Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates
Abstract
:1. Introduction
2. Campylobacter spp. Overview
3. Distribution of Virulence-Associated Genes across Different Campylobacter spp. Hosts
4. Virulence and Antibiotic Resistance of Campylobacter spp. Poultry Isolates
5. Campylobacter spp. Isolates Originating from Wild Birds
6. Campylobacter spp. Isolates Originated from Ruminants and Swine
7. Recent Updates on Antibiotic Resistance among Campylobacter spp. Livestock Isolates
8. Reports of Multi-Drug Resistant Campylobacter spp.
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roux, D.; Danilchanka, O.; Guillard, T.; Cattoir, V.; Aschard, H.; Fu, Y.; Angoulvant, F.; Messika, J.; Ricard, J.-D.; Mekalanos, J.J.; et al. Fitness cost of antibiotic susceptibility during bacterial infection. Sci. Transl. Med. 2015, 7, 297ra114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, M.; Brooks, B.D.; Brooks, A.E. The Complex Relationship between Virulence and Antibiotic Resistance. Genes 2017, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasner, C.; Albiger, B.; Buist, G.; Andrašević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; et al. Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February 2013. Eurosurveillance 2013, 18, 20525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, V.K.C.; Costa, G.M.d.; Guimarães, A.S.; Heinemann, M.B.; Lage, A.P.; Dorneles, E.M.S. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J. Glob. Antimicrob. Resist. 2020, 22, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Geisinger, E.; Isberg, R.R. Antibiotic Modulation of Capsular Exopolysaccharide and Virulence in Acinetobacter baumannii. PLoS Pathog. 2015, 11, e1004691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisinger, E.; Isberg, R.R. Interplay Between Antibiotic Resistance and Virulence during Disease Promoted by Multidrug-Resistant Bacteria. J. Infect. Dis. 2017, 215, S9–S17. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, D.; Natarajan, J. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes. Gene 2015, 574, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.R.; Jiang, J.-H.; Kostoulias, X.; Foxwell, D.J.; Peleg, A.Y. Vancomycin susceptibility in methicillin-resistant Staphylococcus aureus is mediated by YycHI activation of the WalRK essential two-component regulatory system. Sci. Rep. 2016, 6, 30823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskowitz, S.M.; Foster, J.M.; Emerson, J.; Burns, J.L. Clinically Feasible Biofilm Susceptibility Assay for Isolates of Pseudomonas aeruginosa from Patients with Cystic Fibrosis. J. Clin. Microbiol. 2004, 42, 1915–1922. [Google Scholar] [CrossRef] [Green Version]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.T.; Nolan, L.K. Pathogenomics of the Virulence Plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009, 73, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-G.; Zhao, Y.; Li, B.; Huang, C.-L.; Zhang, S.-Y.; Yu, S.; Chen, Y.-S.; Zhang, T.; Gillings, M.R.; Su, J.-Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270. [Google Scholar] [CrossRef] [PubMed]
- Oppegaard, H.; Steinum, T.M.; Wasteson, Y. Horizontal Transfer of a Multi-Drug Resistance Plasmid between Coliform Bacteria of Human and Bovine Origin in a Farm Environment. Appl. Environ. Microbiol. 2001, 67, 3732–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, S.; Rehman, M.U.; Yang, H.; Yang, Z.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; et al. Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. Ecotoxicol. Environ. Saf. 2021, 220, 112317. [Google Scholar] [CrossRef] [PubMed]
- Golz, J.C.; Stingl, K. Natural Competence and Horizontal Gene Transfer in Campylobacter. In Fighting Campylobacter Infections: Towards a One Health Approach; Backert, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 265–292. [Google Scholar]
