The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics
Abstract
:1. ECMO Background
2. Trends in ECMO Utilization
3. Infective Complications during ECMO Support
3.1. Infectious Sources/Locations
3.2. Common Pathogens
3.3. Observed Outcomes
4. ECMO Configurations
5. Challenges with Medication Therapy
6. Antimicrobial PK Literature Review
7. Ex-Vivo Studies
8. Prospective In-Vivo Data
8.1. Cefepime
8.2. Meropenem
8.3. Piperacillin
8.4. Vancomycin
8.5. Linezolid
8.6. Fluconazole
8.7. Voriconazole
8.8. Echinocandins
9. Monitoring
10. Ongoing Challenges in the ECMO Setting
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gajkowski, E.F.; Herrera, G.; Hatton, L.; Velia Antonini, M.; Vercaemst, L.; Cooley, E. ELSO Guidelines for Adult and Pediatric Extracorporeal Membrane Oxygenation Circuits. ASAIO J. 2022, 68, 133–152. [Google Scholar] [CrossRef]
- Lequier, L.; Horton, S.B.; McMullan, D.M.; Bartlett, R.H. Extracorporeal Membrane Oxygenation Circuitry. Pediatr. Crit. Care Med. 2013, 14, S7–S12. [Google Scholar] [CrossRef] [Green Version]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Munshi, L.; Walkey, A.; Goligher, E.; Pham, T.; Uleryk, E.M.; Fan, E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: A systematic review and meta-analysis. Lancet Respir. Med. 2019, 7, 163–172. [Google Scholar] [CrossRef]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Extracorporeal life support as a bridge to high-urgency heart transplantation. Clin. Transplant. 2012, 26, 484–488. [Google Scholar] [CrossRef]
- Chung, J.C.-Y.; Tsai, P.-R.; Chou, N.-K.; Chi, N.-H.; Wang, S.-S.; Ko, W.-J. Extracorporeal membrane oxygenation bridge to adult heart transplantation. Clin. Transplant. 2010, 24, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Tanno, K.; Hase, M.; Mori, K.; Asai, Y. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: A propensity-matched study and predictor analysis. Crit. Care Med. 2013, 41, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Parr, C.J.; Sharma, R.; Arora, R.C.; Singal, R.; Hiebert, B.; Minhas, K. Outcomes of extracorporeal membrane oxygenation support in the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2020, 96, 547–555. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.Y.; Ri, H.-S.; Chung, M.; Ryu, J.H.; Lee, T.B.; Yoon, J.-U. Expanded Efficacy of Venovenous Extracorporeal Membrane Oxygenation Support for Deceased Donor Liver Transplantation. Transplant. Proc. 2021, 53, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Extracorporeal Life Support Organization. (n.d.). ELSO Live Registry Dashboard of ECMO Patient Data. Available online: https://www.elso.org/registry/elsoliveregistrydashboard.aspx (accessed on 30 January 2023).
- Lorusso, R.; Shekar, K.; MacLaren, G.; Schmidt, M.; Pellegrino, V.; Meyns, B.; Haft, J.; Vercaemst, L.; Pappalardo, F.; Bermudez, C.; et al. ELSO Interim Guidelines for Venoarterial Extracorporeal Membrane Oxygenation in Adult Cardiac Patients. ASAIO J. 2021, 67, 827–844. [Google Scholar] [CrossRef]
- Abrams, D.; Grasselli, G.; Schmidt, M.; Mueller, T.; Brodie, D. ECLS-associated infections in adults: What we know and what we don’t yet know. Intensive Care Med. 2020, 46, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Dzierba, A.L.; Abrams, D.; Muir, J.; Brodie, D. Ventilatory and Pharmacotherapeutic Strategies for Management of Adult Patients on Extracorporeal Life Support. Pharmacotherapy 2019, 39, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Biffi, S.; Di Bella, S.; Scaravilli, V.; Peri, A.M.; Grasselli, G.; Alagna, L.; Pesenti, A.; Gori, A. Infections during extracorporeal membrane oxygenation: Epidemiology, risk factors, pathogenesis and prevention. Int. J. Antimicrob. Agents 2017, 50, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Bréchot, N.; Hariri, S.; Guiguet, M.; Luyt, C.E.; Makri, R.; Leprince, P.; Trouillet, J.L.; Pavie, A.; Chastre, J.; et al. Nosocomial infections in adult cardiogenic shock patients supported by venoarterial extracorporeal membrane oxygenation. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Aubron, C.; Cheng, A.C.; Pilcher, D.; Leong, T.; Magrin, G.; Cooper, D.J.; Scheinkestel, C.; Pellegrino, V. Infections acquired by adults who receive extracorporeal membrane oxygenation: Risk factors and outcome. Infect. Control. Hosp. Epidemiol. 2013, 34, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Allou, N.; Pinto, H.L.; Persichini, R.; Bouchet, B.; Braunberger, E.; Lugagne, N.; Belmonte, O.; Martinet, O.; Delmas, B.; Dangers, L.; et al. Cannula-Related Infection in Patients Supported by Peripheral ECMO: Clinical and Microbiological Characteristics. ASAIO J. 2019, 65, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Winiszewski, H.; Boyadjian, C.; Besch, G.; Soumagne, T.; Jeanney, M.; Pili-Floury, S.; Fournier, D.; Belon, F.; Chocron, S.; Capellier, G.; et al. Extracorporeal Membrane Oxygenation Cannula-Related Infections: Epidemiology and Risk Factors. ASAIO J. 2022, 68, 571–576. [Google Scholar] [CrossRef]
