Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. Impact of Chemotherapy on Amikacin Pharmacokinetics
2.3. Amikacin Pharmacokinetics in Subpopulations
2.3.1. Elderly
2.3.2. Renal Impairment
- ClCr < 30 mL/min/1.73 m2: Severe and terminal chronic renal impairment
- ClCr: 30–59 mL/min/1.73 m2: Moderate chronic renal impairment
- ClCr: 60–89 mL/min/1.73 m2: Mild chronic renal impairment
- ClCr: 90–120 mL/min /1.73 m2: Normal renal function
- ClCr ≥ 120 mL/min /1.73 m2: Renal lesion with normal renal function
3. Discussion
4. Materials and Methods
4.1. Study Design, Patients and Data Collectoin
4.2. Sampling Procedure and Analytic Method for Amikacin Quantification
4.3. Pharmacokinetic Analysis and Endpoints
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blumenstein, K.G.; Brose, A.; Kemp, C.; Meister, D.; Walling, E.; DuVall, A.S.; Zhang, A. Effectiveness of cognitive behavioral therapy in improving functional health in cancer survivors: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2022, 175, 103709. [Google Scholar] [CrossRef] [PubMed]
- Weir, H.K.; Thompson, T.D.; Stewart, S.L.; White, M.C. Cancer Incidence Projections in the United States Between 2015 and 2050. Prev. Chronic Dis. 2021, 18, E59. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Villeneuve, S.; Aftandilian, C. Neutropenia and Infection Prophylaxis in Childhood Cancer. Curr. Oncol. Rep. 2022, 24, 671–686. [Google Scholar] [CrossRef]
- Joseph, A.; Lafarge, A.; Mabrouki, A.; Abdel-Nabey, M.; Binois, Y.; Younan, R.; Azoulay, E. Severe infections in recipients of cancer immunotherapy: What intensivists need to know. Curr. Opin. Crit. Care 2022, 28, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, P.; Marrone, K.; Shanbhag, S.; Brahmer, J.R.; Naik, R.P. Current challenges of hematologic complications due to immune checkpoint blockade: A comprehensive review. Ann. Hematol. 2022, 101, 1–10. [Google Scholar] [CrossRef]
- Higdon, M.L.; Atkinson, C.J.; Lawrence, K.V. Oncologic Emergencies: Recognition and Initial Management. Am. Fam. Physician 2018, 97, 741–748. [Google Scholar] [PubMed]
- Lakshmaiah, K.C.; Malabagi, A.S.; Shetty, R.; Sinha, M.; Jayashree, R.S. Febrile Neutropenia in Hematological Malignancies: Clinical and Microbiological Profile and Outcome in High Risk Patients. J. Lab. Physicians 2015, 7, 116–120. [Google Scholar] [CrossRef]
- Boccia, R.; Glaspy, J.; Crawford, J.; Aapro, M. Chemotherapy-Induced Neutropenia and Febrile Neutropenia in the US: A Beast of Burden That Needs to Be Tamed? Oncologist 2022, 27, 625–636. [Google Scholar] [CrossRef]
- Rosa, R.G.; Goldani, L.Z. Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia. Antimicrob. Agents Chemother. 2014, 58, 3799–3803. [Google Scholar] [CrossRef] [Green Version]
- Koinis, F.; Nintos, G.; Georgoulias, V.; Kotsakis, A. Therapeutic strategies for chemotherapy-induced neutropenia in patients with solid tumors. Expert Opin. Pharmacother. 2015, 16, 1505–1519. [Google Scholar] [CrossRef]
- Pulcini, C.D.; Lentz, S.; Saladino, R.A.; Bounds, R.; Herrington, R.; Michaels, M.G.; Maurer, S.H. Emergency management of fever and neutropenia in children with cancer: A review. Am. J. Emerg. Med. 2021, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Saloustros, E.; Tryfonidis, K.; Georgoulias, V. Prophylactic and therapeutic strategies in chemotherapy-induced neutropenia. Expert Opin. Pharmacother. 2011, 12, 851–863. [Google Scholar] [CrossRef] [PubMed]