- Guernier-Cambert, V.; Trachsel, J.; Maki, J.; Qi, J.; Sylte, M.J.; Hanafy, Z.; Kathariou, S.; Looft, T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front. Microbiol. 2021, 12, 732969. [Google Scholar] [CrossRef] [PubMed]
- Marasini, D.; Karki, A.B.; Buchheim, M.A.; Fakhr, M.K. Phylogenetic Relatedness among Plasmids Harbored by Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats. Front. Microbiol. 2018, 9, 2167. [Google Scholar] [CrossRef] [Green Version]
- Gahamanyi, N.; Song, D.-G.; Yoon, K.-Y.; Mboera, L.E.G.; Matee, M.I.; Mutangana, D.; Komba, E.V.G.; Pan, C.-H.; Amachawadi, R.G. Genomic Characterization of Fluoroquinolone-Resistant Thermophilic Campylobacter Strains Isolated from Layer Chicken Feces in Gangneung, South Korea by Whole-Genome Sequencing. Genes 2021, 12, 1131. [Google Scholar] [CrossRef]
- Crawshaw, T. A review of the novel thermophilic Campylobacter, Campylobacter hepaticus, a pathogen of poultry. Transbound. Emerg. Dis. 2019, 66, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Guirado, P.; Miró, E.; Iglesias-Torrens, Y.; Navarro, F.; Campoy, S.; Alioto, T.S.; Gómez-Garrido, J.; Madrid, C.; Balsalobre, C. A New Variant of the aadE-sat4-aphA-3 Gene Cluster Found in a Conjugative Plasmid from a MDR Campylobacter jejuni Isolate. Antibiotics 2022, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Darmancier, H.; Domingues, C.P.F.; Rebelo, J.S.; Amaro, A.; Dionisio, F.; Pothier, J.; Serra, O.; Nogueira, T. Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Antibiotics 2022, 11, 706. [Google Scholar] [CrossRef]
- Lopes, G.V.; Ramires, T.; Kleinubing, N.R.; Scheik, L.K.; Fiorentini, Â.M.; da Silva, W.P. Virulence factors of foodborne pathogen Campylobacter jejuni. Microb. Pathog. 2021, 161, 105265. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. B 2015, 370, 20140085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sima, F.; Stratakos, A.C.; Ward, P.; Linton, M.; Kelly, C.; Pinkerton, L.; Stef, L.; Gundogdu, O.; Lazar, V.; Corcionivoschi, N. A Novel Natural Antimicrobial Can Reduce the in vitro and in vivo Pathogenicity of T6SS Positive Campylobacter jejuni and Campylobacter coli Chicken Isolates. Front. Microbiol. 2018, 9, 2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balta, I.; Linton, M.; Pinkerton, L.; Kelly, C.; Stef, L.; Pet, I.; Stef, D.; Criste, A.; Gundogdu, O.; Corcionivoschi, N. The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021, 121, 107745. [Google Scholar] [CrossRef]
- Balta, I.; Marcu, A.; Linton, M.; Kelly, C.; Stef, L.; Pet, I.; Ward, P.; Pircalabioru, G.G.; Chifiriuc, C.; Gundogdu, O.; et al. The in vitro and in vivo anti-virulent effect of organic acid mixtures against Eimeria tenella and Eimeria bovis. Sci. Rep. 2021, 11, 16202. [Google Scholar] [CrossRef] [PubMed]
- Hlashwayo, D.F.; Sigaúque, B.; Bila, C.G. Epidemiology and antimicrobial resistance of Campylobacter spp. in animals in Sub-Saharan Africa: A systematic review. Heliyon 2020, 6, e03537. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Lorenzo-Rebenaque, L.; Moreno-Moliner, J.; Sevilla-Navarro, S.; Montero, E.; Chinillac, M.C.; Jordá, J.; Vega, S. Multidrug-Resistant Campylobacer jejuni on Swine Processing at a Slaughterhouse in Eastern Spain. Animals 2021, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakos, A.C.; Gundogdu, O.; Corcionivoschi, N. A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. Front. Microbiol. 2018, 9, 2002. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter from Chicken and Pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef]
- Courtice, J.M.; Mahdi, L.K.; Groves, P.J.; Kotiw, M. Spotty Liver Disease: A review of an ongoing challenge in commercial free-range egg production. Vet. Microbiol. 2018, 227, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sahin, O.; Zhang, Q. Campylobacter. In Pathogenesis of Bacterial Infections in Animals; Wiley-Blackwell: New York, NY, USA, 2022; pp. 393–412. [Google Scholar]
