Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Production of the Extract of V. polyanthes
2.2. Total Phenolic and Flavonoid Content Determinations
2.3. Evaluation of the Chemical Composition of Vp-LRE by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-MS-QTOF) Analysis
2.4. Isolation and Identification of Glaucolide A
2.5. HPLC-DAD Analysis of Vp-LRE and Glaucolide A
2.6. In Vitro Cell Viability/Cytotoxicity Assay
2.7. In Vitro Antibacterial Activity Assessment
2.8. Molecular Docking Interactions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Plant Extract
4.3. Total Phenolic Content Determination
4.4. Total Flavonoid Content Determination
4.5. Chemical Composition of Vp-LRE by Ultra-High Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/Q-TOF-MS) Analysis
4.6. Isolation and Purification of Glaucolide A from Vp-LRE
4.7. HPLC-DAD Analysis of Vp-LRE and Glaucolide A
4.8. In Vitro Cell Viability/Cytotoxicity Assay
4.8.1. Cell Line and Cell Culture Conditions
4.8.2. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium Bromide (MTT) Assay
4.9. In Vitro Antibacterial Activity Assessment
4.9.1. Bacterial Strains
4.9.2. Minimal Inhibitory Concentration (MIC) Determination
4.9.3. Minimal Bactericidal Concentration (MBC) and Bactericidal or Bacteriostatic Effect Determinations
4.10. Molecular Docking
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2015, 387, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2017, 18, 318–327. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Taylor, P.W. Alternative natural sources for a new generation of antibacterial agents. Int. J. Antimicrob. Agents 2013, 42, 195–201. [Google Scholar] [CrossRef]
- Brown, D.G.; Lister, T.; May-Dracka, T.L. New natural products as new leads for antibacterial drug discovery. Bioorganic Med. Chem. Lett. 2014, 24, 413–418. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Kiplimo, J.J. A review on the biological activity and the triterpenoids from the genus Vernonia (Asteraceae Family). Int. Res. J. Pure Appl. Chem. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Alves, V.F.; Neves, L.J. Anatomia foliar de Vernonia polyanthes Less. (Asteraceae). Rev. Univ. Rural Sér. Ciên. Vida 2003, 22, 1–8. [Google Scholar]
- Oliveira, D.G.; Prince, K.A.; Higuchi, C.T.; Santos, A.C.B.; Lopes, L.M.X.; Simões, M.J.S.; Leite, C.Q.F. Antimycobacterial activity of some Brazilian indigenous medicinal drinks. Rev. Ciências Farm. Básicas Apl. 2007, 28, 165–169. [Google Scholar]
- da Silveira, R.R.; Foglio, M.A.; Gontijo, J.A.R. Effect of the crude extract of Vernonia polyanthes Less. on blood pressure and renal sodium excretion in unanesthetized rats. Phytomedicine 2003, 10, 127–131. [Google Scholar] [CrossRef]
- Braga, F.G.; Bouzada, M.L.M.; Fabri, R.L.; de O. Matos, M.; Moreira, F.O.; Scio, E.; Coimbra, E.S. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 2007, 111, 396–402. [Google Scholar] [CrossRef]
- Barbastefano, V.; Cola, M.; Luiz-Ferreira, A.; Farias-Silva, E.; Hiruma-Lima, C.A.; Rinaldo, D.; Vilegas, W.; Souza-Brito, A.R.M. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia 2007, 78, 545–551. [Google Scholar] [CrossRef]
- Temponi, V.d.S.; da Silva, J.B.; Alves, M.S.; Ribeiro, A.; de Pinho, J.d.J.R.G.; Yamamoto, C.H.; Pinto, M.A.O.; Del-Vechio-Vieira, G.; de Sousa, O.V. Antinociceptive and anti-inflammatory effects of ethanol extract from Vernonia polyanthes leaves in rodents. Int. J. Mol. Sci. 2012, 13, 3887–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, C.C.; Machado, K.N.; Ferreira, P.M.P.; Pessoa, C.; Fonseca, T.H.S.; Gomes, M.A.; do Nascimento, A.M. Biological screening of extracts of Brazilian Asteraceae plants. Afr. J. Pharm. Pharmacol. 2013, 7, 2000–2005. [Google Scholar] [CrossRef]
