Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis
Abstract
:1. Introduction
2. Neonatal Sepsis
2.1. Pathogenesis
2.2. Clinical Presentation
2.3. Biomarkers
2.4. Diagnosis
2.5. Prognosis
2.5.1. Mortality
2.5.2. Long-Term Neurological Complications
3. Approaching Neonates Suspected of Sepsis to Avoid Misuse of Antibiotics
3.1. Approaching Neonates Suspected of EOS >35 Weeks of Gestational Age
3.1.1. Assessment of Risk Factors
3.1.2. Multifactorial Risk Assessment with Clinical and Laboratory Scores
3.1.3. Risk Assessment Based on the Clinical Picture
3.2. Approaching Neonates Suspected of EOS ≤34 6/7 Weeks of Gestational Age
3.3. Approaching Neonates Suspected of LOS
4. Antimicrobial Therapy
4.1. Choice of Antimicrobial Agent
4.2. Risk of Antimicrobial Therapy
4.3. Common Antibiotic-Resistant Pathogens in Neonatal Sepsis
4.3.1. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae
4.3.2. Carbapenem-Resistant Enterobacteriaceae
4.3.3. Colistin-Resistant Enterobacteriaceae
4.4. Novel Therapies for Resistant Pathogens
5. Antimicrobial Stewardship in Neonatal Units
5.1. Principles of Antimicrobial Stewardship
5.2. Duration of Antimicrobial Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sanchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Sikias, P.; Biran, V.; Foix-L’Helias, L.; Plainvert, C.; Boileau, P.; Bonacorsi, S.; group EOSs. Early-onset neonatal sepsis in the Paris area: A population-based surveillance study from 2019 to 2021. Arch. Dis. Child.-Fetal Neonatal Ed. 2023, 108, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Juliana, A.E.; Holband, N.; Lissone, N.P.A.; Zonneveld, R.; Evers, N.; Plotz, F.B.; Achten, N.B. Incidence of Early and Late Onset Neonatal Sepsis in Suriname: A National Tertiary Hospital Birth-cohort Study. Pediatr. Infect. Dis. J. 2022, 41, 1007–1011. [Google Scholar] [CrossRef]
- Giannoni, E.; Agyeman, P.K.A.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Spycher, B.D.; Bernhard-Stirnemann, S.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Neonatal Sepsis of Early Onset, and Hospital-Acquired and Community-Acquired Late Onset: A Prospective Population-Based Cohort Study. J. Pediatr. 2018, 201, 106–114.e104. [Google Scholar] [CrossRef]
- Joshi, N.S.; Huynh, K.; Lu, T.; Lee, H.C.; Frymoyer, A. Epidemiology and trends in neonatal early onset sepsis in California, 2010–2017. J. Perinatol. 2022, 42, 940–946. [Google Scholar] [CrossRef]
- Camacho-Gonzalez, A.; Spearman, P.W.; Stoll, B.J. Neonatal infectious diseases: Evaluation of neonatal sepsis. Pediatr. Clin. N. Am. 2013, 60, 367–389. [Google Scholar] [CrossRef] [Green Version]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of Invasive Early-Onset and Late-Onset Group B Streptococcal Disease in the United States, 2006 to 2015, Multistate Laboratory and Population-Based Surveillance. JAMA Pediatr. 2019, 173, 224–233. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of paediatric and neonatal sepsis: A systematic review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef]
- Cailes, B.; Kortsalioudaki, C.; Buttery, J.; Pattnayak, S.; Greenough, A.; Matthes, J.; Bedford Russell, A.; Kennea, N.; Heath, P. Epidemiology of UK neonatal infections: The neonIN infection surveillance network. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F547–F553. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, J.H. The Role of Biomarkers in Suspected Neonatal Sepsis. Clin. Infect. Dis. 2021, 73, e391–e393. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.V. Fine-Tuning the Duration of Antibiotic Therapy for Neonatal Sepsis. Indian J. Pediatr. 2022, 89, 323–324. [Google Scholar] [CrossRef]
