Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection
Abstract
:1. Introduction
2. Results
2.1. Patient Cohort
2.2. Microbiological Results at Index and Recurrence Surgery
2.3. Use of Local Antibiotics and Antimicrobial Resistance
3. Discussion
4. Materials and Methods
- Clinical: operative finding of pus at the site of bone or prosthesis OR finding of sinus tract going to prosthesis/bone
- Microbiological: two or more deep tissue samples with indistinguishable microorganisms (same species, or genus if not identified to species level, with no differences in reported antimicrobial susceptibilities). Tissue specimens must be harvested in theatre with separate sterile instruments.
- Histological: characteristic inflammatory infiltrate or microorganisms seen
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Hotchen, A.J.; Wismayer, M.G.; Robertson-Waters, E.; McDonnell, S.M.; Kendrick, B.; Taylor, A.; Alvand, A.; McNally, M. The Joint-Specific BACH classification: A predictor of outcome in prosthetic joint infection. Eclinicalmedicine 2021, 42, 101192. [Google Scholar] [CrossRef]
- Masters, E.A.; Ricciardi, B.F.; Bentley, K.L.M.; Moriarty, T.F.; Schwarz, E.M.; Muthukrishnan, G. Skeletal infections: Microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 2022, 20, 385–400. [Google Scholar] [CrossRef]
- Casenaz, A.; Piroth, L.; Labattut, L.; Sixt, T.; Magallon, A.; Guilloteau, A.; Neuwirth, C.; Amoureux, L. Epidemiology and antibiotic resistance of prosthetic joint infections according to time of occurrence, a 10-year study. J. Infect. 2022, 85, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, S.H.; Atkins, B.A.; Bejon, P.; Byren, I.; Wyllie, D.; Athanasou, N.A.; Berendt, A.R.; McNally, M.A. The microbiology of chronic osteomyelitis: Prevalence of resistance to common empirical anti-microbial regimens. J. Infect. 2010, 60, 338–343. [Google Scholar] [CrossRef]
- Dudareva, M.; Hotchen, A.J.; Ferguson, J.; Hodgson, S.; Scarborough, M.; Atkins, B.L.; McNally, M.A. The microbiology of chronic osteomyelitis: Changes over ten years. J. Infect. 2019, 79, 189–198. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Board, T.; Kay, P.; Wroblewski, B.M.; Zeller, V.; Chen, S.Y.; Hsieh, P.H.; Masri, B.A.; et al. Global Infection Orthopaedic Management Collaboration. One- and two-stage surgical revision of peri-prosthetic joint infection of the hip: A pooled individual participant data analysis of 44 cohort studies. Eur. J. Epidemiol. 2018, 33, 933–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunutsor, S.K.; Beswick, A.D.; Whitehouse, M.R.; Wylde, V.; Blom, A.W. Debridement, antibiotics and implant retention for periprosthetic joint infections: A systematic review and meta-analysis of treatment outcomes. J. Infect. 2018, 77, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Matar, H.E.; Bloch, B.V.; Snape, S.E.; James, P.J. Outcomes of single- and two-stage revision total knee arthroplasty for chronic periprosthetic joint infection: Long-term outcomes of changing clinical practice in a specialist centre. Bone Joint J. 2021, 103-B, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Fu, J.; Sun, D.; Shen, J.; Xie, Z. Risk factors associated with recurrence of extremity osteomyelitis treated with the induced membrane technique. Injury 2020, 51, 307–311. [Google Scholar] [CrossRef]
- Browning, S.; Manning, L.; Metcalf, S.; Paterson, D.L.; Robinson, J.O.; Clark, B.; Davis, J.S. Characteristics outcomes of culture-negative prosthetic joint infections from the Prosthetic Joint Infection in Australia New Zealand Observational (PIANO) cohort study. J. Bone Joint Infect. 2022, 7, 203–211. [Google Scholar] [CrossRef]
- Zmistowski, B.; Tetreault, M.W.; Alijanipour, P.; Chen, A.F.; Della Valle, C.J.; Parvizi, J. Recurrent periprosthetic joint infection: Persistent or new infection? J. Arthroplast. 2013, 28, 1486–1489. [Google Scholar] [CrossRef]
- Tuecking, L.R.; Silligmann, J.; Savov, P.; Omar, M.; Windhagen, H.; Ettinger, M. Detailed Revision Risk Analysis after Single- vs. Two-Stage Revision Total Knee Arthroplasty in Periprosthetic Joint Infection: A Retrospective Tertiary Center Analysis. Antibiotics 2021, 10, 1177. [Google Scholar] [CrossRef]