- Kim, T.; Cho, W.H.; Kim, D.; Jeon, D.; Kim, Y.S.; Yeo, H.J. Microbial Colonization of Oxygenator and Clinical Outcomes in Extracorporeal Membrane Oxygenation. ASAIO J. 2021, 67, 930–934. [Google Scholar] [CrossRef]
- Vogel, A.M.; Lew, D.F.; Kao, L.S.; Lally, K.P. Defining risk for infectious complications on extracorporeal life support. J. Pediatr. Surg. 2011, 46, 2260–2264. [Google Scholar] [CrossRef]
- Cavayas, Y.A.; Yusuff, H.; Porter, R. Fungal infections in adult patients on extracorporeal life support. Crit. Care 2018, 22, 98. [Google Scholar] [CrossRef] [Green Version]
- de Roux, Q.; Botterel, F.; Lepeule, R.; Taccone, F.S.; Langeron, O.; Mongardon, N. Candida bloodstream infection under veno-arterial ECMO therapy. Crit. Care 2019, 23, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, T.S.; Zurakowski, D.; Dalton, H.; Talwar, S.; Allard-Picou, A.; Duebener, L.F.; Sinha, P.; Moulick, A. Extracorporeal membrane oxygenation in postcardiotomy patients: Factors influencing outcome. J. Thorac. Cardiovasc. Surg. 2010, 140, 330–336.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawad, I.; Lukšić, I.; Rafnsson, S.B. Assessing available information on the burden of sepsis: Global estimates of incidence, prevalence and mortality. J. Glob. Health 2012, 2, 010404. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Ferrer, R.; Martin-Loeches, I.; Phillips, G.; Osborn, T.M.; Townsend, S.; Dellinger, R.P.; Artigas, A.; Schorr, C.; Levy, M.M. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, J.; Heath, T.; Watt, K. Pharmacokinetics and Dosing of Anti-infective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature. Clin. Ther. 2016, 38, 1976–1994. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.A.; Sieg, A.C. Evaluation of Altered Drug Pharmacokinetics in Critically Ill Adults Receiving Extracorporeal Membrane Oxygenation. Pharmacotherapy 2017, 37, 221–235. [Google Scholar] [CrossRef]
- Shekar, K.; Roberts, J.A.; Mcdonald, C.I.; Ghassabian, S.; Anstey, C.; Wallis, S.C.; Mullany, D.V.; Fung, Y.L.; Fraser, J.F. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: Results from an ex vivo study. Crit. Care 2015, 19, 164. [Google Scholar] [CrossRef] [Green Version]
- Shekar, K.; Fraser, J.F.; Smith, M.T.; Roberts, J.A. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J. Crit. Care 2012, 27, 741.e9–741.e18. [Google Scholar] [CrossRef]
- Wildschut, E.D.; Ahsman, M.J.; Allegaert, K.; Mathot, R.A.A.; Tibboel, D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010, 36, 2109–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harthan, A.A.; Buckley, K.W.; Heger, M.L.; Fortuna, R.S.; Mays, K. Medication adsorption into contemporary extracorporeal membrane oxygenator circuits. J. Pediatr. Pharmacol. Ther. JPPT Off. J. PPAG 2014, 19, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Roberts, J.A.; Mcdonald, C.I.; Fisquet, S.; Barnett, A.G.; Mullany, D.V.; Ghassabian, S.; Wallis, S.C.; Fung, Y.L.; Smith, M.T.; et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit. Care 2012, 16, R194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851; quiz 859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekar, K.; Fung, Y.L.; Diab, S.; Mullany, D.V.; McDonald, C.I.; Dunster, K.R.; Fisquet, S.; Platts, D.G.; Stewart, D.; Wallis, S.C.; et al. Development of simulated and ovine models of extracorporeal life support to improve understanding of circuit-host interactions. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2012, 14, 105–111. [Google Scholar]
- Mehta, N.M.; Halwick, D.R.; Dodson, B.L.; Thompson, J.E.; Arnold, J.H. Potential drug sequestration during extracorporeal membrane oxygenation: Results from an ex vivo experiment. Intensive Care Med. 2007, 33, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 5479537, Cefepime. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefepime (accessed on 31 January 2023).