- Talaat, M.; Zayed, B.; Tolba, S.; Abdou, E.; Gomaa, M.; Itani, D.; Hutin, Y.; Hajjeh, R. Increasing Antimicrobial Resistance in World Health Organization Eastern Mediterranean Region, 2017–2019. Emerg. Infect. Dis. 2022, 28, 717–724. [Google Scholar] [CrossRef]
- Pariente, N.; on behalf of the PLOS Biology Staff Editors. The antimicrobial resistance crisis needs action now. PLoS Biol. 2022, 20, e3001918. [Google Scholar] [CrossRef] [PubMed]
- Gkentzi, D.; Kortsalioudaki, C.; Cailes, B.C.; Zaoutis, T.; Kopsidas, J.; Tsolia, M.; Spyridis, N.; Siahanidou, S.; Sarafidis, K.; Heath, P.T.; et al. Neonatal Infection Surveillance Network in G. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch. Dis. Child.-Fetal Neonatal Ed. 2019, 104, F293–F297. [Google Scholar] [CrossRef]
- Mariani, M.; Parodi, A.; Minghetti, D.; Ramenghi, L.A.; Palmero, C.; Ugolotti, E.; Medici, C.; Saffioti, C.; Castagnola, E. Early and Late Onset Neonatal Sepsis: Epidemiology and Effectiveness of Empirical Antibacterial Therapy in a III Level Neonatal Intensive Care Unit. Antibiotics 2022, 11, 284. [Google Scholar] [CrossRef]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics 2022, 150, e2022058813. [Google Scholar] [CrossRef]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Polin, R.A.; Committee on Fetus and Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Kharrat, A.; Jain, A. Hemodynamic dysfunction in neonatal sepsis. Pediatr. Res. 2022, 91, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.; Cornell, T.T.; Wong, H.R.; Shanley, T.P.; Wheeler, D.S. The host response to sepsis and developmental impact. Pediatrics 2010, 125, 1031–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aradhya, A.S.; Sundaram, V.; Sachdeva, N.; Dutta, S.; Saini, S.S.; Kumar, P. Low vasopressin and progression of neonatal sepsis to septic shock: A prospective cohort study. Eur. J. Pediatr. 2020, 179, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 2010, 37, 439–479. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, E.; Gest, A. Neonatal sepsis: An old issue needing new answers. Lancet Infect. Dis. 2015, 15, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Stoll, B.J. Neonatal sepsis: Progress towards improved outcomes. J. Infect. 2014, 68, S24–S32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, L.; Yang, Y.; Liu, X.; Yuan, Y.; Song, S.R.; Zhao, Y.; Mao, J. Clinical and laboratory findings to differentiate late-onset sepsis caused by Gram-negative vs Gram-positive bacteria among perterm neonates: A retrospective cohort study. Int. Immunopharmacol. 2023, 116, 109769. [Google Scholar] [CrossRef]
- Ng, S.; Strunk, T.; Jiang, P.; Muk, T.; Sangild, P.T.; Currie, A. Precision Medicine for Neonatal Sepsis. Front. Mol. Biosci. 2018, 5, 70. [Google Scholar] [CrossRef]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern.-Fetal Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Lee, J.H. Biomarkers for the Diagnosis of Neonatal Sepsis. Clin. Perinatol. 2021, 48, 215–227. [Google Scholar] [CrossRef]
- Hotoura, E.; Giapros, V.; Kostoula, A.; Spyrou, P.; Andronikou, S. Pre-inflammatory mediators and lymphocyte subpopulations in preterm neonates with sepsis. Inflammation 2012, 35, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Tiwari, S.; Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: An overview. Microb. Pathog. 2017, 107, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Fievet, N.; Ezinmegnon, S.; Agbota, G.; Sossou, D.; Ladekpo, R.; Gbedande, K.; Briand, V.; Cottrell, G.; Vachot, L.; Yugueros Marcos, J.; et al. SEPSIS project: A protocol for studying biomarkers of neonatal sepsis and immune responses of infants in a malaria-endemic region. BMJ Open 2020, 10, e036905. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.Q.; Gandhi, A. Using CRP in neonatal practice. J. Matern.-Fetal Neonatal Med. 2015, 28, 3–6. [Google Scholar] [CrossRef]