- Rodrigues, K.C.M.; Chibli, L.A.; Santos, B.C.S.; Temponi, V.S.; Pinto, N.C.C.; Scio, E.; Del-Vechio-Vieira, G.; Alves, M.S.; Sousa, O.V. Evidence of bioactive compounds from Vernonia polyanthes leaves with topical anti-inflammatory potential. Int. J. Mol. Sci. 2016, 17, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgetto, G.V.; Fabiano, M.; Boriolo, G.; Silva, L.M.; Nogueira, D.A.; Donizete, T.; Ribeiro, G.E. Analysis on the in vitro antimicrobial activity and in vivo mutagenicity by using extract from Vernonia polyanthes Less (Assa-peixe). Rev. Inst. Adolfo Lutz 2011, 70, 53–61. [Google Scholar]
- Silva, N.C.C.; Barbosa, L.; Seito, L.N.; Junior, A.F. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat. Prod. Res. Former. Nat. Prod. Lett. 2012, 26, 1510–1514. [Google Scholar] [CrossRef]
- Waltrich, K.K.; Hoscheid, J.; Prochnaus, I.S. Antimicrobial activity of crude extracts and fractions of Vernonia polyanthes Less (assa-peixe) flowers. Rev. Bras. Plantas Med. 2015, 17, 909–914. [Google Scholar] [CrossRef]
- Appezzato-da-Glória, B.; Batista, F.; Costa, D.; Cristina, V.; Gobbo-Neto, L.; Lucia, V.; Rehder, G.; Hissae, A. Glandular trichomes on aerial and underground organs in Chrysolaena species (Vernonieae–Asteraceae): Structure, ultrastructure and chemical composition. Flora 2012, 207, 878–887. [Google Scholar] [CrossRef]
- Igual, M.O.; Elvira, M.; Martucci, P.; Batista, F.; Costa, D.; Gobbo-Neto, L. Sesquiterpene lactones, chlorogenic acids and flavonoids from leaves of Vernonia polyanthes Less (Asteraceae). Biochem. Syst Ecol. 2013, 51, 94–97. [Google Scholar] [CrossRef]
- Tissier, A. Glandular trichomes: What comes after expressed sequence tags? Plant J. 2012, 70, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Padolina, W.G.; Yoshioka, H.; Nakatani, N.; Mabry, T.J.; Monti, S.A.; Davis, R.E.; Cox, P.J.; Sim, G.A.; Watson, W.H.; Wu, I.B. Glaucolide-A and -B, new germacranolide-type sesquiterpene from Vernonia (Compositae). Tetrahedron 1974, 30, 1161–1170. [Google Scholar] [CrossRef]
- Bardón, A.; Catalán, C.A.N.; Gutiérrez, A.B.; Herz, W. Glaucolides and related sesquiterpene lactones from Vernonia incana. Phytochemistry 1990, 29, 313–315. [Google Scholar] [CrossRef]
- Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; CLSI document M100-S24; CLSI: Wayne, PA, USA, 2014; ISBN 1562388975. [Google Scholar]
- Rocha, J.M.; Gallon, M.E.; de Melo Bisneto, A.V.; Santana Amaral, V.C.; de Almeida, L.M.; Borges, L.L.; Chen-Chen, L.; Gobbo-Neto, L.; Bailão, E.F.L.C. Phytochemical composition and protective effect of Vernonanthura polyanthes leaf against in vivo doxorubicin-mediated toxicity. Molecules 2022, 27, 2553. [Google Scholar] [CrossRef] [PubMed]
- Bohlmann, F.; Jakupovic, J.; Gupta, R.K.; King, R.M.; Robinson, H. Allenic germacranolides, bourbonene derived lactones and other constituents from Vernonia species. Phytochemistry 1981, 20, 473–480. [Google Scholar] [CrossRef]
- Martucci, M.E.P.; de Vos, R.C.H.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PLoS ONE 2014, 9, e93148. [Google Scholar] [CrossRef] [Green Version]
- Toyang, N.J.; Verpoorte, R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethnopharmacol. 2013, 146, 681–723. [Google Scholar] [CrossRef]
