthcare facilities: A systematic review and reanalysis of quasi-experimental studies. Clin. Infect. Dis. 2019, 68, 873–884. [Google Scholar] [CrossRef]
- Hardiman, C.A.; Weingarten, R.A.; Conlan, S.; Khil, P.; Dekker, J.P.; Mathers, A.J.; Sheppard, A.E.; Segre, J.A.; Frank, K.M. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob. Agents Chemother. 2016, 60, 4910–4919. [Google Scholar] [CrossRef] [Green Version]
- Cerceo, E.; Deitelzweig, S.B.; Sherman, B.M.; Amin, A.N. Multidrug-resistant Gram-negative bacterial infections in the hospital setting: Overview, implications for clinical practice, and emerging treatment options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef]
- Kuderer, N.M.; Dale, D.C.; Crawford, J.; Cosler, L.E.; Lyman, G.H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006, 106, 2258–2266. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Cardozo-Espinola, C.; Puerta-Alcalde, P.; Marco, F.; Tellez, A.; Agüero, D.; Romero-Santana, F.; Díaz-Beyá, M.; Giné, E.; Morata, L.; et al. Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance. PLoS ONE 2018, 13, e0199531. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, Z.; Simpson, P.; Athan, E. Central venous catheter associated blood stream infections (CVC-BSIs) in the non-intensive care settings: Epidemiology, microbiology and outcomes. Infect. Dis. Health 2019, 24, 222–228. [Google Scholar] [CrossRef]
- San-Juan, R.; Ruiz-Ruigómez, M.; Aguado, J.M. How to manage central venous catheter-related bloodstream infections due to Gram-negative Bacilli? Curr. Opin. Infect. Dis. 2022, 35, 583–588. [Google Scholar] [CrossRef]
- Mandolfo, S.; Anesi, A.; Rognoni, V. The epidemiology of central venous catheter-related bloodstream infection in our renal units is changing. J. Vasc. Access. 2022, 23, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Biehl, L.M.; Huth, A.; Panse, J.; Krämer, C.; Hentrich, M.; Engelhardt, M.; Schäfer-Eckart, K.; Kofla, G.; Kiehl, M.; Wendtner, C.M.; et al. A randomized trial on chlorhexidine dressings for the prevention of catheter-related bloodstream infections in neutropenic patients. Ann. Oncol. 2016, 27, 1916–1922. [Google Scholar] [CrossRef]
- Hudson, J.K.C.; McDonald, B.J.; MacDonald, J.C.; Ruel, M.A.; Hudson, C.C.C. Impact of subglottic suctioning on the incidence of pneumonia after cardiac surgery: A retrospective observational study. J. Cardiothorac. Vasc. Anesth. 2015, 29, 59–63. [Google Scholar] [CrossRef]
- Shrikhande, S.V.; Barreto, S.G.; Shetty, G.; Suradkar, K.; Bodhankar, Y.D.; Shah, S.B.; Goel, M. Post-operative abdominal drainage following major upper gastrointestinal surgery: Single drain versus two drains. J. Cancer Res. Ther. 2013, 9, 267–271. [Google Scholar] [CrossRef]
