Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia
Abstract
:1. Introduction
2. Results
2.1. Distribution of Clinically Relevant ARB Isolated from Wastewater
2.2. Antimicrobial Resistance Pattern of Wastewater Isolates
2.3. Characterisation of β-lactamase Genes (ESBL and Carbapenemase Genes)
2.4. Resistome Other Than β-lactamase Genes
2.5. Plasmidome and Virulome
2.6. Genomic Epidemiology and Phylogenetic Relatedness
3. Discussion
4. Materials and Methods
4.1. Study Setting and Sampling
4.2. Cultivation and Identification of Target ARB
4.3. Antimicrobial Susceptibility Testing
4.4. DNA Extraction and Whole-Genome Sequencing
4.5. Identification of Missense Mutation in mgrB Gene Resulting in MgrBC28S
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekwanzala, M.D.; Dewar, J.B.; Kamika, I.; Momba, M.N.B. Tracking the environmental dissemination of carbapenem-resistant Klebsiella pneumoniae using whole genome sequencing. Sci. Total Environ. 2019, 691, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe Antimicrobial Medicines Consumption (AMC) Network: AMC Data, 2014–2018; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. Available online: https://www.who.int/europe/publications/i/item/9789289055567 (accessed on 9 November 2022).
- WHO Regional Office for Europe Antimicrobial Medicines Consumption (AMC) Network: AMC Data 2019; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. Available online: https://www.who.int/europe/publications/i/item/9789289058278 (accessed on 9 November 2022).
- Central Asian and Eastern European Surveillance of Antimicrobial Resistance: Annual Report 2016; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. Available online: https://www.euro.who.int/__data/assets/pdf_file/0009/323568/CAESAR-Annual-report-2016.pdf (accessed on 9 November 2022).
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022—2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Joint-WHO-ECDC-AMR-report-2022.pdf (accessed on 9 November 2022).
- Samreen, A.I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Alexander, J.; Hembach, N.; Schwartz, T. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Sci. Rep. 2020, 10, 8952. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Consumption Database. Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database (accessed on 9 November 2022).
- Aarestrup, F.M.; Woolhouse, M.E.J. Using sewage for surveillance of antimicrobial resistance. Science 2020, 367, 630–632. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection Republic of Serbia, Environmental Protection Agency. Environment in Serbia 2004–2019 Extended Summary. 2019. Available online: http://www.sepa.gov.rs/download/ENG_FIN_JubilarnaPublikacija.pdf (accessed on 9 November 2022).
- Pinka, P.G.; Penčev, P.G. Danube River. Encyclopedia Britannica. 2022. Available online: https://www.britannica.com/place/Danube-River (accessed on 9 November 2022).
- Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.; Linke, R.; Eiler, A.; et al. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Res. 2017, 124, 543–555. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Jaroslav Černi Institute for Development of Water Resources. Master Plan of the Belgrade Sewerage System. 2011. Available online: https://www.jcerni.rs/ (accessed on 9 November 2022). (In Serbian).