- Lopes, J.L.C. Sesquiterpene lactones from Vernonia. Mem. Inst. Oswaldo Cruz 1991, 86, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Igile, G.O.; Oleszek, W.; Jurzysta, M.; Burda, S.; Fafunso, M.; Fasanmade, A.A. Flavonoids from Vernonia amygdalina and their antioxidant activities. J. Agric. Food Chem. 1994, 42, 2445–2448. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Further hirsutinolides from Vernonia polyanthes. Phytochemistry 1983, 22, 2863–2864. [Google Scholar] [CrossRef]
- da Costa, T.M.; Morgado, P.G.M.; Cavalcante, F.S.; Damasco, A.P.; Nouér, S.A.; dos Santos, K.R.N. Clinical and microbiological characteristics of heteroresistant and vancomycin-intermediate Staphylococcus aureus from bloodstream infections in a Brazilian teaching hospital. PLoS ONE 2016, 11, e0160506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Picman, A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14, 255–281. [Google Scholar] [CrossRef]
- Rabe, T.; Mullholland, D.; Van Staden, J. Isolation and identification of antibacterial compounds from Vernonia colorata leaves. J. Ethnopharmacol. 2002, 80, 91–94. [Google Scholar] [CrossRef]
- Erasto, P.; Grierson, D.S.; Afolayan, A.J. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 2006, 106, 117–120. [Google Scholar] [CrossRef]
- Williams, R.B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J.S.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Cytotoxic sesquiterpene lactones from Vernonia pachyclada from the Madagascar rainforest. J. Nat. Prod. 2005, 68, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.B.; Temponi, V.D.S.; Gasparetto, C.M.; Fabri, R.L.; Aragão, D.M.D.O.; Pinto, N.D.C.C.; Ribeiro, A.; Scio, E.; Del-Vechio-Vieira, G.; de Sousa, O.V.; et al. Vernonia condensata Baker (Asteraceae): A promising source of antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 698018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safdari, H.; Neshani, A.; Sadeghian, A.; Ebrahimi, M.; Iranshahi, M.; Sadeghian, H. Potent and selective inhibitors of class A β-lactamase: 7-prenyloxy coumarins. J. Antibiot. 2014, 67, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrinho, T.J.D.S.P.; da Silva, C.H.T.P.; do Nascimento, J.E.; Monteiro, J.M.; de Albuquerque, U.P.; de Amorim, E.L.C. Validação de metodologia espectrofotométrica para quantificação dos flavonóides de Bauhinia cheilantha (Bongard) Steudel. Ver. Bras. Cienc. Farm. 2008, 44, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Riss, T.L. Cell viability assays. In Assay Guidance Manual; Sittampalam, G.S., Markossian, S., Grossman, A., Brimacombe, K., Arkin, K., Auld, D., Austin, C., Baell, J., Chung, T.D.Y., Coussens, N.P., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2016; p. 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition, 9th ed.; CLSI document M07-A9; CLSI: Wayne, PA, USA, 2012; Volume 32, ISBN 1562387839. [Google Scholar]
- Fabry, W.; Okemo, P.O.; Ansorg, R. Antibacterial activity of East African medicinal plants. J. Ethnopharmacol. 1998, 60, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.E.; Cenzi, G.; Nunes, R.R.; Andrighetti, C.R.; Valadão, D.M.S.; Reis, C.; Simões, C.M.O.; Nunes, R.J.; Comar Júnior, M.; Taranto, A.G.; et al. Antimalarial activity of 4-metoxychalcones: Docking studies as falcipain/plasmepsin inhibitors, admet and lipophilic efficiency analysis to identify a putative oral lead candidate. Molecules 2013, 18, 15276–15287. [Google Scholar] [CrossRef]
Peak | Proposed Compound | Rt * (min) | m/z ** [M − H]− | Main Fragments | Molecular Formula | Score | Error (ppm) |
---|---|---|---|---|---|---|---|
1 | Isorhamnetin a | 5.10 | 315.0508 | 299.0956, 197.8085 | C16H12O7 | 99.30 | 1.0 |
2 | Apigenin a,b | 5.35 | 269.0453 | 197.8080, 162.8410, 116.9287 | C15H10O5 | 100.00 | 1.1 |