- Hofer, N.; Zacharias, E.; Muller, W.; Resch, B. An update on the use of C-reactive protein in early-onset neonatal sepsis: Current insights and new tasks. Neonatology 2012, 102, 25–36. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mohammed, A.T.; Bastawy, S.; Attalla, H.A.; Yousef, A.A.; Abdelrazek, M.S.; Fransawy Alkomos, M.; Ghareeb, A. Serum Biomarkers for the Early Detection of the Early-Onset Neonatal Sepsis: A Single-Center Prospective Study. Adv. Neonatal Care 2019, 19, E26–E32. [Google Scholar] [CrossRef]
- Macallister, K.; Smith-Collins, A.; Gillet, H.; Hamilton, L.; Davis, J. Serial C-Reactive Protein Measurements in Newborn Infants without Evidence of Early-Onset Infection. Neonatology 2019, 116, 85–91. [Google Scholar] [CrossRef]
- Benitz, W.E.; Han, M.Y.; Madan, A.; Ramachandra, P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 1998, 102, E41. [Google Scholar] [CrossRef] [Green Version]
- Pourcyrous, M.; Bada, H.S.; Korones, S.B.; Baselski, V.; Wong, S.P. Significance of serial C-reactive protein responses in neonatal infection and other disorders. Pediatrics 1993, 92, 431–435. [Google Scholar] [CrossRef]
- Hotoura, E.; Giapros, V.; Kostoula, A.; Spirou, P.; Andronikou, S. Tracking changes of lymphocyte subsets and pre-inflammatory mediators in full-term neonates with suspected or documented infection. Scand. J. Immunol. 2011, 73, 250–255. [Google Scholar] [CrossRef]
- Perrone, S.; Lotti, F.; Longini, M.; Rossetti, A.; Bindi, I.; Bazzini, F.; Belvisi, E.; Sarnacchiaro, P.; Scapellato, C.; Buonocore, G. C reactive protein in healthy term newborns during the first 48 hours of life. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F163–F166. [Google Scholar] [CrossRef] [PubMed]
- Rallis, D.; Balomenou, F.; Kappatou, K.; Karantanou, K.; Tzoufi, M.; Giapros, V. C-reactive protein in infants with no evidence of early-onset sepsis. J. Matern.-Fetal Neonatal Med. 2022, 35, 5659–5664. [Google Scholar] [CrossRef] [PubMed]
- Mwesigye, P.; Rizwan, F.; Alassaf, N.; Khan, R. The Role and Validity of Diagnostic Biomarkers in Late-Onset Neonatal Sepsis. Cureus 2021, 13, e17065. [Google Scholar] [CrossRef]
- Eschborn, S.; Weitkamp, J.H. Procalcitonin versus C-reactive protein: Review of kinetics and performance for diagnosis of neonatal sepsis. J. Perinatol. 2019, 39, 893–903. [Google Scholar] [CrossRef]
- Cortese, F.; Scicchitano, P.; Gesualdo, M.; Filaninno, A.; De Giorgi, E.; Schettini, F.; Laforgia, N.; Ciccone, M.M. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatr. Neonatol. 2016, 57, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiss, N.; Schwabenbauer, K.; Randis, T.M.; Polin, R.A. What’s new in the management of neonatal early-onset sepsis? Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Molloy, E.J.; Wynn, J.L.; Bliss, J.; Koenig, J.M.; Keij, F.M.; McGovern, M.; Kuester, H.; Turner, M.A.; Giannoni, E.; Mazela, J.; et al. Correction: Neonatal sepsis: Need for consensus definition, collaboration and core outcomes. Pediatr. Res. 2021, 90, 232. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.V.E.; Meader, N.; Wright, K.; Cleminson, J.; McGuire, W. Assessment of C-Reactive Protein Diagnostic Test Accuracy for Late-Onset Infection in Newborn Infants: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 260–268. [Google Scholar] [CrossRef]