- James, V.; Prakash, A.; Mehta, K.; Durugappa, T. Re-thinking treatment strategies for febrile neutropenia in paediatric oncology population: The perspective from a developing country. Infect. Agent Cancer 2021, 16, 44. [Google Scholar] [CrossRef]
- Dewandel, I.; Allegaert, K.; Renard, M.; Laenen, A.; Smits, A. Covariates of amikacin disposition in a large pediatric oncology cohort. Int. J. Clin. Pharmacol. Ther. 2021, 59, 31–41. [Google Scholar] [CrossRef]
- Marsot, A.; Guilhaumou, R.; Riff, C.; Blin, O. Amikacin in Critically Ill Patients: A Review of Population Pharmacokinetic Studies. Clin. Pharmacokinet. 2017, 56, 127–138. [Google Scholar] [CrossRef]
- Duong, A.; Simard, C.; Wang, Y.; Williamson, D.; Marsot, A. Aminoglycosides in the Intensive Care Unit: What Is New in Population PK Modeling? Antibiotics 2021, 10, 507. [Google Scholar] [CrossRef]
- Carrié, C.; Delzor, F.; Roure, S.; Dubuisson, V.; Petit, L.; Molimard, M.; Breilh, D.; Biais, M. Population Pharmacokinetic Study of the Suitability of Standard Dosing Regimens of Amikacin in Critically Ill Patients with Open-Abdomen and Negative-Pressure Wound Therapy. Antimicrob. Agents Chemother. 2020, 64, e02098-19. [Google Scholar] [CrossRef]
- Solans, B.P.; Garrido, M.J.; Trocóniz, I.F. Drug Exposure to Establish Pharmacokinetic-Response Relationships in Oncology. Clin. Pharmacokinet. 2020, 59, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Abdul–Aziz, M.H.; Brady, K.M.P.; Cotta, M.O.; Roberts, J.A. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther. Drug Monit. 2022, 44, 19–31. [Google Scholar] [CrossRef]
- Mabilat, C.; Gros, M.F.; Nicolau, D.; Mouton, J.W.; Textoris, J.; Roberts, J.A.; Cotta, M.O.; van Belkum, A.; Caniaux, I. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 791–797. [Google Scholar] [CrossRef]
- Lanckohr, C.; Boeing, C.; De Waele, J.J.; de Lange, D.W.; Schouten, J.; Prins, M.; Nijsten, M.; Povoa, P.; Morris, A.C.; Bracht, H. Antimicrobial stewardship, therapeutic drug monitoring and infection management in the ICU: Results from the international A- TEAMICU survey. Ann. Intensiv. Care 2021, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Ben Romdhane, H.; Ben Fredj, N.; Chaabane, A.; Ben Aicha, S.; Chadly, Z.; Ben Fadhel, N.; Boughattas, N.; Aouam, K. Interest of therapeutic drug monitoring of aminoglycosides administered by a monodose regimen. Nephrol. Ther. 2019, 15, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Hartman, S.J.F.; Brüggemann, R.J.; Orriëns, L.; Dia, N.; Schreuder, M.F.; de Wildt, S.N. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin. Pharmacokinet. 2020, 59, 173–205. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J. Pharmacodynamics and dosing of aminoglycosides. Infect. Dis. Clin. N. Am. 2003, 17, 503–528. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Märtson, A.; Nielsen, E.I.; Koch, B.C.; Friberg, L.E.; Alffenaar, J.; Minichmayr, I.K. From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, X.; Zhu, G.; Hu, J.; Li, Q.; Fan, G. Therapeutic drug monitoring of amikacin: Quantification in plasma by liquid chromatography-tandem mass spectrometry and work experience of clinical pharmacists. Eur. J. Hosp. Pharm 2022, 29, e77–e82. [Google Scholar] [CrossRef]