- Kois, A.K.; Gluck, J.A.; Nicolau, D.P.; Kuti, J.L. Pharmacokinetics and Time above the MIC Exposure of Cefepime in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation (ECMO). Int. J. Antimicrob. Agents 2022, 60, 106603. [Google Scholar] [CrossRef]
- Boschung-Pasquier, L.; Atkinson, A.; Kastner, L.K.; Banholzer, S.; Haschke, M.; Buetti, N.; Furrer, D.I.; Hauser, C.; Jent, P.; Que, Y.A.; et al. Cefepime neurotoxicity: Thresholds and risk factors. A retrospective cohort study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 26, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Marriott, D.; Schultz, H.B.; Gould, M.; Andresen, D.; Wicha, S.G.; Alffenaar, J.W.; Penm, J.; Reuter, S.E. Assessment of cefepime toxicodynamics: Comprehensive examination of pharmacokinetic/pharmacodynamic targets for cefepime-induced neurotoxicity and evaluation of current dosing guidelines. Int. J. Antimicrob. Agents 2021, 58, 106443. [Google Scholar] [CrossRef]
- Lau, C.; Marriott, D.; Gould, M.; Andresen, D.; Reuter, S.E.; Penm, J. A retrospective study to determine the cefepime-induced neurotoxicity threshold in hospitalized patients. J. Antimicrob. Chemother. 2020, 75, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Abdul-Aziz, M.H.; Cheng, V.; Burrows, F.; Buscher, H.; Cho, Y.J.; Corley, A.; Diehl, A.; Gilder, E.; Jakob, S.M.; et al. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am. J. Respir. Crit. Care Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Kassel, L.E.; Van Matre, E.T.; Foster, C.J.; Fish, D.N.; Mueller, S.W.; Sherman, D.S.; Wempe, M.F.; MacLaren, R.; Neumann, R.T.; Kiser, T.H. A Randomized Pharmacokinetic and Pharmacodynamic Evaluation of Every 8-Hour and 12-Hour Dosing Strategies of Vancomycin and Cefepime in Neurocritically ill Patients. Pharmacotherapy 2018, 38, 921–934. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 441130, Meropenem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Meropenem (accessed on 31 January 2023).
- Donadello, K.; Antonucci, E.; Cristallini, S.; Roberts, J.A.; Beumier, M.; Scolletta, S.; Jacobs, F.; Rondelet, B.; De Backer, D.; Vincent, J.L.; et al. β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case-control study. Int. J. Antimicrob. Agents 2015, 45, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current β-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 43672, Piperacillin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Piperacillin (accessed on 31 January 2023).
- Colman, S.; Stove, V.; De Waele, J.J.; Verstraete, A.G. Measuring Unbound Versus Total Piperacillin Concentrations in Plasma of Critically Ill Patients: Methodological Issues and Relevance. Ther. Drug Monit. 2019, 41, 325–330. [Google Scholar] [CrossRef]
- Kühn, D.; Metz, C.; Seiler, F.; Wehrfritz, H.; Roth, S.; Alqudrah, M.; Becker, A.; Bracht, H.; Wagenpfeil, S.; Hoffmann, M.; et al. therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care 2020, 24, 664. [Google Scholar] [CrossRef]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 14969, Vancomycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Vancomycin (accessed on 31 January 2023).