- Phung, C.; Vezina, B.; Anwar, A.; Wilson, T.; Scott, P.C.; Moore, R.J.; Van, T.T.H. Campylobacter hepaticus, the Cause of Spotty Liver Disease in Chickens: Transmission and Routes of Infection. Front. Vet. Sci. 2020, 6, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Yang, Y.; Feye, K.M.; Shi, Z.; Pavlidis, H.O.; Kogut, M.; Ashworth, A.J.; Ricke, S.C. A historical review on antibiotic resistance of foodborne Campylobacter. Front. Microbiol. 2019, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Iovine, N.M. Resistance mechanisms in Campylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, K.; Osek, J. Antimicrobial Resistance Mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laprade, N.; Cloutier, M.; Lapen, D.R.; Topp, E.; Wilkes, G.; Villemur, R.; Khan, I.U.H. Detection of virulence, antibiotic resistance and toxin (VAT) genes in Campylobacter species using newly developed multiplex PCR assays. J. Microbiol. Methods 2016, 124, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Ghedira, K.; Ghram, A.; Maaroufi, A. Distribution of virulence and antibiotic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from broiler chickens in Tunisia. J. Microbiol. Immunol. Infect. 2021, 55, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, Z.; Huang, R.; Cui, Y.; Li, Q.; Zhao, Y.; Wang, X.; Mao, D.; Luo, Y.; Ren, H. Antibiotic Resistance Gene-Carrying Plasmid Spreads into the Plant Endophytic Bacteria using Soil Bacteria as Carriers. Environ. Sci. Technol. 2021, 55, 10462–10470. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Li, Y.; Yao, H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics 2022, 11, 525. [Google Scholar] [CrossRef]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef]
- Wein, T.; Dagan, T. Plasmid evolution. Curr. Biol. 2020, 30, R1158–R1163. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E.P.C.; Garcillán-Barcia, M.P.; de la Cruz, F. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 2020, 11, 3602. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.C.; Wong, A. Plasmid persistence: Costs, benefits, and the plasmid paradox. Can. J. Microbiol. 2018, 64, 293–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.P.J.; Botelho, J.; Cazares, A.; Baltrus, D.A. What makes a megaplasmid? Philos. Trans. B 2022, 377, 20200472. [Google Scholar] [CrossRef] [PubMed]
- Liaw, J.; Hong, G.; Davies, C.; Elmi, A.; Sima, F.; Stratakos, A.; Stef, L.; Pet, I.; Hachani, A.; Corcionivoschi, N.; et al. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front. Microbiol. 2019, 10, 2864. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.G.; Rizzi, C.; Galli, V.; Lopes, G.V.; Haubert, L.; Dellagostin, O.A.; da Silva, W.P. Presence of genes associated with adhesion, invasion, and toxin production in Campylobacter jejuni isolates and effect of temperature on their expression. Can. J. Microbiol. 2018, 65, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Wysok, B.; Sołtysiuk, M.; Stenzel, T. Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. Pathogens 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Galate, L.; Bangde, S. Campylobacter—A foodborne pathogen. Int. J. Sci. Res. 2015, 4, 1250–1259. [Google Scholar]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [Green Version]
- Dearlove, B.L.; Cody, A.J.; Pascoe, B.; Méric, G.; Wilson, D.J.; Sheppard, S.K. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 2016, 10, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gölz, G.; Kittler, S.; Malakauskas, M.; Alter, T. Survival of Campylobacter in the Food Chain and the Environment. Curr. Clin. Microbiol. Rep. 2018, 5, 126–134. [Google Scholar] [CrossRef]