- Alhameed, A.F.; Al Khansa, S.; Hasan, H.; Ismail, S.; Aseeri, M. Bridging the Gap between Theory and Practice; the Active Role of Inpatient Pharmacists in Therapeutic Drug Monitoring. Pharmacy 2019, 7, 20. [Google Scholar] [CrossRef]
- Eyler, R.F.; Shvets, K. Clinical Pharmacology of Antibiotics. Clin. J. Am. Soc. Nephrol. 2019, 14, 1080–1090. [Google Scholar] [CrossRef]
- Gilbert, D.N.; Moellering, R.C.; Eliopoulos, G.M.; Chambers, M.D. The Sanford Guide to Antimicrobial Therapy 2010, 40th ed.; Antimicrobial Therapy, Inc.: Sperryville, VA, USA, 2010. [Google Scholar]
- Roger, C.; Nucci, B.; Molinari, N.; Bastide, S.; Saissi, G.; Pradel, G.; Barbar, S.; Aubert, C.; Lloret, S.; Elotmani, L.; et al. Standard dosing of amikacin and gentamicin in critically ill patients results in variable and subtherapeutic concentrations. Int. J. Antimicrob. Agents 2015, 46, 21–27. [Google Scholar] [CrossRef]
- Boidin, C.; Bourguignon, L.; Cohen, S.; Roger, C.; Lefrant, J.-Y.; Roberts, J.A.; Allaouchiche, B.; Lepape, A.; Friggeri, A.; Goutelle, S. Amikacin Initial Dose in Critically Ill Patients: A Nonparametric Approach To Optimize A Priori Pharmacokinetic/Pharmacodynamic Target Attainments in Individual Patients. Antimicrob. Agents Chemother. 2019, 63, e00993-19. [Google Scholar] [CrossRef]
- Bailie, G.R.; Uhlig, K.; Levey, A.S. Clinical practice guidelines in nephrology: Evaluation, classification, and stratification of chronic kidney disease. Pharmacotherapy 2005, 25, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Bellesoeur, A.; Thomas-Schoemann, A.; Allard, M.; Smadja, D.; Vidal, M.; Alexandre, J.; Goldwasser, F.; Blanchet, B. Pharmacokinetic variability of anticoagulants in patients with cancer-associated thrombosis: Clinical consequences. Crit. Rev. Oncol. Hematol. 2018, 129, 102–112. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D. The characteristics and impact indicator of vancomycin pharmacokinetics in cancer patients complicated with severe pneumonia. J. Infect. Chemother. 2020, 26, 492–497. [Google Scholar] [CrossRef]
- Romano, S.; De Gatta, M.M.F.; Calvo, M.V.; Caballero, D.; Dominguez-Gil, A.; Lanao, J.M. Population pharmacokinetics of amikacin in patients with haematological malignancies. J. Antimicrob. Chemother. 1999, 44, 235–242. [Google Scholar] [CrossRef]
- Medellín-Garibay, S.E.; Romano-Aguilar, M.; Parada, A.; Suárez, D.; Romano-Moreno, S.; Barcia, E.; Cervero, M.; García, B. Amikacin pharmacokinetics in elderly patients with severe infections. Eur. J. Pharm. Sci. 2022, 175, 106219. [Google Scholar] [CrossRef]
- Sadeghi, K.; Hamishehkar, H.; Najmeddin, F.; Ahmadi, A.; Hazrati, E.; Honarmand, H.; Mojtahedzadeh, M. High-dose amikacin for achieving serum target levels in critically ill elderly patients. Infect. Drug Resist. 2018, 11, 223–228. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Fukuda, T.; Tanaka, K.; Komori, K.; Sadamitsu, D. Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med. 2013, 39, 1247–1252. [Google Scholar] [CrossRef]
- Nagai, J.; Takano, M. Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab. Pharmacokinet. 2004, 19, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Mingeot-Leclercq, M.-P.; Tulkens, P.M. Aminoglycosides: Nephrotoxicity. Antimicrob. Agents Chemother. 1999, 43, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Werle, M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res. 2008, 25, 500–511. [Google Scholar] [CrossRef]