- Iroh Tam, P.Y.; Bendel, C.M. Diagnostics for neonatal sepsis: Current approaches and future directions. Pediatr. Res. 2017, 82, 574–583. [Google Scholar] [CrossRef]
- Flannery, D.D.; Puopolo, K.M. Neonatal Early-Onset Sepsis. Neoreviews 2022, 23, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.H.; Hanna, M.; Canpolat, F.E.; Mohan, P. Diagnosis of neonatal sepsis: The past, present and future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a neonatal-specific consensus definition for sepsis. Pediatr. Crit. Care Med. 2014, 15, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Bhat, V.; Bhandari, V. Does Neonatal Sepsis Independently Increase Neurodevelopmental Impairment? Children 2022, 9, 568. [Google Scholar] [CrossRef]
- Sewell, E.; Roberts, J.; Mukhopadhyay, S. Association of Infection in Neonates and Long-Term Neurodevelopmental Outcome. Clin. Perinatol. 2021, 48, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Strunk, T.; Inder, T.; Wang, X.; Burgner, D.; Mallard, C.; Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect. Dis. 2014, 14, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Rallis, D.; Karagianni, P.; Goutsiou, E.; Soubasi-Griva, V.; Banerjee, J.; Tsakalidis, C. The association of the cerebral oxygenation during neonatal sepsis with the Bayley-III Scale of Infant and Toddler Development index scores at 18–24 months of age. Early Hum. Dev. 2019, 136, 49–53. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of Neonates Born at >/=35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osvald, E.C.; Prentice, P. NICE clinical guideline: Antibiotics for the prevention and treatment of early-onset neonatal infection: Table 1. Arch. Dis. Child.-Educ. Pract. Ed. 2014, 99, 98–100. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of Neonates Born at </=34 6/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar]
- Dhudasia, M.B.; Mukhopadhyay, S.; Puopolo, K.M. Implementation of the Sepsis Risk Calculator at an Academic Birth Hospital. Hosp. Pediatr. 2018, 8, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzniewicz, M.W.; Walsh, E.M.; Li, S.; Fischer, A.; Escobar, G.J. Development and Implementation of an Early-Onset Sepsis Calculator to Guide Antibiotic Management in Late Preterm and Term Neonates. Jt. Comm. J. Qual. Patient Saf. 2016, 42, 232–239. [Google Scholar] [CrossRef]
- Rallis, D.; Balomenou, F.; Karantanou, K.; Kappatou, K.; Tzoufi, M.; Giapros, V. A comparison between risk-factor guidance for neonatal early-onset sepsis and Kaiser Permanente sepsis risk calculator in a Greek cohort. Early Hum. Dev. 2021, 155, 105331. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Shrestha, S.; Smith, R.; Mehta, A.; Ketty, M.; Muxworthy, H.; Abelian, A.; Kirupaalar, V.; Saeed, S.; Jain, S.; et al. Screening for early onset neonatal sepsis: NICE guidance-based practice versus projected application of the Kaiser Permanente sepsis risk calculator in the UK population. Arch. Dis. Child.-Fetal Neonatal Ed. 2020, 105, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Money, N.; Newman, J.; Demissie, S.; Roth, P.; Blau, J. Anti-microbial stewardship: Antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J. Perinatol. 2017, 37, 1304–1309. [Google Scholar] [CrossRef]
- Kuzniewicz, M.W.; Puopolo, K.M.; Fischer, A.; Walsh, E.M.; Li, S.; Newman, T.B.; Kipnis, P.; Escobar, G.J. A Quantitative, Risk-Based Approach to the Management of Neonatal Early-Onset Sepsis. JAMA Pediatr. 2017, 171, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Puopolo, K.M.; Wi, S.; Turk, B.J.; Kuzniewicz, M.W.; Walsh, E.M.; Newman, T.B.; Zupancic, J.; Lieberman, E.; Draper, D. Stratification of risk of early-onset sepsis in newborns >/= 34 weeks’ gestation. Pediatrics 2014, 133, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child.-Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef] [Green Version]