- Wysok, B.; Wojtacka, J.; Hänninen, M.-L.; Kivistö, R. Antimicrobial Resistance and Virulence-Associated Markers in Campylobacter Strains from Diarrheic and Non-diarrheic Humans in Poland. Front. Microbiol. 2020, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hamid, M.I.; Abd El-Aziz, N.K.; Samir, M.; El-Naenaeey, E.-S.Y.; Abo Remela, E.M.; Mosbah, R.A.; Bendary, M.M. Genetic Diversity of Campylobacter jejuni Isolated from Avian and Human Sources in Egypt. Front. Microbiol. 2019, 10, 2353. [Google Scholar] [CrossRef]
- Ammar, A.M.; El-Naenaeey, E.-S.Y.; El-Malt, R.M.S.; El-Gedawy, A.A.; Khalifa, E.; Elnahriry, S.S.; Abd El-Hamid, M.I. Prevalence, Antimicrobial Susceptibility, Virulence and Genotyping of Campylobacter jejuni with a Special Reference to the Anti-Virulence Potential of Eugenol and Beta-Resorcylic Acid on Some Multi-Drug Resistant Isolates in Egypt. Animals 2021, 11, 3. [Google Scholar] [CrossRef]
- Fani, F.; Aminshahidi, M.; Firoozian, N.; Rafaatpour, N. Prevalence, antimicrobial resistance, and virulence-associated genes of Campylobacter isolates from raw chicken meat in Shiraz, Iran. Iran. J. Vet. Res. 2019, 20, 283–288. [Google Scholar]
- Gahamanyi, N.; Song, D.-G.; Yoon, K.-Y.; Mboera, L.E.G.; Matee, M.I.; Mutangana, D.; Amachawadi, R.G.; Komba, E.V.G.; Pan, C.-H. Antimicrobial Resistance Profiles, Virulence Genes, and Genetic Diversity of Thermophilic Campylobacter Species Isolated from a Layer Poultry Farm in Korea. Front. Microbiol. 2021, 12, 622275. [Google Scholar] [CrossRef]
- Rossler, E.; Olivero, C.; Soto, L.P.; Frizzo, L.S.; Zimmermann, J.; Rosmini, M.R.; Sequeira, G.J.; Signorini, M.L.; Zbrun, M.V. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int. J. Food Microbiol. 2020, 326, 108641. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, Q.; Tang, H.; Wang, Z.; Yin, Y.; Ren, F.; Kong, L.; Jiao, X.; Huang, J. Characterization and Prevalence of Campylobacter spp. from Broiler Chicken Rearing Period to the Slaughtering Process in Eastern China. Front. Vet. Sci. 2020, 7, 227. [Google Scholar] [CrossRef]
- Melo, R.T.; Grazziotin, A.L.; Júnior, E.C.V.; Prado, R.R.; Mendonça, E.P.; Monteiro, G.P.; Peres, P.A.B.M.; Rossi, D.A. Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol. 2019, 82, 489–496. [Google Scholar] [CrossRef]
- de Melo, R.T.; Dumont, C.F.; Braz, R.F.; Monteiro, G.P.; Takeuchi, M.G.; Lourenzatto, E.C.A.; dos Santos, J.P.; Rossi, D.A. Genotypical Relationship between Human and Poultry Strains of Campylobacter jejuni. Curr. Microbiol. 2021, 78, 2980–2988. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, D.M.; Lynch, H.; Whyte, P.; Golden, O.; Murphy, D.; Gutierrez, M.; Cummins, J.; Johnston, D.; Bolton, D.; Coffey, A.; et al. Genomic diversity, virulence and source of Campylobacter jejuni contamination in Irish poultry slaughterhouses by whole genome sequencing. J. Appl. Microbiol. 2022, 133, 3150–3160. [Google Scholar] [CrossRef] [PubMed]
- Truccollo, B.; Whyte, P.; Burgess, C.; Bolton, D. Genetic characterisation of a subset of Campylobacter jejuni isolates from clinical and poultry sources in Ireland. PLoS ONE 2021, 16, e0246843. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Mileng, K.; Ndou, R.; Tawana, M.; Mofokeng, L.; Syakalima, M.; Lekota, K.E.; Thekisoe, O. Campylobacter jejuni from Slaughter Age Broiler Chickens: Genetic Characterization, Virulence, and Antimicrobial Resistance Genes. Int. J. Microbiol. 2022, 2022, 1713213. [Google Scholar] [CrossRef]
- Rangaraju, V.; Malla, B.A.; Milton, A.A.P.; Madesh, A.; Madhukar, K.B.; Kadwalia, A.; Vinodhkumar, O.R.; Kumar, M.S.; Dubal, Z.B. Occurrence, antimicrobial resistance and virulence properties of thermophilic Campylobacter coli originating from two different poultry settings. Gene Rep. 2022, 27, 101618. [Google Scholar] [CrossRef]