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of antibiotic resistance genes in the environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
- Palmieri, M.; D’Andrea, M.M.; Pelegrin, A.C.; Mirande, C.; Brkic, S.; Cirkovic, I.; Goossens, H.; Rossolini, G.M.; van Belkum, A. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates from Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front. Microbiol. 2020, 11, 294. [Google Scholar] [CrossRef]
- Bedenić, B.; Slade, M.; Starčević, L.Ž.; Sardelić, S.; Vranić-Ladavac, M.; Benčić, A.; Zujić Atalić, V.; Bogdan, M.; Bubonja-Šonje, M.; Tomić-Paradžik, M.; et al. Epidemic spread of OXA-48 beta-lactamase in Croatia. J. Med. Microbiol. 2018, 67, 1031–1041. [Google Scholar] [CrossRef]
- Dierikx, C.M.; Meijs, A.P.; Hengeveld, P.D.; van der Klis, F.R.M.; van Vliet, J.; Gijsbers, E.F.; Rozwandowicz, M.; van Hoek, A.H.A.M.; Hendrickx, A.P.A.; Hordijk, J.; et al. Colistin-resistant Enterobacterales among veterinary healthcare workers and in the Dutch population. JAC Antimicrob. Resist. 2022, 4, dlac041. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Mutters, N.T.; Schmithausen, R.M.; Kreyenschmidt, J.; García-Meniño, I.; Schmoger, S.; Käsbohrer, A.; Hammerl, J.A. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics 2022, 11, 435. [Google Scholar] [CrossRef]
- King, T.L.B.; Schmidt, S.; Essack, S.Y. Antibiotic resistant Klebsiella spp. from a hospital, hospital effluents and wastewater treatment plants in the uMgungundlovu District, KwaZulu-Natal, South Africa. Sci. Total Environ. 2020, 712, 135550. [Google Scholar] [CrossRef] [PubMed]
- Rolbiecki, D.; Harnisz, M.; Korzeniewska, E.; Buta, M.; Hubeny, J.; Zieliński, W. Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Int. J. Hyg. Environ. Health 2021, 237, 113831. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Hellmark, B.; Ehricht, R.; Söderquist, B.; Jass, J. Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Judd, L.M.; Jenney, A.; Holt, K.E.; Wyres, K.L.; Hawkey, J. Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital network in Australia. BMC Infect. Dis. 2022, 22, 704. [Google Scholar] [CrossRef] [PubMed]
- Shibu, P.; McCuaig, F.; McCartney, A.L.; Kujawska, M.; Hall, L.J.; Hoyles, L. Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster. Microb. Genom. 2021, 7, 000592. [Google Scholar] [CrossRef]
- Waśko, I.; Kozińska, A.; Kotlarska, E.; Baraniak, A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. Int. J. Environ. Res. Public Health 2022, 19, 13829. [Google Scholar] [CrossRef]
- Novovic, K.; Filipic, B.; Veljovic, K.; Begovic, J.; Mirkovic, N.; Jovcic, B. Environmental waters and blaNDM-1 in Belgrade, Serbia: Endemicity questioned. Sci. Total Environ. 2015, 511, 393–398. [Google Scholar] [CrossRef]
- Peirano, G.; Matsumura, Y.; Adams, M.D.; Bradford, P.; Motyl, M.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008–2014. Emerg. Infect. Dis. 2018, 24, 1010–1019. [Google Scholar] [CrossRef]
- Brkić, S.; Božić, D.; Stojanović, N.; Vitorović, T.; Topalov, D.; Jovanović, M.; Stepanović, M.; Ćirković, I. Antimicrobial Susceptibility and Molecular Characterization of Carbapenemase-Producing Enterobacter spp. Community Isolates in Belgrade, Serbia. Microb. Drug Resist. 2020, 26, 378–384. [Google Scholar] [CrossRef]
- Forde, B.M.; Roberts, L.W.; Phan, M.D.; Peters, K.M.; Fleming, B.A.; Russell, C.W.; Lenherr, S.M.; Myers, J.B.; Barker, A.P.; Fisher, M.A.; et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun. 2019, 10, 3643. [Google Scholar] [CrossRef] [Green Version]