- O’Flynn, S.K. Care of the stoma: Complications and treatments. Br. J. Community Nurs. 2018, 23, 382–387. [Google Scholar] [CrossRef]
- DeFife, R.; Scheetz, M.H.; Feinglass, J.M.; Postelnick, M.J.; Scarsi, K.K. Effect of differences in MIC values on clinical outcomes in patients with bloodstream infections caused by gram-negative organisms treated with levofloxacin. Antimicrob. Agents Chemother. 2009, 53, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant Gram-negative Bacilli. Antimicrob. Agents Chemother. 2008, 52, 813–821. [Google Scholar] [CrossRef]
- Amanati, A.; Sajedianfard, S.; Khajeh, S.; Ghasempour, S.; Mehrangiz, S.; Nematolahi, S.; Shahhosein, Z. Bloodstream infections in adult patients with malignancy, epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance. BMC Infect. Dis. 2021, 21, 636. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to Gram-negative bacteria with difficult-to-treat resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef]
- Bassetti, M.; Di Pilato, V.; Giani, T.; Vena, A.; Rossolini, G.M.; Marchese, A.; Giacobbe, D.R. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol. 2020, 15, 1489–1505. [Google Scholar] [CrossRef] [PubMed]
- Gudiol, C.; Tubau, F.; Calatayud, L.; Garcia-Vidal, C.; Cisnal, M.; Sánchez-Ortega, I.; Duarte, R.; Calvo, M.; Carratalà, J. Bacteraemia due to multidrug-resistant Gram-negative Bacilli in cancer patients: Risk factors, antibiotic therapy and outcomes. J. Antimicrob. Chemother. 2011, 66, 657–663. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Castaldo, N. Management of infections caused by multidrug-resistant Gram-negative pathogens: Recent advances and future directions. Arch. Med. Res. 2021, 52, 817–827. [Google Scholar] [CrossRef]
- Sun, F.; Feng, G.; Gao, T.; Zhang, Y.; Zhao, S. Risk factors of bloodstream infections caused by Enterobacteriaceae and related prognostic factors in general intensive care unit. Zhonghua Yi Xue Za Zhi 2014, 94, 684–687. [Google Scholar] [PubMed]
- Chang, T.Y.; Lee, C.H.; Liu, J.W. Clinical characteristics and risk factors for fatality in patients with bloodstream infections caused by glucose non-fermenting Gram-negative Bacilli. J. Microbiol. Immunol. Infect. 2010, 43, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009; pp. 1–10. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enterobacterales (n = 72) | NF-GNR (n = 28) | Odds Ratio [95% CI] | p-Value | MDR Enterobacterales (n = 24) | Non-MDR Enterobacterales (n = 48) | Odds Ratio [95% CI] | p-Value | Resistant NF-GNR (n = 10) | Susceptive NF-GNR (n = 18) | Odds Ratio [95% CI] | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Demography | ||||||||||||