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J.; Hand, I.; Adams-Chapman, I.; Poindexter, B.; Stewart, D.L.; Aucott, S.W.; Goldsmith, J.P.; Mowitz, M.; et al. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019, 144, e20191881. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S. Neonatal Bacterial Meningitis. NeoReviews 2015, 16, e535–e543. [Google Scholar] [CrossRef]
- Paul, S.P.; Khattak, H.; Kini, P.K.; Heaton, P.A.; Goel, N. NICE guideline review: Neonatal infection: Antibiotics for prevention and treatment (NG195). Arch. Dis. Child.-Educ. Pract. Ed. 2022, 107, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, P.C.; Sutich, R.M.; Easton, R.; Adejumo, O.A.; Lee, T.A.; Logan, L.K. Ceftriaxone-Associated Biliary and Cardiopulmonary Adverse Events in Neonates: A Systematic Review of the Literature. Paediatr. Drugs 2017, 19, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Cotten, C.M.; Taylor, S.; Stoll, B.; Goldberg, R.N.; Hansen, N.I.; Sánchez, P.J.; Ambalavanan, N.; Benjamin, D.K., Jr. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009, 123, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, R.G.; Chowdhury, D.; Hansen, N.I.; Smith, P.B.; Stoll, B.J.; Sánchez, P.J.; Das, A.; Puopolo, K.M.; Mukhopadhyay, S.; Higgins, R.D.; et al. Prolonged duration of early antibiotic therapy in extremely premature infants. Pediatr. Res. 2019, 85, 994–1000. [Google Scholar] [CrossRef]
- Kopsidas, I.; Tsopela, G.-C.; Molocha, N.-M.; Bouza, E.; Chorafa, E.; Chorianopoulou, E.; Giapros, V.; Gkentzi, D.; Gkouvas, T.; Kapetanaki, A.; et al. Reducing Duration of Antibiotic Use for Presumed Neonatal Early-Onset Sepsis in Greek NICUs. A “Low-Hanging Fruit” Approach. Antibiotics 2021, 10, 275. [Google Scholar] [CrossRef]
- Folgori, L.; Ellis, S.J.; Bielicki, J.A.; Heath, P.T.; Sharland, M.; Balasegaram, M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health 2017, 5, e1066–e1068. [Google Scholar] [CrossRef] [Green Version]
- Folgori, L.; Bielicki, J.; Heath, P.T.; Sharland, M. Antimicrobial-resistant Gram-negative infections in neonates: Burden of disease and challenges in treatment. Curr. Opin. Infect. Dis. 2017, 30, 281–288. [Google Scholar] [CrossRef]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.; Dunachie, S.; Farzana, R.; et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect. Dis. 2021, 21, 1677–1688. [Google Scholar] [CrossRef]
- Williams, P.; Qazi, S.; Agarwal, R.; Velaphi, S.; Bielicki, J.; Nambiar, S.; Giaquinto, C.; Bradley, J.; Noel, G.; Ellis, S.; et al. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull. World Health Organ. 2022, 100, 797–807. [Google Scholar] [CrossRef]
- Nakwan, N.; Chokephaibulkit, K.; Imberti, R. The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr. Infect. Dis. J. 2019, 38, 1107–1112. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Rottingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 2017, 12, Doc05. [Google Scholar] [PubMed]
- Solomon, S.; Akeju, O.; Odumade, O.A.; Ambachew, R.; Gebreyohannes, Z.; Van Wickle, K.; Abayneh, M.; Metaferia, G.; Carvalho, M.J.; Thomson, K.; et al. Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS ONE 2021, 16, e0255410. [Google Scholar] [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Chakkarapani, A.A.; Russell, A.B. Antibiotic stewardship in the neonatal intensive care unit. Paediatr. Child Health 2019, 29, 269–273. [Google Scholar] [CrossRef]