- Kondratyeva, K.; Salmon-Divon, M.; Navon-Venezia, S. Meta-analysis of Pandemic Escherichia coli ST131 Plasmidome Proves Restricted Plasmid-clade Associations. Sci. Rep. 2020, 10, 36. [Google Scholar] [CrossRef]
- Skurnik, D.; Clermont, O.; Guillard, T.; Launay, A.; Danilchanka, O.; Pons, S.; Diancourt, L.; Lebreton, F.; Kadlec, K.; Roux, D.; et al. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans. Mol. Biol. Evol. 2016, 33, 898–914. [Google Scholar] [CrossRef]
- Matamoros, S.; van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Thi Hoa, N.; Bootsma, M.C.J.; van Genderen, P.J.; et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 2017, 7, 15364, Erratum in Sci. Rep. 2020, 10, 2963. [Google Scholar] [CrossRef]
- Neumann, B.; Rackwitz, W.; Hunfeld, K.P.; Fuchs, S.; Werner, G.; Pfeifer, Y. Genome sequences of two clinical Escherichia coli isolates harboring the novel colistin-resistance gene variants mcr-1.26 and mcr-1.27. Gut Pathog. 2020, 12, 40. [Google Scholar] [CrossRef]
- Muller, A.; Stephan, R.; Nuesch-Inderbinen, M. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci. Total Environ. 2016, 541, 667–672. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shoma, S.; Bari, S.M.; Ginn, A.; Wiklendt, A.M.; Partridge, S.R.; Faruque, S.M.; Iredell, J.R. Genetic diversity and antibiotic resistance in Escherichia coli from environmental surface water in Dhaka City, Bangladesh. Diagn. Microbiol. Infect. Dis. 2013, 76, 222–226. [Google Scholar] [CrossRef]
- Adewoyin, M.A.; Okoh, A.I. The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Rev. Environ. Health 2018, 33, 265–272. [Google Scholar] [CrossRef]
- Girlich, D.; Poirel, L.; Nordmann, P. First isolation of the blaOXA-23 carbapenemase gene from an environmental Acinetobacter baumannii isolate. Antimicrob. Agents Chemother. 2010, 54, 578–579. [Google Scholar] [CrossRef]
- Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob. Agents 2013, 41, 11–19. [Google Scholar] [CrossRef]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef]
- Lukovic, B.; Gajic, I.; Dimkic, I.; Kekic, D.; Zornic, S.; Pozder, T.; Radisavljevic, S.; Opavski, N.; Kojic, M.; Ranin, L. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob. Resist. Infect. Control 2020, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Binsker, U.; Käsbohrer, A.; Hammerl, J.A. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 2022, 46, fuab049. [Google Scholar] [CrossRef] [PubMed]
- Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Mbelle, N.M. Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. mSystems 2020, 5, e00148-20. [Google Scholar] [CrossRef] [PubMed]
- Manageiro, V.; Salgueiro, V.; Rosado, T.; Bandarra, N.M.; Ferreira, E.; Smith, T.; Dias, E.; Caniça, M. Genomic Analysis of a mcr-9.1-Harbouring IncHI2-ST1 Plasmid from Enterobacter ludwigii Isolated in Fish Farming. Antibiotics 2022, 11, 1232. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Hu, Y.; Zhang, G.; Zhu, B.; Gao, G.F. Detection of mobile colistin resistance gene mcr-9 in carbapenem-resistant Klebsiella pneumoniae strains of human origin in Europe. J. Infect. 2020, 80, 578–606. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Muller, B.H.; Mollon, P.; Santiago-Allexant, E.; Javerliat, F.; Kaneko, G. In-depth comparison of library pooling strategies for multiplexing bacterial species in NGS. Diagn. Microbiol. Infect. Dis. 2019, 95, 28–33. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Recommendation (EU) 2021/472 of 17 March 2021 on a Common Approach to Establish a Systematic Surveillance of SARS-CoV-2 and Its Variants in Wastewaters in the EU. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=uriserv:OJ.L_.2021.098.01.0003.01.ENG (accessed on 9 November 2022).