Sex (male, %) | 51 (70.8) | 16 (57.1) | 1.8 [0.7, 4.5] | 16 (66.7) | 35 (72.9) | 0.7 [0.3, 2.2] | 7 (70.0) | 9 (50.0) | 2.3 [0.5, 12] | |||
Age, years, median (IQR) | 59.5 (48.8–73.8) | 71.5 (46.8–78.3) | 69.0 (59.5–78.5) | 57.0 (51.0–63.0) | 62.0 (47.3–78.3) | 72.5 (48.5–77.8) | ||||||
Ethnicity (Asian, %) | 72 (100) | 28 (100) | 0 | 24 (100) | 48 (100) | 0 | 10 (100) | 18 (100) | 0 | |||
Comorbidities | ||||||||||||
Diabetes mellitus | 13 (18.1) | 2 (7.1) | 2.9 [0.6, 13.6] | 6 (25.0) | 7 (14.6) | 2 [0.6, 6.6] | 0 (0) | 2 (11.1) | 0 | |||
ESDR on hemodialysis | 4 (5.6) | 2 (7.1) | 0.8 [0.1, 4.4] | 1 (4.2) | 3 (6.3) | 0.7 [0.1, 6.6] | 1 (10.0) | 1 (5.6) | 1.9 [0.1, 33.9] | |||
Liver cirrhosis | 4 (5.6) | 1 (3.6) | 1.6 [0.2, 14.9] | 0 (0) | 4 (8.3) | 0 | 0 (0) | 1 (5.6) | 0 | |||
Solid malignancy | 21 (29.2) | 8 (28.6) | 1 [0.4, 2.7] | 7 (29.2) | 14 (29.2) | 1.0 [0.3, 2.9] | 2 (20.0) | 6 (33.3) | 0.5 [0.1, 3.1] | |||
Hematologic malignancy | 4 (5.6) | 2 (7.1) | 0.8 [0.1, 4.4] | 1 (4.2) | 3 (6.3) | 0.7 [0.1, 6.6] | 2 (20.0) | 0 (0) | – | |||
Neutropenia | 1 (1.4) | 3 (10.7) | 0.1 [0, 1.2] | 0 (0) | 1 (2.1) | 0 | 2 (20.0) | 1 (5.6) | 4.3 [0.3, 54.1] | |||
Immunosuppression | 8 (11.1) | 6 (21.4) | 0.5 [0.1, 1.5] | 4 (16.7) | 5 (10.4) | 1.7 [0.4, 7.1] | 4 (40.0) | 3 (16.7) | 3.3 [0.6, 19.6] | |||
Vital signs | ||||||||||||
BMI, kg/m², median (IQR) | 21.2 (18.9–24.1) | 23.1 (19.0–26.0) | 22.9 (18.9–25.9) | 20.6 (19.2–23.1) | 22.0 (18.8–24.6) | 23.1 (19.8–28.7) | ||||||
Body temperature, °C, median (IQR) | 38.7 (37.8–39.3) (n = 68) | 38.7 (38.0–39.2) | 39.0 (38.2–39.3) | 38.0 (37.6–39.3) (n = 44) | 38.6 (37.6–39.3) | 38.7 (38.1–39.2) | ||||||
Laboratory markers | ||||||||||||
White blood cell count, 109/L, median (IQR) | 9700.0 (6125.0–13,450.0) | 8650.0 (5075.0–14,225.0) | 10,250.0 (7850.0–13,175.0) | 9100.0 (5700.0–13,675.0) | 8650.0 (4950.0–10,075.0) | 9050.0 (5225.0–15,275.0) | ||||||
Neutrophil count, 109/L, median (IQR) | 8590.0 (5310.0–12,675.0) | 7790.0 (3830.0–13,105.0) | 9600.0 (6947.5–12,472.5) | 8090.0 (4565.0–12,807.5) | 7790.0 (4100.0–9372.5) | 7870.0 (3575.0–14,475.0) | ||||||
C-reactive protein, mg/dL, median (IQR) | 9.0 (4.1–15.0) | 8.2 (3.4–13.0) | 11.5 (7.0–21.5) | 7.8 (3.8–12.9) | 0.027 | 8.3 (4.1–15.3) | 8.2 (3.4–11.1) | |||||
Devices | ||||||||||||
Intravascular device | 46 (63.9) | 20 (71.4) | 0.7 [0.3, 1.8] | 17 (70.8) | 29 (60.4) | 1.6 [0.6, 4.6] | 10 (100) | 10 (55.6) | – | 0.025 | ||
Intravascular device removal | 38 (82.6) | 14 (70.0) | 2 [0.6, 6.9] | 16 (94.1) | 22 (75.9) | 5.1 [0.6, 45.6] | 6 (60.0) | 8 (80.0) | 2.7 [0.4, 19.7] | |||