- Stockley, I.; Mockford, B.J.; Hoad-Reddick, A.; Norman, P. The use of two-stage exchange arthroplasty with depot antibiotics in the absence of long-term antibiotic therapy in infected total hip replacement. J. Bone Joint Surg. Br. 2008, 90, 145–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlin, R.P.; Brayford, M.J.; Webb, J.S.; Cooper, J.J.; Aiken, S.S.; Stoodley, P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob. Agents Chemother. 2015, 59, 111–120. [Google Scholar] [CrossRef] [Green Version]
- McNally, M.A.; Ferguson, J.Y.; Scarborough, M.; Ramsden, A.; Stubbs, D.A.; Atkins, B.L. Mid- to long-term results of single-stage surgery for patients with chronic osteomyelitis using a bioabsorbable gentamicin-loaded ceramic carrier. Bone Joint J. 2022, 104-B, 1095–1100. [Google Scholar] [CrossRef]
- Dudareva, M.; Kümin, M.; Vach, W.; Kaier, K.; Ferguson, J.; McNally, M.; Scarborough, M. Short or Long Antibiotic Regimes in Orthopaedics (SOLARIO): A randomised controlled open-label non-inferiority trial of duration of systemic antibiotics in adults with orthopaedic infection treated operatively with local antibiotic therapy. Trials 2019, 20, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, J.; Diefenbeck, M.; McNally, M. Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. J. Bone Jt. Infect. 2017, 2, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Metsemakers, W.J.; Fragomen, A.T.; Moriarty, T.F.; Morgenstern, M.; Egol, K.A.; Zalavras, C.; Obremskey, W.T.; Raschke, M.; McNally, M.A. Fracture-Related Infection (FRI) consensus group. Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection. J. Orthop. Trauma 2020, 34, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Wassif, R.K.; Elkayal, M.; Shamma, R.N.; Elkheshen, S.A. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv. 2021, 28, 2392–2414. [Google Scholar] [CrossRef]
- Zong, Z.; Huo, F.; Shi, J.; Jing, W.; Ma, Y.; Liang, Q.; Jiang, G.; Dai, G.; Huang, H.; Pang, Y. Relapse Versus Reinfection of Recurrent Tuberculosis Patients in a National Tuberculosis Specialized Hospital in Beijing, China. Front. Microbiol. 2018, 9, 1858. [Google Scholar] [CrossRef]
- Turck, M.; Ronald, A.R.; Petersdorf, R.G. Relapse and reinfection in chronic bacteriuria. II. The correlation between site of infection and pattern of recurrence in chronic bacteriuria. N. Engl. J. Med. 1968, 278, 422–427. [Google Scholar] [CrossRef]
- Figueroa, I.; Johnson, S.; Sambol, S.P.; Goldstein, E.J.; Citron, D.M.; Gerding, D.N. Relapse versus reinfection: Recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S104–S109. [Google Scholar] [CrossRef]
- Joo, H.S.; Otto, M. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem. Biol. 2012, 19, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.L.; Kheir, M.M.; Shohat, N.; Tan, D.D.; Kheir, M.; Chen, C.; Parvizi, J. Culture-Negative Periprosthetic Joint Infection: An Update on What to Expect. JBJS Open Access 2018, 3, e0060. [Google Scholar] [CrossRef]
- Street, T.L.; Sanderson, N.D.; Atkins, B.L.; Brent, A.J.; Cole, K.; Foster, D.; McNally, M.A.; Oakley, S.; Peto, L.; Taylor, A.; et al. Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing. J. Clin. Microbiol. 2017, 55, 2334–2347. [Google Scholar] [CrossRef] [Green Version]
- Bidossi, A.; Bottagisio, M.; Logoluso, N.; De Vecchi, E. In Vitro Evaluation of Gentamicin or Vancomycin Containing Bone Graft Substitute in the Prevention of Orthopedic Implant-Related Infections. Int. J. Mol. Sci. 2020, 21, 9250. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. Mutant selection window hypothesis updated. Clin. Infect. Dis. 2007, 44, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; Brown, D.F.; Apfalter, P.; Cantón, R.; Giske, C.G.; Ivanova, M.; MacGowan, A.P.; Rodloff, A.; Soussy, C.J.; Steinbakk, M.; et al. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: The EUCAST approach. Clin. Microbiol. Infect. 2012, 18, E37–E45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezstarosti, H.; Croughs, P.D.; van den Hurk, M.K.B.; Kortram, K.; Oprel, P.; Metsemakers, W.J.; van Lieshout, E.M.M.; Verhofstad1, M.H.J. Antimicrobial Effect of Cerament G on Bacterial Isolates, with Various Levels of Gentamicin Resistance, Found in Fracture-Related Infection: An In Vitro Study. eCM Online. Available online: https://www.ecmconferences.org/abstracts/2019/Collection5/posters.pdf (accessed on 24 October 2022).