- Park, S.J.; Yang, J.H.; Park, H.J.; In, Y.W.; Lee, Y.M.; Cho, Y.H.; Chung, C.R.; Park, C.M.; Jeon, K.; Suh, G.Y. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation. PLoS ONE 2015, 10, e0141016. [Google Scholar] [CrossRef] [Green Version]
- Donadello, K.; Roberts, J.A.; Cristallini, S.; Beumier, M.; Shekar, K.; Jacobs, F.; Belhaj, A.; Vincent, J.L.; de Backer, D.; Taccone, F.S. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: A matched cohort study. Crit. Care 2014, 18, 632. [Google Scholar] [CrossRef] [Green Version]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 441401, Linezolid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Linezolid (accessed on 31 January 2023).
- De Rosa, F.G.; Corcione, S.; Baietto, L.; Ariaudo, A.; Di Perri, G.; Ranieri, V.M.; D’Avolio, A. Pharmacokinetics of linezolid during extracorporeal membrane oxygenation. Int. J. Antimicrob. Agents 2013, 41, 590–591. [Google Scholar] [CrossRef]
- Simon, P.; Busse, D.; Petroff, D.; Dorn, C.; Ehmann, L.; Hochstädt, S.; Girrbach, F.; Dietrich, A.; Zeitlinger, M.; Kees, F.; et al. Linezolid Concentrations in Plasma and Subcutaneous Tissue are Reduced in Obese Patients, Resulting in a Higher Risk of Underdosing in Critically Ill Patients: A Controlled Clinical Pharmacokinetic Study. J. Clin. Med. 2020, 9, 1067. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Roberts, J.A. Antibiotic dosing during extracorporeal membrane oxygenation: Does the system matter? Curr. Opin. Anaesthesiol. 2020, 33, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Watt, K.M.; Cohen-Wolkowiez, M.; Williams, D.C.; Bonadonna, D.K.; Cheifetz, I.M.; Thakker, D.; Benjamin Jr, D.K.; Brouwer, K.L. Antifungal Extraction by the Extracorporeal Membrane Oxygenation Circuit. J. Extra-Corpor. Technol. 2017, 49, 150–159. [Google Scholar] [PubMed]
- Boonstra, J.M.; Märtson, A.G.; Sandaradura, I.; Kosterink, J.G.W.; Van Der Werf, T.S.; Marriott, D.J.E.; Zijlstra, J.G.; Touw, D.J.; Alffenaar, J.W.C. Optimization of Fluconazole Dosing for the Prevention and Treatment of Invasive Candidiasis Based on the Pharmacokinetics of Fluconazole in Critically Ill Patients. Antimicrob. Agents Chemother. 2021, 65, e01554-20. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 71616, Voriconazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Voriconazole (accessed on 2 February 2023).
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.; Juffermans, N.P.; Taccone, F.S.; Coimbra Sousa, C.A.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-B.; Hu, X.-G.; Xia, Y.-Z.; Liu, X.-M.; Liang, T.; Chen, X.; Cai, C.-J. Voriconazole pharmacokinetics in a critically ill patient during extracorporeal membrane oxygenation. J. Chemother. 2022, 34, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.L.; Chittick, P.J.; Richardson, C.L. Decreasing voriconazole requirement in a patient after extracorporeal membrane oxygenation discontinuation: A case report. Transpl. Infect. Dis. Off. J. Transplant. Soc. 2021, 23, e13545. [Google Scholar] [CrossRef]
- Spriet, I.; Annaert, P.; Meersseman, P.; Hermans, G.; Meersseman, W.; Verbesselt, R.; Willems, L. Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2009, 63, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, A.; Thiboutot, Z.; Ferreira, V.; Benoit, P.; Grandjean Lapierre, S.; HÉtu, P.-O.; Halwagi, A. Voriconazole Sequestration During Extracorporeal Membrane Oxygenation for Invasive Lung Aspergillosis: A Case Report. ASAIO J. 2022, 68, e56–e58. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Huang, F.; Tong, L.; Xia, Y.Z.; Wu, J.J.; Li, J.; Hu, X.G.; Liang, T.; Liu, X.M.; Zhong, G.P.; et al. Pharmacokinetics of intravenous voriconazole in patients with liver dysfunction: A prospective study in the intensive care unit. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 93, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Lui, K.Y.; Guo, P.H.; Liu, X.M.; Liang, T.; Hu, X.G.; Tong, L.; Wu, J.J.; Xia, Y.Z.; Chen, P.; et al. Population pharmacokinetic model-guided optimization of intravenous voriconazole dosing regimens in critically ill patients with liver dysfunction. Pharmacotherapy 2022, 42, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, G.; Ferriols, R.; Carbonell, J.A.; Ezquer, C.; Alonso, J.M.; Villena, A.; Puig, J.; Navarro, D.; Alós, M.; Belda, F.J. Pharmacokinetics of anidulafungin during venovenous extracorporeal membrane oxygenation. Crit. Care 2016, 20, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, S.; Papy, E.; Da Silva, D.; Nataf, P.; Massias, L.; Wolff, M.; Bouadma, L. Potential voriconazole and caspofungin sequestration during extracorporeal membrane oxygenation. Intensive Care Med. 2009, 35, 183–184. [Google Scholar] [CrossRef]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 2826718, Caspofungin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caspofungin (accessed on 1 February 2023).