S/SC | SC1 | SC2 | SC3 | SC4 |
---|---|---|---|---|
S1 | K. pneumoniae (n = 1) E. coli (n = 1) A. baumannii (n = 1) | K. pneumoniae (n = 1) K. oxytoca (n = 1) E. cloacae (n = 1) E. coli (n = 1) | K. pneumoniae (n = 2) | K. pneumoniae (n = 1) P. aeruginosa (n = 1) |
S2 | K. pneumoniae (n = 2) K. oxytoca (n = 1) E. cloacae (n = 2) S. marcescens (n = 1) | K. pneumoniae (n = 1) E. cloacae (n = 1) | K. pneumoniae (n = 1) E. cloacae (n = 1) E. coli (n = 1) | K. pneumoniae (n = 1) |
S3 | / | / | K. pneumoniae (n = 1) K. oxytoca (n = 1) E. cloacae (n = 1) | E. cloacae (n = 1) E. coli (n = 1) S. marcescens (n = 1) |
S4 | E. cloacae (n = 1) C. freundii (n = 1) | P. aeruginosa (n = 1) | K. pneumoniae (n = 1) A. baumannii (n = 1) | / |
Species | Number | ST | β-lactams | Aminoglycosides | Quinolones | Phenicol | Trim | Sulfo | Fosfo | Tet |
---|---|---|---|---|---|---|---|---|---|---|
K. pneumoniae | BS11119 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. pneumoniae | BS11120 | 101 | blaCMY-16, blaCMY-4, blaCTX-M-15, blaNDM-1, blaOXA-10, blaOXA-48, blaSHV-212, blaTEM-150, blaTEM-156, blaTEM-168, blaTEM-171, blaTEM-181, blaTEM-183, blaTEM-231, blaTEM-237, blaTEM-54, blaTEM-90 | aadA, aadA2, aph(3″)-Ib, aph(3′)-VI, aph(6)-Id, armA | oqxA, oqxA10, oqxA8, oqxB17 | cmlA5, floR | dfrA12, dfrA14 | sul1, sul2 | fosA | tet(A) |
K. pneumoniae | BS11121 | 15 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-106, blaSHV-205, blaSHV-28, blaTEM-1 | aac(6′)-Ib-cr, aph(3″)-Ib, aph(6)-Id | oqxA, oqxB20, oqxB1 | catB3 | dfrA14 | / | fosA6 | tet(A) |
K. pneumoniae | BS11122 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-320, blaOXA-48, blaOXA-534, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. pneumoniae | BS11124 | 6273 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-215 | aac(3)-IIe, aac(6′)-Ib-cr, aph(3″)-Ib, aph(3′)-Ia, aph(6)-Id | oqxA, oqxB19, oqxB24, oqxB25, qnrB1 | catB3 | dfrA14 | sul2 | fosA6 | tet(A) |
K. pneumoniae | BS11125 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. pneumoniae | BS11126 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. pneumoniae | BS11127 | 29 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-187 | aac(3)-IIe, aac(6′)-Ib-cr, aph(3″)-Ib, aph(6)-Id | / | catB3, floR | / | sul2 | fosA6 | tet(A) |
K. pneumoniae | BS11128 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. pneumoniae | BS11130 | 16 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-145, blaSHV-179, blaSHV-194, blaSHV-199, blaSHV-226, blaSHV-26, blaSHV-78, blaSHV-98, blaTEM-1 | aac(6′)-Ib-cr, aadA2 | oqxA, oqxA10, oqxB32 | catB3 | dfrA12 | sul1 | fosA5 | tet(A) |