Cardiovascular surgery | 25 (34.7) | 6 (21.4) | 2 [0.7, 5.4] | 7 (29.2) | 18 (37.5) | 0.7 [0.2, 2] | 2 (20.0) | 4 (22.2) | 0.9 [0.1, 5.9] | |||
ECMO | 1 (1.4) | 2 (7.1) | 0.2 [0, 2.1] | 1 (4.2) | 0 (0) | – | 0 (0) | 2 (11.1) | 0 | |||
Continuous hemodiafiltration | 17 (23.6) | 7 (25.0) | 0.9 [0.3, 2.6] | 7 (29.2) | 10 (20.8) | 1.6 [0.5, 4.8] | 2 (20.0) | 5 (27.8) | 0.7 [0.1, 4.2] | |||
Mechanical ventilation | 32 (44.4) | 11 (39.3) | 1.2 [0.5, 3] | 14 (58.3) | 18 (37.5) | 2.3 [0.9, 6.3] | 6 (60.0) | 5 (27.8) | 3.9 [0.8, 20] | |||
Status of persistent bacteremia | ||||||||||||
The period until FUBC is carried out, median (IQR) | 3.0 (1.0–4.0) | 2.0 (2.0–4.0) | 3.0 (2.0–5.0) | 3.0 (1.0–4.0) | 2.0 (2.0–2.5) | 2.5 (1.3–4.8) | ||||||
Duration of bacteremia, median (IQR) | 4.0 (2.0–7.0) | 3.0 (2.0–6.0) | 3.0 (2.8–6.3) | 4.0 (2.0–7.3) | 2.5 (2.0–5.3) | 4.0 (2.0–6.0) | ||||||
Site of infection | ||||||||||||
CRBSI | 22 (25.9) | 15 (48.4) | 0.4 [0.2, 0.9] | 0.026 | 4 (14.3) | 18 (31.6) | 0.3 [0.1, 1.1] | 5 (41.7) | 10 (52.6) | 0.6 [0.1, 2.8] | ||
Infectious endocarditis | 2 (2.4) | 0 (0) | – | 0 (0) | 2 (3.5) | 0 | 0 (0) | 0 (0) | 0 | |||
Septic embolism | 2 (2.4) | 0 (0) | – | 0 (0) | 2 (3.5) | 0 | 0 (0) | 0 (0) | 0 | |||
Endovascular devices infections | 3 (3.5) | 2 (6.5) | 0.5 [0.1, 3.3] | 1 (3.6) | 2 (3.5) | 2 [0.1, 34.2] | 1 (8.3) | 1 (5.3) | 1.6 [0.1, 28.9] | |||
Thrombophlebitis | 6 (7.1) | 4 (12.9) | 0.5 [0.1, 2] | 2 (7.1) | 4 (7.0) | 1 [0.2, 5.9] | 1 (8.3) | 3 (15.8) | 0.5 [0, 5.3] | |||
Pyogenic spondylitis | 1 (1.2) | 0 (0) | – | 1 (3.6) | 0 (0) | – | 0 (0) | 0 (0) | 0 | |||
Abscess | 5 (5.9) | 1 (3.2) | 1.9 [0.2, 16.7] | 1 (3.6) | 4 (7.0) | 0.5 [0.1, 4.5] | 0 (0) | 1 (5.3) | 0 | |||
Pneumonia | 1 (1.2) | 1 (3.2) | 0.4 [0, 5.9] | 0 (0) | 1 (1.8) | 0 | 1 (8.3) | 0 (0) | – | |||
Intra-abdominal infections | 4 (4.7) | 0 (0) | – | 2 (7.1) | 2 (3.5) | 2.1 [0.3, 15.8] | 0 (0) | 0 (0) | 0 | |||
Urinary tract infections | 9 (10.6) | 1 (3.2) | 3.6 [0.4, 29.3] | 5 (17.9) | 4 (7.0) | 2.9 [0.7, 12] | 0 (0) | 1 (5.3) | 0 | |||
Biliary tract infections | 2 (2.4) | 0 (0) | – | 0 (0) | 2 (3.5) | 0 | 0 (0) | 0 (0) | 0 | |||
Skin and soft tissue infections | 1 (1.2) | 0 (0) | – | 0 (0) | 1 (1.8) | 0 | 0 (0) | 0 (0) | 0 | |||
Surgical site infection | 5 (5.9) | 2 (6.5) | 0.9 [0.2, 4.9] | 3 (10.7) | 2 (3.5) | 3.3 [0.5, 21.2] | 1 (8.3) | 1 (5.3) | 1.6 [0.1, 28.9] | |||
Sinusitis | 1 (1.2) | 0 (0) | – | 0 (0) | 1 (1.8) | 0 | 0 (0) | 0 (0) | 0 | |||
Mediastinitis | 1 (1.2) | 0 (0) | – | 1 (3.6) | 0 (0) | – | 0 (0) | 0 (0) | 0 | |||
Unknown | 20 (23.5) | 5 (16.1) | 1.6 [0.5, 4.7] | 8 (28.6) | 12 (21.1) | 1.5 [0.5, 4.4] | 3 (25.0) | 2 (10.5) | 2.8 [0.4, 20.2] | |||