- Béjaoui, A.; Gharbi, M.; Bitri, S.; Nasraoui, D.; Ben Aziza, W.; Ghedira, K.; Rfaik, M.; Marzougui, L.; Ghram, A.; Maaroufi, A. Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics 2022, 11, 830. [Google Scholar] [CrossRef]
- Lima, L.M.; Perdoncini, G.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; De Souza Moraes, H.; do Nascimento, V.P. Prevalence and distribution of pathogenic genes in Campylobacter jejuni isolated from poultry and human sources. J. Infect. Dev. Ctries. 2022, 16, 1466–1472. [Google Scholar] [CrossRef]
- De Melo, F.P.; da Silva, P.O.; Clemente, S.M.D.S.; de Melo, R.P.B.; da Silva, J.G.; Júnior, J.W.P.; Fonseca, B.B.; Mendonça, M.; Barros, M.R. Detection of Campylobacter jejuni, Campylobacter coli, and virulence genes in poultry products marketed in Northeastern Brazil. Res. Soc. Dev. 2021, 10, e542101019224. [Google Scholar] [CrossRef]
- Sierra-Arguello, Y.M.; Perdoncini, G.; Rodrigues, L.B.; dos Santos, L.R.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; de Souza Moraes, H.L.; Gomes, M.J.P.; do Nascimento, V.P. Identification of pathogenic genes in Campylobacter jejuni isolated from broiler carcasses and broiler slaughterhouses. Sci. Rep. 2021, 11, 4588. [Google Scholar] [CrossRef]
- Noreen, Z. Comparative Genomic Analysis of Campylobacter jejuni cj255 Reveals Diverse Genetics, Pathogenicity Determinants and Variation in T6SS. Pak. Vet. J. 2019, 39, 145–150. [Google Scholar] [CrossRef]
- Wysok, B.; Wojtacka, J.; Wiszniewska-Łaszczych, A.; Szteyn, J. Antimicrobial Resistance and Virulence Properties of Campylobacter Spp. Originating from Domestic Geese in Poland. Animals 2020, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, H.; Kim, J.; Kim, J.H.; Jung, J.I.; Cho, S.; Ryu, S.; Jeon, B. Comparative Analysis of Aerotolerance, Antibiotic Resistance, and Virulence Gene Prevalence in Campylobacter jejuni Isolates from Retail Raw Chicken and Duck Meat in South Korea. Microorganisms 2019, 7, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Guan, X.; Zeng, H.; Li, J.; Huang, X.; Wen, Y.; Zhao, Q.; Huang, X.; Yan, Q.; Huang, Y.; et al. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control 2019, 104, 157–166. [Google Scholar] [CrossRef]
- Guirado, P.; Iglesias-Torrens, Y.; Miró, E.; Navarro, F.; Attolini, C.S.-O.; Balsalobre, C.; Madrid, C. Host-associated variability of the cdtABC operon, coding for the cytolethal distending toxin, in Campylobacter jejuni. Zoonoses Public Health 2022, 69, 966–977. [Google Scholar] [CrossRef]
- Hull, D.M.; Harrell, E.; van Vliet, A.H.M.; Correa, M.; Thakur, S. Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018–2019. PLoS ONE 2021, 16, e0246571. [Google Scholar] [CrossRef]
- Ngobese, B.; Zishiri, O.T.; El Zowalaty, M.E. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa. J. Integr. Agric. 2020, 19, 1656–1670. [Google Scholar] [CrossRef]
- Meistere, I.; Ķibilds, J.; Eglīte, L.; Alksne, L.; Avsejenko, J.; Cibrovska, A.; Makarova, S.; Streikiša, M.; Grantiņa-Ieviņa, L.; Bērziņš, A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Eurosurveillance 2019, 24, 1800357. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Kang, M.; Jang, H.-K. Genetic characterization and epidemiological implications of Campylobacter isolates from wild birds in South Korea. Transbound. Emerg. Dis. 2019, 66, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Aksomaitiene, J.; Novoslavskij, A.; Kudirkiene, E.; Gabinaitiene, A.; Malakauskas, M. Whole Genome Sequence-Based Prediction of Resistance Determinants in High-Level Multidrug-Resistant Campylobacter jejuni Isolates in Lithuania. Microorganisms 2021, 9, 66. [Google Scholar] [CrossRef]
- Wysok, B.; Wojtacka, J. Detection of virulence genes determining the ability to adhere and invade in Campylobacter spp. from cattle and swine in Poland. Microb. Pathog. 2018, 115, 257–263. [Google Scholar] [CrossRef]