K. pneumoniae | BS11131 | 437 | blaCTX-M-15, blaOXA-48, blaSHV-11 | aadA2, aadA2, armA | oqxA, oqxB, | catB3 | dfrA12 | sul1 | fosA6 | / |
K. pneumoniae | BS11134 | 101 | blaCTX-M-15, blaOXA-1, blaOXA-48, blaSHV-212 | aac(3)-IIe, aac(6′)-Ib-cr | oqxA, oqxA10, oqxA8, oqxB17 | catB3 | dfrA14 | / | fosA | tet(D) |
K. oxytoca | BS11116 | 108 | blaOXA-48, blaOXY-1-1 | aph(3′)-Ia | / | / | / | / | / | / |
K. oxytoca | BS11117 | 427 | blaGES-5, blaOXA-10, blaOXA-17, blaOXY-5-1, blaOXY-5-2 | aac(6′)-Ib4, aadA11, aph(3″)-Ib, aph(3′)-VIa, aph(6)-Id | / | / | / | sul1, sul2 | / | / |
K. oxytoca | BS11118 | 427 | blaGES-5, blaOXA-10, blaOXA-17, blaOXY-5-1, blaOXY-5-2 | aac(6′)-Ib4, aadA11, aph(3″)-Ib, aph(3′)-VIa, aph(6)-Id, aph(6)-Id, aph(6)-Id | / | / | / | sul1, sul2 | / | / |
E. cloacae | BS11101 | 136 | blaACT-46, blaACT-69, blaCTX-M-228, blaOXA-1, blaTEM-1 | aac(3)-IIe, aac(6′)-Ib-cr, aadA, aph(3″)-Ib, aph(6)-Id | qnrB1 | catA1, catB3 | dfrA14 | sul2 | fosA | tet(A) |
E. cloacae | BS11103 | 23 | blaACT-68 | aac(6′)-Ib-cr5, aadA, ant(2″)-Ia, aph(3″)-Ib, aph(6)-Id | qnrE1 | / | / | sul1 | fosA | / |
E. cloacae | BS11104 | 2007 | blaNDM-1, blaOXA-1 | aac(3)-IIe, aac(6′)-Ib-cr, aadA2, aph(3″)-Ib, aph(3′)-VI | oqxB9, qacE, qnrB1 | catA1, catB3 | dfrA14 | sul1 | fosA | / |
E. cloacae | BS11105 | 32 | blaACT-52 | aac(6′)-Ib4, aph(3″)-Ib, aph(3′)-VIa, aph(6)-Id | / | / | / | sul1 | fosA | / |
E. cloacae | BS11106 | 2006 | blaMIR-7, blaOXA-1, blaSHV-2 | aac(6′)-Ib-cr, aac(6′)-Ip, aadA, aph(2″)-IIa | / | catB3 | dfrA14 | sul1 | / | / |
E. cloacae | BS11108 | 364 | blaCMH-4, blaKLUB-1, blaNDM-1, blaTEM-1, blaVEB-1, | aac(3)-IId aac(6′)-Ib-cr5, aadA2, ant(2″)-Ia | qnrVC4 | cmlA5 | dfrA12, dfrA14 | sul1 | fosA | / |
E. cloacae | BS11109 | 2008 | blaCMG, blaIMI-2 | / | oqxB9 | / | / | / | fosA | / |
E. cloacae | BS11110 | 171 | blaACT-45, blaCMY-4, blaCTX-M-15, blaNDM-1, blaOXA-1, blaOXA-10, blaTEM-1 | aac(3)-IIe, aac(6′)-Ib-cr, aadA, aph(3″)-Ib, aph(3′)-VI, aph(6)-Id, armA | qnrB1 | catA1, catB3, cmlA5 | dfrA14 | sul1, sul2 | fosA | tet(A) |
E. cloacae | BS11111 | 114 | blaACT-72, blaCTX-M-15, blaNDM-1, blaOXA-1, blaTEM-1 | aac(3)-IIe, aac(6′)-Ib-cr, aadA, aadA2, aph(3″)-Ib, aph(6)-Id, | qacE, qnrB1 | catA1, catB3 | dfrA12, dfrA14 | sul1, sul2 | fosA | tet(A) |
E. coli | BS11113 | 1133/1970 * | blaEC-15, blaNDM-1, blaOXA-1, blaOXA-10 | aac(3)-IIe, aac(6′)-Ib, aac(6′)-Ib-cr5, aac(6′)-Ib4, aadA, aph(3′)-Ia, aph(3′)-VI | qnrA6 | catB3, cmlA5 | dfrA14 | sul1 | / | / |
E. coli | BS11114 | 21/155 * | blaEC-18, blaOXA-48 | aph(3″)-Ib, aph(6)-Id | / | / | / | sul2 | / | tet(B) |
E. coli | BS11115 | 43/131 * | blaEC-5, blaNDM-1, blaOXA-1, blaSHV-12, blaTEM-1 | aac(3)-IId, aac(3)-IIg, aac(6′)-Ib, aac(6′)-Ib-cr5, aac(6′)-IIc, aadA2, aph(3′)-Ia | / | catA1, catB3 | dfrA12 | sul1, sul2 | / | tet(D) |