Hospital stays | ||||||||||||
Duration of hospitalization, days, median (IQR) | 69.0 (31.8–138.5) | 102.5 (52.5–153.3) | 59.5 (41.0–129.8) | 75.5 (25.8–138.5) | 141.5 (83.3–192.0) | 93.0 (39.0–133.5) | ||||||
Presence of ICU | 45 (62.5) | 12 (42.9) | 2.2 [0.9, 5.4] | 17 (70.8) | 28 (58.3) | 1.7 [0.6, 5.0] | 5 (50.0) | 7 (38.9) | 1.6 [0.3, 7.5] | |||
Duration of ICU stay, days, median (IQR) | 8.0 (0–44.0) | 0 (0–59.5) | 9.0 (0–52.3) | 7.0 (0–39.3) | 9 (0–88.5) | 0 (0–43.8) | ||||||
Presence of HCU | 13 (18.1) | 0 (0) | – | 0.017 | 4 (16.7) | 9 (18.8) | 0.9 [0.2, 3.2] | 0 (0) | 0 (0) | 0 | ||
Duration of HCU stay, days, median (IQR) | 0 (0–0) | 0 (0–0) | 0.017 | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | |||||
Presence of CCU | 2 (2.8) | 1 (3.6) | 0.8 [0.1, 8.9] | 0 (0) | 2 (4.2) | 0 | 0 (0) | 1 (5.6) | 0 | |||
Duration of CCU stay, days, median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | ||||||
Intervention | ||||||||||||
The use of antibiotics (Appropriate) | 62 (86.1) | 27 (96.4) | 0.3 [0, 2.2] | 22 (91.7) | 41 (85.4) | 1.9 [0.4, 9.8] | 10 (100) | 17 (94.4) | – | |||
Source control | 36 (50.0) | 16 (57.1) | 0.8 [0.3, 1.8] | 11 (45.8) | 25 (52.1) | 0.8 [0.3, 2.1] | 5 (50.0) | 11 (61.1) | 0.6 [0.1, 3] | |||
Mortality | ||||||||||||
Early (30-day) mortality | 3 (4.2) | 4 (14.3) | 0.3 [0.1, 1.3] | 0 (0) | 3 (6.3) | 0 | 1 (10.0) | 3 (16.7) | 0.6 [0, 6.2] | |||
Late (30–90-day) mortality | 8 (11.1) | 2 (7.1) | 1.6 [0.3, 8.2] | 6 (25.0) | 2 (4.2) | 7.7 [1.4, 41.6] | 0.014 | 1 (10.0) | 1 (5.6) | 1.9 [0.1, 33.9] | ||
90-day mortality | 11 (15.3) | 6 (21.4) | 0.7 [0.2, 2] | 6 (25.0) | 5 (10.4) | 2.9 [0.8, 10.6] | 2 (20.0) | 4 (22.2) | 0.9 [0.1, 5.9] |
Enterobacterales PB Non-Clearance (n = 19) | Enterobacterales PB Clearance (n = 53) | Odds Ratio [95% CI] | p-Value | NF-GNR-PB Non-Clearance (n = 9) | NF-GNR-PB Clearance (n = 19) | Odds Ratio [95% CI] | p-Value | |
---|---|---|---|---|---|---|---|---|
Demography | ||||||||
Sex (male, %) | 13 (68.4) | 38 (71.7) | 0.9 [0.3, 2.7] | 5 (55.6) | 11 (57.9) | 0.91 [0.18, 4.50] | ||
Age, years, median (IQR) | 73.0 (68.5–76.0) | 59.5 (48.8–73.8) | 0.046 | 72.0 (51.0–76.0) | 71.0 (46.5–78.5) | |||
Ethnicity (Asian, %) | 19 (100) | 53 (100) | 0 | 9 (100) | 19 (100) | 0 | ||
Comorbidities | ||||||||
Diabetes mellitus | 5 (26.3) | 8 (15.1) | 2 [0.6, 7.1] | 0 (0) | 2 (10.5) | 0 | ||
ESDR on hemodialysis | 2 (10.5) | 2 (3.8) | 3 [0.4, 23] | 0 (0) | 2 (10.5) | 0 | ||
Liver cirrhosis | 2 (10.5) | 2 (3.8) | 3 [0.4, 23] | 0 (0) | 1 (5.3) | 0 | ||
Solid malignancy | 9 (47.4) | 12 (22.6) | 3 [1, 9.3] | 2 (22.2) | 6 (31.6) | 0.6 [0.1, 3.9] | ||
Hematologic malignancy | 0 (0) | 4 (7.5) | 0 | 2 (22.2) | 0 (0) | – | ||