- Ferreira, R.L.; da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; da Silva, E.M.L.; Freire, C.C.M.; da Cunha, A.F.; et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and beta-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front Microbiol. 2018, 9, 3198. [Google Scholar] [CrossRef] [Green Version]
- Lukac, P.J.; Bonomo, R.A.; Logan, L.K. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in children: Old foe, emerging threat. Clin. Infect. Dis. 2015, 60, 1389–1397. [Google Scholar]
- Zhan, Q.; Xu, Y.; Wang, B.; Yu, J.; Shen, X.; Liu, L.; Cao, X.; Guo, Y.; Yu, F. Distribution of fluoroquinolone resistance determinants in Carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in China. BMC Microbiol. 2021, 21, 164. [Google Scholar] [CrossRef]
- Stapleton, P.J.; Murphy, M.; McCallion, N.; Brennan, M.; Cunney, R.; Drew, R.J. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: A systematic review. Arch. Dis. Child.-Fetal Neonatal Ed. 2016, 101, F72–F78. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Nordmann, P. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl. Acad. Sci. USA 1994, 91, 7693–7697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duin, D.; Arias, C.A.; Komarow, L.; Chen, L.; Hanson, B.M.; Weston, G.; Cober, E.; Garner, O.B.; Jacob, J.T.; Satlin, M.J.; et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): A prospective cohort study. Lancet Infect. Dis. 2020, 20, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Jing, N.; Yan, W.; Zhang, Q.; Yuan, Y.; Wei, X.; Zhao, W.; Guo, S.; Guo, L.; Gao, Y.; Zhao, L.; et al. Epidemiology and genotypic characteristics of carbapenem resistant Enterobacterales in Henan, China: A multicentre study. J. Glob. Antimicrob. Resist. 2022, 29, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, Y.; Hsia, Y.; Sharland, M.; Heath, P.T. Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 36. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Zhu, Y.; Jia, P.; Li, X.; Jia, X.; Yu, W.; Cui, Y.; Yang, R.; Xia, W.; et al. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg. Microbes Infect. 2022, 11, 648–661. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [Green Version]
- Narimisa, N.; Goodarzi, F.; Bavari, S. Prevalence of colistin resistance of Klebsiella pneumoniae isolates in Iran: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 29. [Google Scholar] [CrossRef]
- Aris, P.; Robatjazi, S.; Nikkhahi, F.; Amin Marashi, S.M. Molecular mechanisms and prevalence of colistin resistance of Klebsiella pneumoniae in the Middle East region: A review over the last 5 years. J. Glob. Antimicrob. Resist. 2020, 22, 625–630. [Google Scholar] [CrossRef]
- Deris, Z.Z.; Yu, H.H.; Davis, K.; Soon, R.L.; Jacob, J.; Ku, C.K.; Poudyal, A.; Bergen, P.J.; Tsuji, B.T.; Bulitta, J.B.; et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 2012, 56, 5103–5112. [Google Scholar] [CrossRef] [Green Version]
- Tzialla, C.; Borghesi, A.; Serra, G.; Stronati, M.; Corsello, G. Antimicrobial therapy in neonatal intensive care unit. Ital. J. Pediatr. 2015, 41, 27. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.; Fantl, M.; Geriak, M.; Nizet, V.; Sakoulas, G. Current Paradigms of Combination Therapy in Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: Does it Work, Which Combination, and For Which Patients? Clin. Infect. Dis. 2021, 73, 2353–2360. [Google Scholar] [CrossRef]
- Bazan, J.A.; Martin, S.I.; Kaye, K.M. Newer beta-lactam antibiotics: Doripenem, ceftobiprole, ceftaroline, and cefepime. Med. Clin. N. Am. 2011, 95, 743–760. [Google Scholar] [CrossRef]