- Chang, D. Influence of malignancy on the pharmacokinetics of vancomycin in infants and children. Pediatr. Infect. Dis. J. 1995, 14, 667–673. [Google Scholar] [CrossRef]
- Buelga, D.S.; de Gatta, M.d.M.F.; Herrera, E.V.; Dominguez-Gil, A.; García, M.J. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob. Agents Chemother. 2005, 49, 4934–4941. [Google Scholar] [CrossRef]
- Dreydemy, G.; Coussy, A.; Lannou, A.; Petit, L.; Biais, M.; Carrié, C. Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients. Nutrients 2021, 13, 3554. [Google Scholar] [CrossRef]
- Hobbs, A.L.V.; Shea, K.M.; Roberts, K.M.; Daley, M.J. Implications of Augmented Renal Clearance on Drug Dosing in Critically Ill Patients: A Focus on Antibiotics. Pharmacotherapy 2015, 35, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Abbas, M.; Nassar, L.; Ghrayeb, A.; Shepshelovich, D.; Kurnik, D.; Leibovici, L.; Paul, M. Attention to age: Similar dosing regimens lead to different vancomycin levels among older and younger patients. Age Ageing 2019, 49, 26–31. [Google Scholar] [CrossRef]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.P.; Paloucek, F.P. The origin of the “ideal” body weight equations. Ann. Pharmacother. 2000, 34, 1066–1069. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
Control Group | Test Group | |
---|---|---|
Sex (female/male) a | 36.00/64.00 % (99/176) | 43.50/56.50 % (154/200) |
Age (years) | 70.90 ± 14.20 (25–85) | 54.00 ± 15.10 (20–85) **** |
Frequency Distribution a | ||
20–44 years old | 9.090% (n = 25) | 29.94% (n = 106) |
45–64 years old | 13.82% (n = 38) | 43.50% (n = 154) |
65–85 years old | 77.09% (n = 212) | 26.56% (n = 94) |
TBW (kg) | 67.35 ± 11.90 (40–120) | 71.10 ± 11.77 (43–108) *** |
Height (cm) | 166.4 ± 8.310 (120–200) | 166.8 ± 8.362 (148–189) |
IBW (kg) | 58.60 ± 7.87 (16.16–88.60) | 58.23 ± 7.730 (41.52–78.64) |
BMI (kg/m2) | 24.31 ± 3.860 (14.59–42.97) | 25.58 ± 4.180 (17.01–44.36) *** |
Frequency Distribution a | ||
<18.50 | 5.090% | 1.900% |
18.5–24.99 | 61.09% | 52.94% |
25–29.99 | 27.27% | 33.04% |
30–34.99 | 4.730% | 8.480% |
35–39.99 | 1.090% | 3.110% |
≥40.00 | 0.730% | 0.520% |
ClCr (mL/min) | 79.15 ± 46.89 (1.95–397.6) | 89.32 ± 34.04 (4.77–235.31) **** |
CRP (10 mg/L) | 7.770 ± 9.420 (0.060–138.3) | 14.59 ± 11.35 (0.140–70.15) **** |
Daily Dose (mg) | 868.6 ± 383.5 (250.0–1750) | 1170 ± 294.1 (500–2000) **** |
Treatment duration (days) | 13.70 ± 11.40 (3.000–141.0) | 11.30 ± 0.8000 (2.000–46.00) |
Nº PK monitoring per patient | 2.200 ± 1.500 (1.000–14.00) | 1.600 ± 0.9000 (1.000–6.000) |
Nº concentrations per patient | 4.400 ± 3.000 (2.000–28.00) | 3.300 ± 1.800 (2.000–12.000) |
Saline volume daily administered (L) | 1.350 ± 1.080 (0.0000–5.100) | 1.550 ± 0.6800 (0.0000–4.500) **** |
Cmin (mg/L) | ||
Conventional regimen | 8.827 ± 9.460 (0.0500–90.00) | 4.216 ± 4.977 (0.0500–16.70) |
Extended interval regimen | 1.650 ± 0.9192 (0.0500–42.90) | 1.867 ± 2.880 (0.0500–25.40) |
Cmin/dose | ||
Conventional regimen (320) | 0.0136 ± 0.8898 (0.0001–0.18) | 0.0070 ± 1.2688 (0.0001–0.0334) |
Extended interval regimen (280) | 0.0047 ± 0.8891 (0.0000–0.0572) | 0.0016 ± 1.2682(0.0000–0.0400) |
Cmax (mg/L) | ||
Conventional regimen | 29.07 ± 12.99 (9.900–107.0) | 21.78 ± 6.639 (12.00–36.80) |
Extended interval regimen | 37.00 ± 17.07 (13.20–130.6) | 44.00 ± 14.26 (13.00–95.40) **** |