Neutropenia | 1 (5.3) | 0 (0) | – | 1 (11.1) | 2 (10.5) | 1.1 [0.1, 13.5] | ||
Immunosuppression | 3 (15.8) | 6 (11.3) | 1.5 [0.3, 6.6] | 4 (44.4) | 3 (15.8) | 4.3 [0.7, 25.9] | ||
Vital signs | ||||||||
BMI, kg/m², median (IQR) | 20.0 (18.4–22.9) | 21.6 (19.7–25.1) | 23.7 (19.1–27.4) | 22.8 (18.8–25.2) | ||||
Body temperature, °C, median (IQR) | 38.8 (38.1–39.0) (n = 18) | 38.3 (37.7–39.5) (n = 50) | 38.8 (38.0–39.3) | 38.6 (38.0–39.1) | ||||
Laboratory markers | ||||||||
White blood cell count, 109/L, median (IQR) | 10,100.0 (6750.0–14,500.0) | 9300.0 (5900.0–13,100.0) | 11,900.0 (4900.0–15,900.0) | 8500.0 (5350.0–11,950.0) | ||||
Neutrophil count, 109/L, median (IQR) | 9410.0 (5995.0–13,195.0) | 7600.0 (5100.0–12,390.0) | 9760.0 (4300.0–15,580.0) | 7740.0 (3680.0–10,145.0) | ||||
C-reactive protein, mg/dL, median (IQR) | 4.7 (2.5–12.2) | 9.4 (5.0–17.0) | 14.2 (6.2–19.2) | 7.2 (3.1–10.1) | ||||
Devices | ||||||||
Intravascular device | 10 (52.6) | 36 (67.9) | 0.5 [0.2, 1.5] | 8 (88.9) | 12 (63.2) | 4.7 [0.5, 45.4] | ||
Intravascular device removal | 6 (60.0) | 32 (88.9) | 0.2 [0, 1] | 6 (75.0) | 8 (66.7) | 1.5 [0.2, 11.1] | ||
Cardiovascular surgery | 6 (31.6) | 19 (35.8) | 0.8 [0.3, 2.5] | 1 (11.1) | 5 (26.3) | 0.4 [0, 3.5] | ||
ECMO | 0 (0) | 1 (1.9) | – | 1 (11.1) | 1 (5.3) | 2.3 [0.1, 40.7] | ||
Continuous hemodiafiltration | 2 (10.5) | 15 (28.3) | 0.3 [0.1, 1.5] | 3 (33.3) | 4 (21.1) | 1.9 [0.3, 11] | ||
Mechanical ventilation | 5 (26.3) | 27 (50.9) | 0.3 [0.1, 1.1] | 4 (44.4) | 7 (36.8) | 1.4 [0.3, 6.9] | ||
Status of persistent bacteremia | ||||||||
The period until FUBC is carried out, median (IQR) | 3.0 (1.0–4.5) | 3.0 (1.0–4.0) | 2.0 (2.0–3.0) | 3.0 (2.0–4.5) | ||||
Duration of bacteremia, median (IQR) | 4.0 (1.5–8.0) | 4.0 (2.0–7.0) | 4.0 (2.0–8.0) | 3.0 (2.0–5.5) | ||||
Site of infection | ||||||||
CRBSI | 6 (27.3) | 16 (25.4) | 1.1 [0.4, 3.3] | 4 (44.4) | 11 (50.0) | 1 [0.2, 5] | ||
Infectious endocarditis | 0 (0) | 2 (3.2) | – | 0 (0) | 0 (0) | 0 | ||
Septic embolism | 0 (0) | 2 (3.2) | – | 0 (0) | 0 (0) | 0 | ||
Endovascular devices infections | 0 (0) | 3 (4.8) | – | 0 (0) | 2 (9.1) | – | ||
Thrombophlebitis | 1 (4.5) | 5 (7.9) | 0.6 [0.1, 5] | 0 (0) | 4 (18.2) | – | ||
Pyogenic spondylitis | 0 (0) | 1 (1.6) | – | 0 (0) | 0 (0) | 0 | ||
Abscess | 0 (0) | 5 (7.9) | – | 0 (0) | 1 (4.5) | – | ||
Pneumonia | 0 (0) | 1 (1.6) | – | 0 (0) | 1 (4.5) | – | ||
Intra-abdominal infections | 1 (4.5) | 3 (4.8) | 1 [0.1, 9.7] | 0 (0) | 0 (0) | 0 | ||
Urinary tract infections | 4 (18.2) | 5 (7.9) | 2.6 [0.6, 10.6] | 0 (0) | 1 (4.5) | – | ||
Biliary tract infections | 1 (4.5) | 1 (1.6) | 3 [0.2, 49.3] | 0 (0) | 0 (0) | 0 | ||