- Stryjewski, M.E.; Barriere, S.L.; O’Riordan, W.; Dunbar, L.M.; Hopkins, A.; Genter, F.C.; Corey, G.R. Efficacy of telavancin in patients with specific types of complicated skin and skin structure infections. J. Antimicrob. Chemother. 2012, 67, 1496–1502. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Stone, G.G.; Chan, P.L.S.; Raber, S.R.; Riccobene, T.; Mas Casullo, V.; Yan, J.L.; Hendrick, V.M.; Hammond, J.; Leister-Tebbe, H.K. Phase 2 Study of the Safety, Pharmacokinetics and Efficacy of Ceftaroline Fosamil in Neonates and Very Young Infants With Late-onset Sepsis. Pediatr. Infect. Dis. J. 2020, 39, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Rubino, C.M.; Polak, M.; Schropf, S.; Munch, H.G.; Smits, A.; Cossey, V.; Tomasik, T.; Kwinta, P.; Snariene, R.; Liubsys, A.; et al. Pharmacokinetics and Safety of Ceftobiprole in Pediatric Patients. Pediatr. Infect. Dis. J. 2021, 40, 997–1003. [Google Scholar] [CrossRef]
- Carrothers, T.J.; Lagraauw, H.M.; Lindbom, L.; Riccobene, T.A. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Target Attainment Analyses for Dalbavancin in Pediatric Patients. Pediatr. Infect. Dis. J. 2023, 42, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Yu, K.C.; Pogue, J.M.; Watts, J.A.; Clancy, C.J. A Multicenter Comparison of Carbapenem-Nonsusceptible Enterobacterales and Pseudomonas aeruginosa Rates in the US (2016 to 2020): Facility-Reported Rates versus Rates Based on Updated Clinical Laboratory and Standards Institute Breakpoints. Microbiol. Spectr. 2022, 10, e0115822. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.W.; Ubhi, H.; Milner, P. Antimicrobial treatment of serious gram-negative infections in newborns. Curr. Infect. Dis. Rep. 2014, 16, 400. [Google Scholar] [CrossRef]
- Ah, Y.M.; Kim, A.J.; Lee, J.Y. Colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents. 2014, 44, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336. [Google Scholar] [CrossRef]
- Knafl, D.; Winhofer, Y.; Lotsch, F.; Weisshaar, S.; Steininger, C.; Burgmann, H.; Thalhammer, F. Tigecycline as last resort in severe refractory Clostridium difficile infection: A case report. J. Hosp. Infect. 2016, 92, 296–298. [Google Scholar] [CrossRef]
- Walker, S.; Datta, A.; Massoumi, R.L.; Gross, E.R.; Uhing, M.; Arca, M.J. Antibiotic stewardship in the newborn surgical patient: A quality improvement project in the neonatal intensive care unit. Surgery 2017, 162, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Rajar, P.; Saugstad, O.D.; Berild, D.; Dutta, A.; Greisen, G.; Lausten-Thomsen, U.; Mande, S.S.; Nangia, S.; Petersen, F.C.; Dahle, U.R.; et al. Antibiotic Stewardship in Premature Infants: A Systematic Review. Neonatology 2020, 117, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Ramasethu, J.; Kawakita, T. Antibiotic stewardship in perinatal and neonatal care. Semin. Fetal Neonatal Med. 2017, 22, 278–283. [Google Scholar] [CrossRef]
- Patel, S.J.; Saiman, L. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit. Semin. Perinatol. 2012, 36, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Gathwala, G.; Sindwani, A.; Singh, J.; Choudhry, O.; Chaudhary, U. Ten days vs. 14 days antibiotic therapy in culture-proven neonatal sepsis. J. Trop. Pediatr. 2010, 56, 433–435. [Google Scholar] [CrossRef]
- Rohatgi, S.; Dewan, P.; Faridi, M.M.A.; Kumar, A.; Malhotra, R.K.; Batra, P. Seven versus 10 days antibiotic therapy for culture-proven neonatal sepsis: A randomised controlled trial. J. Paediatr. Child Health 2017, 53, 556–562. [Google Scholar] [CrossRef]