- Lúcio, É.C.; Barros, M.R.; Souza, P.R.E.; de Cássia Carvalho Maia, R.; Mota, R.A.; Junior, J.W.P. Identification of virulence genes and antimicrobial resistance in Campylobacter spp. from sheep from the state of Pernambuco in Brazil. Res. Soc. Dev. 2022, 11, e41511427457. [Google Scholar] [CrossRef]
- Andrzejewska, M.; Szczepańska, B.; Śpica, D.; Klawe, J.J. Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter spp. in Raw Milk, Beef, and Pork Meat in Northern Poland. Foods 2019, 8, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwaran, A.; Okoh, A.I. Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Antibiotics 2020, 9, 426. [Google Scholar] [CrossRef]
- Nilsson, A.; Johansson, C.; Skarp, A.; Kaden, R.; Engstrand, L.; Rautelin, H. Genomic and phenotypic characteristics of Swedish C. jejuni water isolates. PLoS ONE 2017, 12, e0189222. [Google Scholar] [CrossRef] [Green Version]
- Chukwu, M.O.; Abia, A.L.K.; Ubomba-Jaswa, E.; Obi, L.; Dewar, J.B. Characterization and Phylogenetic Analysis of Campylobacter Species Isolated from Paediatric Stool and Water Samples in the Northwest Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Nascimento Veras, H.; Medeiros, P.H.Q.S.; Ribeiro, S.A.; Freitas, T.M.; Santos, A.K.S.; Amaral, M.S.M.G.; Bona, M.D.; Havt, A.; Lima, I.F.N.; Lima, N.L.; et al. Campylobacter jejuni virulence genes and immune-inflammatory biomarkers association with growth impairment in children from Northeastern Brazil. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2011–2020. [Google Scholar] [CrossRef]
- Bravo, V.; Katz, A.; Porte, L.; Weitzel, T.; Varela, C.; Gonzalez-Escalona, N.; Blondel, C.J. Genomic analysis of the diversity, antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLOS Negl. Trop. Dis. 2021, 15, e0009207. [Google Scholar] [CrossRef]
- Halimeh, F.B.; Rafei, R.; Diene, S.M.; Osman, M.; Kassem, I.I.; Akoum, R.J.; Moudani, W.; Hamze, M.; Rolain, J.-M. Genome sequence of a multidrug-resistant Campylobacter coli strain isolated from a newborn with severe diarrhea in Lebanon. Folia Microbiol. 2022, 67, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Kovács, J.K.; Cox, A.; Schweitzer, B.; Maróti, G.; Kovács, T.; Fenyvesi, H.; Emődy, L.; Schneider, G. Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020, 8, 531. [Google Scholar] [CrossRef] [Green Version]
- Fiedoruk, K.; Daniluk, T.; Rozkiewicz, D.; Oldak, E.; Prasad, S.; Swiecicka, I. Whole-genome comparative analysis of Campylobacter jejuni strains isolated from patients with diarrhea in northeastern Poland. Gut Pathog. 2019, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Stalder, T.; Barraud, O.; Casellas, M.; Dagot, C.; Ploy, M.-C. Integron Involvement in Environmental Spread of Antibiotic Resistance. Front. Microbiol. 2012, 3, 119. [Google Scholar] [CrossRef] [Green Version]
- Sin, M.; Yoon, S.; Kim, Y.B.; Noh, E.B.; Seo, K.W.; Lee, Y.J. Molecular characteristics of antimicrobial resistance determinants and integrons in Salmonella isolated from chicken meat in Korea. J. Appl. Poult. Res. 2020, 29, 502–514. [Google Scholar] [CrossRef]
- Cavicchio, L.; Dotto, G.; Giacomelli, M.; Giovanardi, D.; Grilli, G.; Franciosini, M.P.; Trocino, A.; Piccirillo, A. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy. Poult. Sci. 2015, 94, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance integrons: Class 1, 2 and 3 integrons. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Piccirillo, A.; Dotto, G.; Salata, C.; Giacomelli, M. Absence of class 1 and class 2 integrons among Campylobacter jejuni and Campylobacter coli isolated from poultry in Italy. J. Antimicrob. Chemother. 2013, 68, 2683–2685. [Google Scholar] [CrossRef] [Green Version]