Cmax/dose | ||
Conventional regimen | 0.0532 ± 0.8726 (0.0088–0.2092) | 0.0367 ± 1.2592 (0.0231–0.0666) * |
Extended interval regimen | 0.0443 ± 0.8179 (0.0148–0.142) | 0.0418 ± 1.2587 (0.0098–0.0914) |
Vd (L/kg) | 0.3764 ± 0.1775 (0.1007–1.645) | 0.3755 ± 0.1261 (0.1876–1.731) |
CL (L/h) | 2.778 ± 1.476 (0.4213–9.838) | 3.709 ± 1.639 (0.5017–15.26) **** |
Ke (h−1) | 0.1406 ± 0.0836 (0.0158–0.6463) | 0.1744 ± 0.0589 (0.0089–0.5769) **** |
t1/2 (h) | 6.950 ± 5.210 (1.100–43.80) | 4.750 ± 4.080 (1.200–78.20) **** |
Test Group | |||
---|---|---|---|
With Chemotherapy | Without Chemotherapy | Control Group | |
Age (years) | 51.74 ± 15.28 (20–83) | 56.78 ± 15.24 (23–85) | 70.90 ± 14.20 (25–85) |
Daily dose (mg) | 1183 ± 298.4 (500.0–2000) | 1130 ± 277.3 (500.0–1750) | 868.6 ± 383.5 (250.0–1750) |
Cmin (mg/L) | |||
Conventional regimen | 3.525 ± 4.340 (0.0500–16.70) * | 9.050 ± 8.556 (3.000–15.10) | 8.827 ± 9.460 (0.0500–90.00) |
Extended interval regimen | 1.746 ± 2.842 (0.0500–25.40) | 2.245 ± 2.976 (0.0500–20.10) | 1.650 ± 0.9192 (0.0500–42.90) |
Cmin/Dose Conventional regimen Extended interval regimen | 0.0017 ± 0.0031 (0.0000–0.0334) | 0.0024 ± 0.0042 (0.0000–0.0400) | 0.0094 ± 0.0146 (0.0000–0.1800) |
Cmax (mg/L) Conventional regimen Extended interval regimen | |||
21.43 ± 5.971 (12.00–33.30) ** | 24.20 ± 13.58 (14.60–33.80) | 29.07 ± 12.99 (9.900–107.0) | |
43.00 ± 13.63 (15.10–82.20) **** | 47.07 ± 15.71 (13.00–95.40) **** | 37.00 ± 17.07 (13.20–130.6) **** | |
Cmax/Dose Conventional regimen Extended interval regimen | 0.0365 ± 0.0109 (0.0100–0.0900) | 0.0422 ± 0.0013 (0.01–0.090) | 0.0491 ± 0.0203 (0.010–0.210) |
Vd (L/kg) | 0.3783 ± 0.1104 (0.1921–0.8480) | 0.3668 ± 0.1667 (0.1876–1.7314) | 0.3764 ± 0.1775 (0.1007–1.645) |
CL (L/h) | 3.902 ± 1.705 (0.5017–15.26) **** | 3.098 ± 1.233 (0.7300–9.340) | 2.778 ± 1.476 (0.4213–9.838) |
Ke (h−1) | 0.1800 ± 0.0603 (0.017–0.58) | 0.1570 ± 0.0500 (0.0089–0.3029) | 0.1406 ± 0.0836 (0.0158–0.6463) |
t1/2 (h) | 4.500 ± 2.790 (1.200–39.90) **** | 5.550 ± 6.620 (2.300–78.20) **** | 6.950 ± 5.210 (1.100–43.804) **** |
Simultaneous Amikacin and Chemotherapy | ∆t < 15 Days | 15 ≤ ∆t ≤ 30 Days | 31 ≤ ∆t ≤ 90 Days | ∆t > 90 Days | |
---|---|---|---|---|---|
Age (years) | 50.12 ± 17.72 (20–78) | 50.91 ± 14.80 (20–83) | 55.00 ± 14.30 (26–85) | 55.70 ± 15.40 (23–79) | 61.60 ± 9.200 (48–75) |
Daily dose (mg) | 1175 ± 308.4 (500.0–1750) * | 1190 ± 301.0 (500.0–2000) | 1158 ± 256.5 (500.0–1750) | 1134 ± 268.7 (500.0–1750) ** | 1100 ± 341.8 (500.0–1750) ** |
Saline daily volume (L) | 1.630 ± 0.8000 (0.0000–4.000) | 1.520 ± 0.7000 (0.0000–4.500) | 1.420 ± 0.5000 (0.5000–2.100) | 1.550 ± 0.6000 (0.5000–3.000) | 1.440 ± 0.6100 (0.5000–2.500) |
Cmin (mg/L) | 1.996 ± 4.055 (0.0500–25.40) | 1.76 ± 2.85 (0.05–23.90) | 1.51 ± 1.75 (0.05–9.30) | 2.07 ± 2.24 (0.05–11.0) | 3.51 ± 4.65 (0.05–20.00) |
Cmin/Dose | 0.0023 ± 0.0053 (0.0008–0.0100) | 0.0017 ± 0.0029 (0.00003–0.0239) | 0.0013 ± 0.0016 (0.00005–0.00853) | 0.0019 ± 0.002 (0.00004–0.009) | 0.0042 ± 0.0078 (0.00004–0.040) |
Cmax (mg/L) | 41.51 ± 14.83 (17.20–75.00) | 43.73 ± 13.62 (15.10–95.40) | 44.67 ± 15.99 (18.80–88.20) | 45.60 ± 14.61 (13.00–86.10) | 50.50 ± 16.02 (22.30–83.70) |
Cmax/Dose | 0.0358 ± 0.0109 (0.0100–0.0700) | 0.0369 ± 0.0116 (0.0100–0.0900) | 0.0388 ± 0.0115 (0.0200–0.0700) | 0.0413 ± 0.0131 (0.0100–0.0900) | 0.0446 ± 0.0096 (0.0300–0.0700) |