- Chowdhary, G.; Dutta, S.; Narang, A. Randomized controlled trial of 7-Day vs. 14-Day antibiotics for neonatal sepsis. J. Trop. Pediatr. 2006, 52, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Nangia, S.; Jajoo, M.; Gathwala, G.; Nesargi, S.; Sundaram, M.; Kumar, P.; Saili, A.; Kumar, D.; Dalal, P.; et al. Comparison of efficacy of a 7-day versus a 14-day course of intravenous antibiotics in the treatment of uncomplicated neonatal bacterial sepsis: Study protocol of a randomized controlled non-inferiority trial. Trials 2021, 22, 859. [Google Scholar] [CrossRef] [PubMed]
- Keij, F.M.; Kornelisse, R.F.; Hartwig, N.G.; van der Sluijs-Bens, J.; van Beek, R.H.T.; van Driel, A.; van Rooij, L.G.M.; van Dalen-Vink, I.; Driessen, G.J.A.; Kenter, S.; et al. Efficacy and safety of switching from intravenous to oral antibiotics (amoxicillin-clavulanic acid) versus a full course of intravenous antibiotics in neonates with probable bacterial infection (RAIN): A multicentre, randomised, open-label, non-inferiority trial. Lancet Child Adolesc. Health 2022, 6, 799–809. [Google Scholar] [PubMed]
Pathogen | Agent | Duration of Treatment |
---|---|---|
Group B Streptococcus | Ampicillin and gentamicin | Bacteremia 10 days Meningitis 14 days Septic arthritis/osteomyelitis 3–4 weeks Endocarditis at least 4 weeks |
Escherichia coli, other gram-negative bacilli (Citrobacter spp., Enterobacter spp. and Serratia spp.) | Ampicillin and gentamicin or Cefotaxime and gentamicin | Bacteremia 14 days Meningitis 21 days |
Listeria monocytogenes | Ampicillin and gentamicin | Bacteremia 10–14 days Meningitis 14–21 days |
Coagulase negative Staphylococcus | Vancomycin or teicoplanin | Bacteremia 10 days |
Staphylococcus aureus | Nafcillin or oxacillin | Bacteremia 10 days |
Agent | Pathogen | Notes |
---|---|---|
Vancomycin | CoNS/oxacillin-resistant Staphylococcus aureus | |
Teicoplanin | CoNS/oxacillin-resistant Staphylococcus aureus | |
Linezolid | CoNS/oxacillin-resistant Staphylococcus aureus | Unresponsive Gram infections |
Daptomycin | CoNS/oxacillin-resistant Staphylococcus aureus | Persistent staphylococcal bacteremia |
Ceftaroline | MDR staphylococci | |
Ceftobiprole | MDR staphylococci | |
Oritavancin/dalbavancin/telavancin | MDR Gram-positive bacteria | |
Piperacillin/tazobactam | Most ESBL enterobacteriaceae | Poor cerebrospinal fluid penetration |
Meropenem | ESBL enterobacteriaceae | Monotherapy recommended |
Doripenem | ESBL enterobacteriaceae | Great activity against Pseudomonas aeruginosa |
Ciprofloxacin | ESBL enterobacteriaceae | |
Colistin | CRE | |
Fosfomycin | CRE, EDR gram negative bacteria | Should not be used as monotherapy |
Tigecycline | CRE, MDR Gram-positive, MDR Gram-negative | Inactive against Pseudomonas aeruginosa |
Aztreonam/avibactam | CRE | Limited data in neonates |
Carbavance (vaborbactam/meropenem) | CRE | Limited data in neonates |
Plazomicin | CRE | Limited data in neonates |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rallis, D.; Giapros, V.; Serbis, A.; Kosmeri, C.; Baltogianni, M. Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics 2023, 12, 508. https://doi.org/10.3390/antibiotics12030508
Rallis D, Giapros V, Serbis A, Kosmeri C, Baltogianni M. Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics. 2023; 12(3):508. https://doi.org/10.3390/antibiotics12030508
Chicago/Turabian StyleRallis, Dimitrios, Vasileios Giapros, Anastasios Serbis, Chrysoula Kosmeri, and Maria Baltogianni. 2023. "Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis" Antibiotics 12, no. 3: 508. https://doi.org/10.3390/antibiotics12030508
APA StyleRallis, D., Giapros, V., Serbis, A., Kosmeri, C., & Baltogianni, M. (2023). Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics, 12(3), 508. https://doi.org/10.3390/antibiotics12030508