- Wang, Q.; Zhang, Z.; Liu, D.; Chen, W.; Cui, G.; Li, P.; Zhang, X.; Li, M.; Zhan, Q.; Wang, C. Population Pharmacokinetics of Caspofungin among Extracorporeal Membrane Oxygenation Patients during the Postoperative Period of Lung Transplantation. Antimicrob. Agents Chemother. 2020, 64, e00687-20. [Google Scholar] [CrossRef]
- Adembri, C.; Villa, G.; Rosi, E.; Tofani, L.; Fallani, S.; De Gaudio, A.R.; Novelli, A. Caspofungin PK in critically ill patients after the first and fourth doses: Suggestions for therapeutic drug monitoring? J. Chemother. 2020, 32, 124–131. [Google Scholar] [CrossRef]
- van der Elst, K.C.; Veringa, A.; Zijlstra, J.G.; Beishuizen, A.; Klont, R.; Brummelhuis-Visser, P.; Uges, D.R.; Touw, D.J.; Kosterink, J.G.; van der Werf, T.S.; et al. Low Caspofungin Exposure in Patients in Intensive Care Units. Antimicrob. Agents Chemother. 2017, 61, e01582-16. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Sulaiman, H.; Mat-Nor, M.B.; Rai, V.; Wong, K.K.; Hasan, M.S.; Abd Rahman, A.N.; Jamal, J.A.; Wallis, S.C.; Lipman, J.; et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016, 42, 1535–1545. [Google Scholar] [CrossRef]
- Boucher, B.A.; Wood, G.C.; Swanson, J.M. Pharmacokinetic changes in critical illness. Crit. Care Clin. 2006, 22, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
Anti-Infective Agent | LogP | Protein Binding | Target Efficacy Parameter | Toxicity Threshold Parameter |
---|---|---|---|---|
Cefepime | −0.1 | 20% | 45–100% fT ≥ MIC (Cmin ≥ 8 mg/L) | Cmin > 20 mg/L |
Meropenem | −0.6 | 2% | 50–100% fT ≥ MIC (Cmin ≥ 2 mg/L) | Cmin > 45.5 mg/L |
Piperacillin | 0.5 | 20–40% | 50–100% fT ≥ MIC (Cmin > 16 mg/L) | Cmin > 361 mg/L |
Vancomycin | −3.1 | 50% | Total AUC0–24/MIC ≥ 400 | Total AUC0–24 ≥ 700 mg*h/L |
Linezolid | 0.9 | 31% | Total AUC0–24/MIC: 80–120; ≥85% T ≥ MIC (Cmin > 2 mg/L) | Total AUC0–24 > 300 Total Cmin > 7 mg/L |
Fluconazole | 0.4 | 11% | Total AUC0–24/MIC ≥ 55–100 | Uncertain |
Voriconazole | 1 | 58% | Total Cmin ≥ 1–2 mg/L | Total Cmin ≥ 4.5–6 mg/L |
Caspofungin | −3.5 | 95% | Total AUC0–24/MIC > 3000 | Uncertain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peitz, G.J.; Murry, D.J. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics 2023, 12, 500. https://doi.org/10.3390/antibiotics12030500
Peitz GJ, Murry DJ. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics. 2023; 12(3):500. https://doi.org/10.3390/antibiotics12030500
Chicago/Turabian StylePeitz, Gregory J., and Daryl J. Murry. 2023. "The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics" Antibiotics 12, no. 3: 500. https://doi.org/10.3390/antibiotics12030500
APA StylePeitz, G. J., & Murry, D. J. (2023). The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics, 12(3), 500. https://doi.org/10.3390/antibiotics12030500