Skin and soft tissue infections | 1 (4.5) | 0 (0) | 0 | 0 (0) | 0 (0) | 0 | ||
Surgical site infection | 2 (9.1) | 3 (4.8) | 2 [0.3, 12.8] | 1 (11.1) | 1 (4.5) | 3 [0.2, 54.6] | ||
Sinusitis | 1 (4.5) | 0 (0) | 0 | 0 (0) | 0 (0) | 0 | ||
Mediastinitis | 0 (0) | 1 (1.6) | – | 0 (0) | 0 (0) | 0 | ||
Unknown | 5 (22.7) | 15 (23.8) | 0.9 [0.3, 3] | 4 (44.4) | 1 (4.5) | 21 [1.8, 240.5] | 0.011 | |
Hospital stays | ||||||||
Duration of hospitalization, days, median (IQR) | 45.0 (21.0–67.5) | 95.0 (42.0–178.0) | 0.004 | 76.0 (30.0–134.0) | 105.5 (59.0–154.5) | |||
Presence of ICU | 9 (47.4) | 36 (67.9) | 0.4 [0.1, 1.2] | 3 (33.3) | 9 (47.4) | 0.6 [0.1, 2.9] | ||
Duration of ICU stay, days, median (IQR) | 0 (0–12.0) | 12.0 (0–54.0) | 0.017 | 0 (0–33.0) | 0 (0–75.0) | |||
Presence of HCU | 0 (0) | 8 (15.1) | – | 0 (0) | 0 (0) | 0 | ||
Duration of HCU stay, days, median (IQR) | 0 (0–0.5) | 0 (0–0) | 0 (0–0) | 0 (0–0) | ||||
Presence of CCU | 0 (0) | 2 (3.8) | 0 | 0 (0) | 1 (5.3) | 0 | ||
Duration of CCU stay, days, median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | ||||
Intervention | ||||||||
The use of antibiotics (Appropriate) | 16 (84.2) | 47 (88.7) | 0.7 [0.2, 3] | 9 (100) | 18 (94.7) | – | ||
Source control | 7 (36.8) | 29 (54.7) | 0.5 [0.2, 1.4] | 4 (44.4) | 12 (63.2) | 0.5 [0.1, 2.3] | ||
Mortality | ||||||||
Early (30-day) mortality | 2 (10.5) | 1 (1.9) | 6.1 [0.5, 71.8] | 3 (33.3) | 1 (5.3) | 9 [0.8, 103.7] | ||
Late (30–90-day) mortality | 6 (31.6) | 2 (3.8) | 11.8 [2.1, 65.2] | 0.003 | 1 (11.1) | 1 (5.3) | 2.3 [0.1, 40.7] | |
90-day mortality | 8 (42.1) | 3 (5.7) | 12.1 [2.8, 53.2] | 0.001 | 4 (44.4) | 2 (10.5) | 6.8 [0.9, 48.7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitaya, S.; Kanamori, H.; Katori, Y.; Tokuda, K. Impact of Persistent Multidrug-Resistant Gram-Negative Bacteremia on Clinical Outcome and Mortality. Antibiotics 2023, 12, 313. https://doi.org/10.3390/antibiotics12020313
Kitaya S, Kanamori H, Katori Y, Tokuda K. Impact of Persistent Multidrug-Resistant Gram-Negative Bacteremia on Clinical Outcome and Mortality. Antibiotics. 2023; 12(2):313. https://doi.org/10.3390/antibiotics12020313
Chicago/Turabian StyleKitaya, Shiori, Hajime Kanamori, Yukio Katori, and Koichi Tokuda. 2023. "Impact of Persistent Multidrug-Resistant Gram-Negative Bacteremia on Clinical Outcome and Mortality" Antibiotics 12, no. 2: 313. https://doi.org/10.3390/antibiotics12020313
APA StyleKitaya, S., Kanamori, H., Katori, Y., & Tokuda, K. (2023). Impact of Persistent Multidrug-Resistant Gram-Negative Bacteremia on Clinical Outcome and Mortality. Antibiotics, 12(2), 313. https://doi.org/10.3390/antibiotics12020313