Vd (L/kg) | 0.3821 ± 0.1008 (0.1943–0.7060) | 0.3773 ± 0.1143 (0.1936–0.8480) | 0.3705 ± 0.0888 (0.1921–0.5979) | 0.3559 ± 0.1044 (0.2028–0.8251) | 0.9704 ± 0.2870 (0.1876–1.731) |
CL (L/h) | 3.932 ± 2.289 (0.5017–15.26) * | 3.910 ± 1.632 (0.9303–13.04) * | 3.705 ± 1.433 (0.7322–9.011) * | 3.239 ± 1.355 (1.072–7.071) * | 2.677 ± 1.099 (0.7475–5.221) |
Ke (h−1) | 0.1737 ± 0.0690 (0.0174–0.3234) | 0.1804 ± 0.0577 (0.0297–0.5769) | 0.1805 ± 0.0540 (0.0444–0.3029) | 0.1631 ± 0.0516 (0.0366–0.2980) | 0.1498 ± 0.0696 (0.0089–0.3152) |
t1/2 (h) | 5.260 ± 5.030 (2.100–39.90) **** | 4.400 ± 2.100 (1.200–23.30) **** | 4.300 ± 1.900 (2.300–15.60) **** | 4.840 ± 2.320 (2.300–19.00) **** | 8.170 ± 14.080 (2.200–78.20) |
20–44 Years Old | 45–64 Years Old | 65–85 Years Old | ||
---|---|---|---|---|
Daily dose (mg) | With chemotherapy | 1247 ± 311.9 (500.0–2000) a,b | 1181 ± 297.7 (500.0–2000) a,b | 1106 ± 263.0 a |
Without chemotherapy | 1177 ± 233.9 (1000–1750) a | 1134 ± 284.9 (500.0–1750) | 1093 ± 291.5 (500.0–1500) a | |
Control group | 783.3 ± 368.4 (250.0–1500) | 1088 ± 418.5 (250.0–1750) | 814 ± 350.9 (250.0–1750) | |
Cmin (mg/L) | With chemotherapy | 1.223 ± 1.613 (0.0500–12.00) | 1.741 ± 2.833 (0.0500–21.20) | 2.443 ± 3.832 (0.0500–25.40) |
Without chemotherapy | 1.098 ± 0.957 (0.0500–5.70) | 2.106 ± 2.749 (0.0500–20.00) | 3.180 ± 3.796 (0.0500–20.10) | |
Control group | 1.557 ± 1.244 (0.1000–5.40) | 2.152 ± 2.438 (0.0500–13.30) | 4.373 ± 5.453 (0.0500–42.90) | |
Cmin/Dose | With chemotherapy | 0.0013 ± 0.0030 (0.0000–0.0334) | 0.0015 ± 0.0024 (0.0000–0.0140) | 0.0025–0.004 (0.0000–0.0250) |
Without chemotherapy | 0.0010 ± 0.0009 (0.0000–0.0057) | 0.0025 ± 0.0051 (0.0000–0.0400) | 0.0031 ± 0.0039 (0.0000–0.0200) | |
Control group | 0.0052 ± 0.0071 (0.0001–0.0364) | 0.0040 ± 0.0078 (0.0000–0.0702) | 0.0114± 0.0161 (0.0000–0.1800) | |
Cmax (mg/L) | With chemotherapy | 43.01 ± 13.79 (17.20–88.20) | 42.82 ± 14.44 (15.10–83.90) | 43.30 ± 12.06 (19.90–83.90) |
Without chemotherapy | 48.15 ± 14.48 (2.180–95.40) | 46.48 ± 16.30 (13.00–86.10) | 47.25 ± 15.87 (17.50–84.00) | |
Control group | 43.26 ± 13.11 (23.00–64.00) | 48.75 ± 19.38 (13.60–130.60) | 45.03 ± 16.33 (13.20–99.30) | |
Cmax/Dose | With chemotherapy | 0.0349 ± 0.0104 (0.0100–0.0700) | 0.0362 ± 0.0112 (0.0100–0.0700) | 0.0390 ± 0.0104 (0.020–0.0900) |
Without chemotherapy | 0.0411 ± 0.0099 (0.0200–0.0700) | 0.0413 ± 0.0143 (0.0100–0.0900) | 0.0441 ± 0.0126 (0.020–0.0800) | |
Control group | 0.0438 ± 0.0139 (0.0200–0.0800) | 0.0434 ± 0.0172 (0.0100–0.1300) | 0.0513 ± 0.0213 (0.010–0.2100) | |
Vd (L/kg) | With chemotherapy | 0.3744 ± 0.1189 (0.1940–0.8410) | 0.3847 ± 0.1136 (0.1921–0.8480) | 0.3727 ± 0.0924 (0.2000–0.7271) |
Without chemotherapy | 0.3564 ± 0.1671 (0.2075–1.084) | 0.3672 ± 0.1970 (0.1876–1.731) | 0.3729 ± 0.1092 (0.1984–0.7401) | |
Control group | 0.3230 ± 0.1280 (0.1350–0.6120) | 0.3466 ± 0.1182 (0.1007–0.7065) | 0.3905 ± 0.1936 (0.1028–1.6450) | |
CL (L/h) | With chemotherapy | 4.130 ± 1.679 (1.346–15.264) c | 4.087 ± 1.837 (0.5017–13.04) d | 3.3000 ± 1.3428 (1.0159–9.256) d |
Without chemotherapy | 3.414 ± 0.9206 (2.115–6.555) | 3.2198 ± 1.216 (0.7474–5.733) | 2.7128 ± 1.3553 (0.7322–9.341) | |
Control group | 3.871 ± 1.671 (0.9443–8.315) | 3.0711 ± 1.563 (0.4213–9.571) | 2.5790 ± 1.3639 (0.4271–9.838) | |