C. freundii | BS11100 | 112 | blaCMY-75, blaCTX-M-162, blaKLUB-1, blaTEM-1 | aadA2, armA | / | dfrA12 | sul1 | / | / | |
S. marcescens | BS11148 | NA | blaGES-5, blaSHV-2a, blaSRT-2 | aac(6′), aac(6′)-Ip, aph(2″)-IIa | / | catA1 | / | / | / | tet(41) |
S. marcescens | BS11149 | NA | blaKLUB-1, blaNDM-1, blaSRT-2, blaTEM-1 | aac(6′), aadA2, armA | / | / | dfrA12 | sul1 | / | tet(41) |
A. baumannii | BS11098 | 492/425 ** | blaADC-100, blaOXA-66, blaOXA-72 | aadA2, abaF, ant(3″)-IIa, aph(3″)-Ib, aph(3″)-Ib, aph(6)-Id, armA | / | / | dfrA12 | sul1, sul2 | / | tet(B) |
A. baumannii | BS11099 | 2/195 ** | blaADC-73, blaOXA-23, blaOXA-66 | aac(3)-Ia, aadA, abaF, ant(3″)-IIa, aph(3′)-VIa, aph(6)-Id, armA | / | catA1 | / | sul1 | / | tet(B) |
P. aeruginosa | BS11135 | 348 | blaOXA-847, blaPDC-108, blaPDC-172, blaPDC-239, blaPDC-25, blaPDC-264, blaPDC-289, blaPDC-308, blaPDC-346, blaPDC-382, blaPDC-416, blaPDC-421, blaPDC-471, blaPDC-71, blaPER-1 | aph(3″)-Ib, aph(3′)-IIb, aph(3′)-VIb, aph(6)-Id | crpP | catB7 | / | / | fosA | / |
P. aeruginosa | BS11136 | 2305 | blaOXA-395, blaPDC-216, blaPDC-257, blaPDC-313, blaPDC-334, blaPDC-402, blaPDC-43, blaPDC-452, blaPDC-52 | aph(3′)-IIb | crpP | catB7 | / | / | fosA | / |
Sampling Site | Sewer Type | Average Sewage Flow Rate (m3/day) | WW Load, p.e. | Hospital WW | Discharge |
---|---|---|---|---|---|
S1 | Separate and combined | 94,250 | 537,000 | MMA, CHC DM | The Sava River |
S2 | Combined | 17,500 | 74,800 | / | The Sava River |
S3 | Separate | 47,820 | 268,000 | CHC BK | The Sava River |
S4 | Combined | 46,650 | 246,000 | UCCS, CHC Z | The Danube River |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirkovic, I.; Muller, B.H.; Janjusevic, A.; Mollon, P.; Istier, V.; Mirande-Meunier, C.; Brkic, S. Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Antibiotics 2023, 12, 350. https://doi.org/10.3390/antibiotics12020350
Cirkovic I, Muller BH, Janjusevic A, Mollon P, Istier V, Mirande-Meunier C, Brkic S. Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Antibiotics. 2023; 12(2):350. https://doi.org/10.3390/antibiotics12020350
Chicago/Turabian StyleCirkovic, Ivana, Bruno H. Muller, Ana Janjusevic, Patrick Mollon, Valérie Istier, Caroline Mirande-Meunier, and Snezana Brkic. 2023. "Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia" Antibiotics 12, no. 2: 350. https://doi.org/10.3390/antibiotics12020350
APA StyleCirkovic, I., Muller, B. H., Janjusevic, A., Mollon, P., Istier, V., Mirande-Meunier, C., & Brkic, S. (2023). Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Antibiotics, 12(2), 350. https://doi.org/10.3390/antibiotics12020350