3 | Chrysoeriol | 5.52 | 299.0562 | 284.0324, 256.0370, 215.1287 | C16H12O6 | 99.64 | 1.3 |
4 | Isorhamnetin isomer | 5.61 | 315.0497 | 313.1101, 300.0261, 197.8059 | C16H12O7 | 99.94 | −2.5 |
5 | 3,7-dimethoxy-5,3′,4′-trihydroxyflavone a | 5.89 | 329.0670 | 314.0431, 299.0193, 197.8086 | C17H13O7 | 99.80 | 2.7 |
6 | Kaempferide | 6.29 | 299.0549 | 284.0324, 197.8066, 116.9282 | C16H12O6 | 99.96 | −2.3 |
7 | Piptocarphin A a | 6.44 | 457.1261 [M + Cl]− | 441.1403, 327.1259, 197.8077, 117.9282 | C21H26O9 | 99.52 | −0.9 |
8 | Acacetin | 6.97 | 283.0622 | 268.0374, 239.0346, 197.8082 | C16H12O5 | 99.96 | 8.1 |
9 | 3′,4′-dimethoxyluteolin a | 7.12 | 313.0724 | 298.0485, 255.0300, 197.8088 | C17H14O6 | 98.26 | 3.8 |
10 | Glaucolide A a,b | 7.37 | 499.1384 [M + Cl]− | 463.1617, 403.1399, 355.1585, 275.0925, 197.8084 | C23H28O10 | 99.76 | 2.6 |
Bacterial Strain | MIC (µg/mL) | |||
---|---|---|---|---|
Vp-LRE | Glaucolide A | AMP * | CHL * | |
S. aureus (ATCC 6538) | 625 | 250 | <4 | 8 |
S. aureus (ATCC 29213) | 625 | 500 | <4 a | 16 b |
E. coli (ATCC 10536) | 5000 | >500 | <4 | <4 |
E. coli (ATCC 25922) | >5000 | >500 | <4 d | <4 d |
S. Choleraesuis (ATCC 10708) | 5000 | >500 | <4 | <4 |
S. Typhimurium (ATCC 13311) | 5000 | >500 | <4 | <4 |
P. aeruginosa (ATCC 9027) | >5000 | >500 | >500 c | 64 c |
P. aeruginosa (ATCC 27853) | >5000 | >500 | 500 c | 64 c |
Bacterial Strain | MIC (µg/mL) | |||
---|---|---|---|---|
Vp-LRE | Glaucolide A | AMP * | CHL * | |
MRSA 1485279 | 312 | >500 | 250 | 64 |
MRSA 1605677 | 156 | >500 | 250 | <4 |
MRSA 1664534 | 1250 | >500 | 16 | <4 |
MRSA 1688441 | 2500 | >500 | 250 | <4 |
MRSA 1830466 | 1250 | >500 | 64 | 4 |
Salmonella spp. 1266695 | >5000 | >500 | <4 | <4 |
S. Enteritidis 1406591 | >5000 | >500 | <4 | <4 |
S. Enteritidis 1418594 | >5000 | >500 | <4 | <4 |
S. Enteritidis 1428260 | >5000 | >500 | <4 | <4 |
Salmonella spp. 1507708 | >5000 | >500 | 500 | <4 |
Ligands | Free Energy (kcal/mol) |
---|---|
Clavulanic acid | −6.6 |
Glaucolide A | −6.2 |
3′,4′-Dimethoxyluteolin | −7.1 |
Acacetin | −7.4 |
Apigenin | −7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gitirana de Santana, J.D.; Santos-Mayorga, O.A.; Florencio, J.R.; Oliveira, M.C.C.d.; Almeida, L.M.S.d.; Xavier, J.O.d.L.; Zimmermann-Franco, D.C.; Macedo, G.C.; Ferreira, A.L.P.; Sousa, O.V.d.; et al. Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus. Antibiotics 2023, 12, 622. https://doi.org/10.3390/antibiotics12030622
Gitirana de Santana JD, Santos-Mayorga OA, Florencio JR, Oliveira MCCd, Almeida LMSd, Xavier JOdL, Zimmermann-Franco DC, Macedo GC, Ferreira ALP, Sousa OVd, et al. Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus. Antibiotics. 2023; 12(3):622. https://doi.org/10.3390/antibiotics12030622
Chicago/Turabian StyleGitirana de Santana, Jordana Damasceno, Oscar Alejandro Santos-Mayorga, Jônatas Rodrigues Florencio, Mirella Chrispim Cerqueira de Oliveira, Luísa Maria Silveira de Almeida, Julianna Oliveira de Lucas Xavier, Danielle Cristina Zimmermann-Franco, Gilson Costa Macedo, Adriana Lúcia Pires Ferreira, Orlando Vieira de Sousa, and et al. 2023. "Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus" Antibiotics 12, no. 3: 622. https://doi.org/10.3390/antibiotics12030622
APA StyleGitirana de Santana, J. D., Santos-Mayorga, O. A., Florencio, J. R., Oliveira, M. C. C. d., Almeida, L. M. S. d., Xavier, J. O. d. L., Zimmermann-Franco, D. C., Macedo, G. C., Ferreira, A. L. P., Sousa, O. V. d., da Silva Filho, A. A., & Alves, M. S. (2023). Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus. Antibiotics, 12(3), 622. https://doi.org/10.3390/antibiotics12030622