Ke (h−1) | With chemotherapy | 0.1876 ± 0.0500 (0.0559–0.3234) | 0.1872 ± 0.0664 (0.0174–0.5769) | 0.1581 ± 0.0571 (0.0297–0.3018) |
Without chemotherapy | 0.1856 ± 0.0035 (0.0624–0.2961) | 0.1587 ± 0.0474 (0.0089–0.3029) | 0.1363 ± 0.0558 (0.0444–0.2780) | |
Control group | 0.2355 ± 0.1547 (0.0633–0.6463) | 1.160 ± 0.0899 (0.0161–0.5845) | 0.1250 ± 0.0606 (0.0158–0.4088) | |
t1/2 (h) | With chemotherapy | 4.030 ± 1.490 (2.100–12.40) | 4.400 ± 3.240 (1.200–39.90) a,b | 5.280 ± 3.130 (2.300–23.30) a,e |
Without chemotherapy | 3.970 ± 1.470 (2.300–11.10) | 5.850 ± 9.160 (2.300–78.20) | 6.110 ± 2.920 (2.500–15.60) a | |
Control group | 4.080 ± 2.220 (1.100–11.00) | 6.310 ± 5.430 (1.200–43.00) | 7.430 ± 5.260 (1.700–43.80) |
ClCr (mL/min/1.73 m2) | <30 | 30–59 | 60–89 | 90–120 | >120 | |
---|---|---|---|---|---|---|
Daily dose (mg) | With chemotherapy | 1125 ± 250.0 a,b (1000–1500) | 1096 ± 301.4 a,b (500.0–1500) | 1156 ± 269.0 b (500.0–1750) | 1199 ± 303.5 b,e (500.0–1750) | 1279 ± 311.4 b,e (500.0–2000) |
Without chemotherapy | 937.5 ± 125.0 b (500.0–1000) | 1071 ± 258.1 b (500.0–1500) | 1166 ± 297.4 b (500.0–1750) | 1131 ± 281.2 b (500.0–1750) | 1208 ± 234.4 b (1000–1500) | |
Control group | 662.7 ± 283.7 (250.0–1500) | 812.1 ± 333.5 (250.0–1750) | 882.9 ± 360.8 (250.0–1750) | 888.4 ± 371.3 (350.0–1750) | 1067 ± 484.5 (250.0–1750) | |
Cmin (mg/L) | With chemotherapy | 12.05 ± 12.13 (1.000–23.900) | 3.390 ± 4.411 (0.0500–25.40) | 1.375 ± 1.548 (0.0500–11.500) | 1.318 ± 1.775 (0.0500–11.500) | 1.122 ± 1.517 (0.0500–12.000) |
Without chemotherapy | 14.16 ± 11.39 (0.0500–37.10) | 2.707 ± 1.915 (0.0500–7.20) | 2.279 ± 3.084 (0.0500–20.00) | 1.155 ± 0.9891 (0.0500–5.700) | 0.9667 ± 0.4207 (0.5000–2.10) | |
Control group | 10.76 ± 9.624 (1.000–42.90) | 4.236 ± 4.166 (0.0500–21.60) | 2.687 ± 2.041 (0.0500–10.80) | 1.824 ± 1.312 (0.0500–6.20) | 1.587 ± 1.959 (0.1000–13.20) | |
Cmin/Dose | With chemotherapy | 0.1021 ± 0.0108 (0.0010–0.0239) | 0.0034 ± 0.0045 (0.0000–0.0254) | 0.0014 ± 0.0030 (0.0000–0.0334) | 0.00128 ± 0.018 (0.0000–0.0100) | 0.0008 ± 0.0009 (0.0000–0.0060) |
Without chemotherapy | 0.0107 ± 0.0085 (0.0000–0.0201) | 0.0026 ± 0.0019 (0.0001–0.0072) | 0.0025 ± 0.0056 (0.0000–0.0400) | 0.0016 ± 0.0023 (0.0000–0.012) | 0.0008 ± 0.0003 (0.0000–0.0017) | |
Control group | 0.0276 ± 0.0301 (0.0010–0.1800) | 0.0109 ± 0.0124 (0.0000–0.0624) | 0.0071 ± 0.0081 (0.0000–0.0428) | 0.0053 ± 0.0068 (0.0000–0.0386) | 0.0036 ± 0.0058 (0.0001–0.0364) | |
Cmax (mg/L) | With chemotherapy | 47.58 ± 16.76 (29.40–70.00) | 47.63 ± 13.29 (18.80–83.90) | 42.89 ± 13.46 (21.40–88.20) | 42.45 ± 13.29 (19.30–80.80) | 40.12 ± 13.76 (15.10–75.00) |
Without chemotherapy | 55.83 ± 28.71 (13.00–92.10) | 52.47 ± 18.66 (17.50–95.40) | 46.99 ± 14.83 (19.70–84.00) | 42.20 ± 11.53 (21.80–68.70) | 44.83 ± 12.28 (24.40–64.30) | |
Control group | 44.76 ± 20.43 (15.30–86.40) | 46.88 ± 17.10 (13.20–99.60) | 48.08 ± 19.15 (18.40–130.6) | 43.84 ± 13.97 (16.10–75.30) | 43.49 ± 13.75 (13.60–71.00) | |
Cmax/Dose | With chemotherapy | 0.0450 ± 0.0100 (0.0300–0.0500) | 0.0436 ± 0.0107 (0.0200–0.0900) | 0.0368 ± 0.0104 (0.0200–0.0700) | 0.0351 ± 0.0098 (0.0200–0.0700) | 0.03168 ± 0.0099 (0.0100–0.0600) |
Without chemotherapy | 0.0475 ± 0.0299 (0.0100–0.0800) | 0.0492 ± 0.0142 (0.0300–0.0900) | 0.0409 ± 0.0108 (0.0200–0.0600) | 0.0377 ± 0.0102 (0.0200–0.0600) | 0.0375 ± 0.0087 (0.0200–0.0500) | |