- Newell, D.G.; Mughini-Gras, L.; Kalupahana, R.S.; Wagenaar, J.A. Chapter 5-Campylobacter epidemiology—Sources and routes of transmission for human infection. In Campylobacter; Klein, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 85–110. [Google Scholar]
- Silva, M.F.; Pereira, G.; Carneiro, C.; Hemphill, A.; Mateus, L.; Lopes-da-Costa, L.; Silva, E. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS ONE 2020, 15, e0227500. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mendoza, D.; Martínez-Flores, I.; Santamaría, R.I.; Lozano, L.; Bustamante, V.H.; Pérez-Morales, D. Genomic Analysis Reveals the Genetic Determinants Associated with Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front. Microbiol. 2020, 11, 513070. [Google Scholar] [CrossRef]
- Durovic, A.; Seth-Smith, H.M.B.; Hinic, V.; Kurz, M.; Khanna, N.; Egli, A. Two simultaneous cases of disseminated infections with Campylobacter fetus Clinical characteristics and molecular comparison. Clin. Microbiol. Infect. 2021, 27, 141–143. [Google Scholar] [CrossRef]
- Ocejo, M.; Oporto, B.; Lavín, J.L.; Hurtado, A. Whole genome-based characterisation of antimicrobial resistance and genetic diversity in Campylobacter jejuni and Campylobacter coli from ruminants. Sci. Rep. 2021, 11, 8998. [Google Scholar] [CrossRef]
- Fabre, A.; Oleastro, M.; Nunes, A.; Santos, A.; Sifré, E.; Ducournau, A.; Bénéjat, L.; Buissonnière, A.; Floch, P.; Mégraud, F.; et al. Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates: A Focus on Aminoglycoside Resistance Determinants. J. Clin. Microbiol. 2018, 56, e00390-18. [Google Scholar] [CrossRef] [Green Version]
- Marotta, F.; Garofolo, G.; di Marcantonio, L.; Di Serafino, G.; Neri, D.; Romantini, R.; Sacchini, L.; Alessiani, A.; Di Donato, G.; Nuvoloni, R.; et al. Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS ONE 2019, 14, e0223804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinubing, N.R.; Ramires, T.; de Fátima Rauber Würfel, S.; Haubert, L.; Scheik, L.K.; Kremer, F.S.; Lopes, G.V.; da Silva, W.P. Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. LWT 2021, 144, 111202. [Google Scholar] [CrossRef]
- Asakura, H.; Sakata, J.; Nakamura, H.; Yamamoto, S.; Murakami, S. Phylogenetic Diversity and Antimicrobial Resistance of Campylobacter coli from Humans and Animals in Japan. Microbes Environ. 2019, 34, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Mukherjee, S.; Hsu, C.-H.; Young, S.; Li, C.; Tate, H.; Morales, C.A.; Haro, J.; Thitaram, S.; Tillman, G.E.; et al. Genomic Analysis of Emerging Florfenicol-Resistant Campylobacter coli Isolated from the Cecal Contents of Cattle in the United States. Msphere 2019, 4, e00367-19. [Google Scholar] [CrossRef] [Green Version]
- Morita, D.; Arai, H.; Isobe, J.; Maenishi, E.; Kumagai, T.; Maruyama, F.; Kuroda, T. Diversity and characteristics of pTet family plasmids revealed by genomic epidemiology of Campylobacter jejuni from human patients in Toyama, Japan from 2015 to 2019. bioRxiv 2022. [Google Scholar] [CrossRef]
- Elhadidy, M.; Miller, W.G.; Arguello, H.; Álvarez-Ordóñez, A.; Dierick, K.; Botteldoorn, N. Molecular epidemiology and antimicrobial resistance mechanisms of Campylobacter coli from diarrhoeal patients and broiler carcasses in Belgium. Transbound. Emerg. Dis. 2019, 66, 463–475. [Google Scholar] [CrossRef] [Green Version]
Source | Virulence-Associated Genes | Gene Function | References |
---|---|---|---|
Poultry | flaA, cadF, pebA, jlpA, racR, docA, dnaJ | adhesion & colonisation | [18,19,40,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79] |
pldA, ciaBC, iam, csrA, cbrA, ceuE | invasion | ||
cdtABC | cytotoxicity | ||
flgSR, flgE, flgH, flgL, flhA, fliA, fliF, fliM, fliY, motA, pseG, Cj0371, Cj0358, Cj1371, cheY, cheAVW | motility & chemotaxis | ||
luxS, eptC | biofilm formation | ||
htrA, perR, catA | stress response | ||