Control group | 0.0694 ± 0.0304 (0.0200–0.2100) | 0.0534 ± 0.0163 (0.0100–0.1200) | 0.0485 ± 0.0199 (0.0100–0.1400) | 0.0421 ± 0.0123 (0.0200–0.0900) | 0.0371 ± 0.0132 (0.0100–0.0800) | |
Vd (L/kg) | With chemotherapy | 0.5502 ± 0.1911 (0.2993–0.7271) | 0.3624 ± 0.0839 (0.2003–0.5764) | 0.3768 ± 0.1106 (0.1921–0.8480) | 0.3684 ± 0.0935 (0.1936–0.6629) | 0.3983 ± 0.1351 (0.1943–0.8411) |
Without chemotherapy | 0.4619 ± 0.1920 (0.3034–0.7401) | 0.3187 ± 0.0775 (0.1948–0.5266) | 0.3840 ± 0.2127 (0.1876–1.7314) | 0.3840 ± 0.1618 (0.1936–1.0836) | 0.3714 ± 0.1197 (0.2199–0.6449) | |
Control group | 0.4551 ± 0.2588 (0.1350–1.5039) | 0.3688 ± 0.1732 (0.1497–1.6178) | 0.3608 ± 0.1651 (0.1007–1.6450) | 0.3716 ± 0.1702 (0.1354–1.6436) | 0.3699 ± 0.1307 (0.1197–0.6943) | |
CL (L/h) | With chemotherapy | 2.163 ± 1.684 (0.5017–4.329) | 2.800 ± 1.321 c (1.016–9.256) | 3.804 ± 1.232 d (1.346–7.309) | 4.116 ± 1.578 b,c (1.056–9.012) | 4.726 ± 2.177 a,b (2.189–15.264) |
Without chemotherapy | 2.012 ± 1.864 (0.732–4.747) | 2.453 ± 0.9877 (0.747–5.197) | 3.065 ± 1.287 (0.943–9.341) | 3.737 ± 1.006 (2.197–6.556) | 3.735 ± 0.808 b (2.842–5.129) | |
Control group | 1.362 ± 0.7582 (0.4213–6.119) | 2.121 ± 0.9682 (0.6379–6.119) | 2.923 ± 1.396 (0.6780–9.341) | 3.436 ± 1.518 (1.36–9.838) | 3.871 ± 1.391 (1.495–8.051) | |
Ke (h−1) | With chemotherapy | 0.0864 ± 0.0730 (0.0174–0.1573) | 0.1454 ± 0.0619 (0.0366–0.2837) | 0.1819 ± 0.0516 (0.0701–0.3818) | 0.1894 ± 0.0522 (0.0448–0.3234) | 0.1962 ± 0.0641 (0.0559–0.5769) |
Without chemotherapy | 0.1038 ± 0.10355 (0.0444–0.2586) | 0.1304 ± 0.0487 (0.0492–0.2775) | 0.1543 ± 0.0526 (0.0089–0.3029) | 0.1762 ± 0.0392 (0.0624–0.2961) | 0.1824 ± 0.0230 (0.1310–0.2176) | |
Control group | 0.0709 ± 0.0676 (0.0158–0.5249) | 0.1106 ± 0.0546 (0.0283–0.3086) | 0.1483 ± 0.0614 (0.0433–0.4088) | 0.1755 ± 0.1015 (0.0248–0.6463) | 0.1854 ± 0.0958 (0.0401–0.6091) | |
t1/2 (h) | With chemotherapy | 18.13 ± 16.97 c (4.400–39.90) | 5.950 ± 3.230 b (2.40–19.00) | 4.140 ± 1.350 a,b (1.800–9.900) | 4.080 ± 1.76 b (2.100–15.50) | 3.860 ± 1.330 b (1.200–12.40) |
Without chemotherapy | 10.87 ± 5.820 (2.700–15.60) | 5.640 ± 2.360 b (2.50–14.10) | 6.320 ± 10.23 d (2.300–78.20) | 4.23 ± 1.54 b (2.30–11.10) | 3.870 ± 0.580 b (3.200–5.300) | |
Control group | 14.54 ± 9.250 (1.300–43.80) | 8.120 ± 4.570 (2.200–24.50) | 5.540 ± 2.490 (1.700–15.70) | 4.970 ± 2.850 (1.100–27.90) | 4.590 ± 2.310 (1.100–17.30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, M.; Tinoco, M.; Bicker, J.; Falcão, A.; Rocha, M.; Fortuna, A. Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients. Antibiotics 2023, 12, 373. https://doi.org/10.3390/antibiotics12020373
Aquino M, Tinoco M, Bicker J, Falcão A, Rocha M, Fortuna A. Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients. Antibiotics. 2023; 12(2):373. https://doi.org/10.3390/antibiotics12020373
Chicago/Turabian StyleAquino, Maria, Maria Tinoco, Joana Bicker, Amílcar Falcão, Marília Rocha, and Ana Fortuna. 2023. "Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients" Antibiotics 12, no. 2: 373. https://doi.org/10.3390/antibiotics12020373
APA StyleAquino, M., Tinoco, M., Bicker, J., Falcão, A., Rocha, M., & Fortuna, A. (2023). Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients. Antibiotics, 12(2), 373. https://doi.org/10.3390/antibiotics12020373