neuABC, gmh, waa, kps, kpsDEFCST, Cj1420c, Cj1419c, Cj1417c, Cj1416c, kpsm | CPS | ||
hldE | LPS | ||
cstII, cstIII, waaC, waaF, waaV, wlaN | LOS | ||
virB11 | T4SS | ||
hcp, clpB | T6SS | ||
Wild birds | flaA, cadF, peb1, racR, docA, dnaJ | adhesion & colonisation | [50,60,76,80,81,82] |
ciaB, iam, yidC, yidD | invasion | ||
cdtABC | cytotoxicity | ||
flhA, Trg, flgE | motility & chemotaxis | ||
bdlA | biofilm dispersion | ||
cgtB, wlaN | LOS | ||
virB11 | T4SS | ||
Ruminants & Swine | flaA, cadF, peb1, peb3, racR, dnaJ, Cj0020c, pglG | adhesion & colonisation | [77,78,79,81,82,83,84,85] |
iam, pldA, yidC, yidD | invasion | ||
cdtABC | cytotoxicity | ||
trg, flgE | motility & chemotaxis | ||
bdlA | biofilm dispersion | ||
sodB, csrA | stress response | ||
neuABC | CPS | ||
cstII, cstIII | LOS | ||
virB11 | T4SS | ||
Environment | cadF | adhesion | [85,86,87] |
iam, ciaB | invasion | ||
cdtABC | cytotoxicity | ||
flgR | motility | ||
pseE, luxS | biofilm formation | ||
rrpB | stress response | ||
Humans | flaA, cadF, jlpA, pebA, racR, dnaJ, aphC, panBCD | adhesion & colonisation | [55,56,57,63,65,69,72,79,87,88,89,90,91,92] |
pldA, cbrA, ciaB, iamB, iamA | invasion | ||
cdtABC | cytotoxicity | ||
flgE, flhB, flgB, flaB, flaC, docC | motility & chemotaxis | ||
htrA | stress response | ||
neuA, neuB1, neuC1 | CPS | ||
Cj1136, Cj1137c, Cj1138, cstII, cstIII, cgtB, wlaN | LOS | ||
porA | MOMP | ||
virB1, virB11 | T4SS | ||
clpB, hcp | T6SS |
Antibiotic Class | Antibiotic Agent (Resistance-Associated Genetic Determinants) | Origin | References |
---|---|---|---|
Aminoglycosides | gentamicin, kanamycin, spectinomycin, streptomycin (aph(2″)-Ii1, aph(2″)-Ii2, apmA, aadE-sat4-aphA-3, aph(3′)-III, spw, aad9, aadE) | Clinical | [20,90,103,104] |
spectinomycin, gentamicin, kanamycin, hygromycin, streptomycin (23S rRNA C1273T point mutation, cmeABC, cmeG, pmrA, hph) | Animal | [68,75,81,103,104,105] | |
Macrolides | erythromycin, lincosamide (23S rRNA mutation, lnuG) | Clinical | [90,103,104] |
erythromycin, clindamycin, azithromycin, lincosamide (lnuC, 23S rRNA A2075G mutation, ermB, cfrC) | Animal | [34,57,67,68,75,77,81,104,106,107] | |
Tetracyclines | tetracycline (tetO, pTet-like plasmid) | Clinical | [20,57,79,90,106,108,109] |
tetracycline, doxycycline (tetO, tetM, tetA, tetL, tetB) | Animal | [18,32,57,67,73,75,79,81,104,105,107,109] | |
Quinolones | ciprofloxacin, nalidixic acid (gyrA gene T86I point mutation) | Clinical | [20,57,79,90,108,109] |
ciprofloxacin, nalidixic acid (gyrA gene C257T point mutation, cmeABC, cmeG) | Animal | [18,32,57,58,67,68,73,75,79,81,104,105,107,109] | |
β-lactams | ampicillin (blaOXA-193) | Clinical | [57,90,108] |
ampicillin, ceftriaxone, cefixime, cefpodoxime, cefoxitin, oxacillin, cefepime (blaOXA-448, blaOXA-61, blaOXA-133, ykkC, yafP) | Animal | [57,58,67,73,81,105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunduruș, I.A.; Balta, I.; Ștef, L.; Ahmadi, M.; Peț, I.; McCleery, D.; Corcionivoschi, N. Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates. Antibiotics 2023, 12, 402. https://doi.org/10.3390/antibiotics12020402
Bunduruș IA, Balta I, Ștef L, Ahmadi M, Peț I, McCleery D, Corcionivoschi N. Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates. Antibiotics. 2023; 12(2):402. https://doi.org/10.3390/antibiotics12020402
Chicago/Turabian StyleBunduruș, Iulia Adelina, Igori Balta, Lavinia Ștef, Mirela Ahmadi, Ioan Peț, David McCleery, and Nicolae Corcionivoschi. 2023. "Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates" Antibiotics 12, no. 2: 402. https://doi.org/10.3390/antibiotics12020402
APA StyleBunduruș, I. A., Balta, I., Ștef, L., Ahmadi, M., Peț, I., McCleery, D., & Corcionivoschi, N. (2023). Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates. Antibiotics, 12(2), 402. https://doi.org/10.3390/antibiotics12020402