- Atkins, B.L.; Athanasou, N.; Deeks, J.J.; Crook, D.W.; Simpson, H.; Peto, T.E.; McLardy-Smith, P.; Berendt, A.R. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J. Clin. Microbiol. 1998, 36, 2932–2939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, M.; Barrett, L.K.; Morgenstern, M.; Atkins, B.L.; Brent, A.J.; McNally, M.A. Providing an Evidence Base for Tissue Sampling and Culture Interpretation in Suspected Fracture-Related Infection. J. Bone Joint Surg. Am. 2021, 103, 977–983, Erratum in J. Bone Joint Surg. Am. 2021, 103, e62. [Google Scholar] [CrossRef]
- Gordon, N.C.; Pichon, B.; Golubchik, T.; Wilson, D.J.; Paul, J.; Blanc, D.S.; Cole, K.; Collins, J.; Cortes, N.; Cubbon, M.; et al. Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation. J. Clin. Microbiol. 2017, 55, 2188–2197. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Ferguson, J.Y.; Dudareva, M.; Riley, N.D.; Stubbs, D.; Atkins, B.L.; McNally, M.A. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: A series of 195 cases. Bone Joint J. 2014, 96-B, 829–836. [Google Scholar] [CrossRef]
- Dudareva, M.; Barrett, L.; Figtree, M.; Scarborough, M.; Watanabe, M.; Newnham, R.; Wallis, R.; Oakley, S.; Kendrick, B.; Stubbs, D.; et al. Sonication versus Tissue Sampling for Diagnosis of Prosthetic Joint and Other Orthopedic Device-Related Infections. J. Clin. Microbiol. 2018, 56, e00688-18. [Google Scholar] [CrossRef] [Green Version]
- Minassian, A.M.; Newnham, R.; Kalimeris, E.; Bejon, P.; Atkins, B.L.; Bowler, I.C. Use of an automated blood culture system (BD BACTEC™) for diagnosis of prosthetic joint infections: Easy and fast. BMC Infect. Dis. 2014, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, I.K.; McNally, M.A.; Luger, M.; Böhler, C.; Windhager, R.; Sulzbacher, I. Diagnostic accuracy of neutrophil counts in histopathological tissue analysis in periprosthetic joint infection using the ICM, IDSA, and EBJIS criteria. Bone Joint Res. 2021, 10, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, M.; Athanasou, N.A.; Ferguson, J.Y.; Metsemakers, W.J.; Atkins, B.L.; McNally, M.A. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J. 2018, 100-B, 966–972. [Google Scholar] [CrossRef] [PubMed]
With Local Antimicrobial Treatment n = 74 | Without Local Antimicrobial Treatment n = 51 | All n = 125 | |
---|---|---|---|
Age, years at surgery (Median, IQR) | 59.8 (46.9–70.5) | 69.8 (63.2–75.9) | 64 (61.2–72.6) |
Male (n (%)) Female (n (%)) | 46 (62.2) | 32 (62.7) | 78 (62.4) |
28 (37.8) | 19 (37.2) | 47 (37.6) | |
PJI (n (%)) FRI (n (%)) OM (n (%)) | 29 (39.2) | 47 (92.2) | 76 (60.8) |
28 (37.8) | 2 (3.9) | 30 (24.0) | |
17 (23.0) | 2 (3.9) | 19 (15.2) |
Organism/Group | First Operation | Second Operation |
---|---|---|
Staphylococcus aureus | 41 | 30 |
Staphylococcus epidermidis | 19 | 18 |
Staphylococcus lugdunensis | 4 | 2 |
Other CoNS 1 | 16 | 14 |
Enterobacterales 2 | 24 | 21 |
Enterococci | 19 | 8 |
Streptococci | 11 | 9 |
Pseudomonas sp. | 8 | 8 |
Diphtheroids 3 | 6 | 4 |
Anaerobic sp. | 4 | 5 |
Candida sp. | 1 | 3 |
No growth | 14 | 28 |
Organism/Group Found in Culture at First Operation | n | Same Organism/Group at Recurrence n (%) | Same Species and Similar Antibiogram 4 n (%) | Different Species at Recurrence n (%) | Culture Negative at Recurrence n (%) |
---|---|---|---|---|---|
Staphylococcus aureus | 41 | 19 (46.3) | 17 (41.5) | 14 (34.1) | 8 (19.5) |
Staphylococcus epidermidis | 19 | 8 (42.1) | 4 (21.1) | 4 (21.1) | 7 (36.8) |
Staphylococcus lugdunensis | 4 | 0 | 0 | 2 (50.0) | 2 (50.0) |
Other CoNS 1 | 16 | 8 (50.0) | 4 (25.0) | 5 (31.3) | 3 (18.8) |
Enterobacterales 2 | 24 | 10 (41.7) | 3 (12.5) | 10 (41.7) | 4 (16.7) |
Enterococci | 19 | 3 (15.8) | 1 (5.3) | 13 (68.4) | 3 (15.8) |
Streptococci | 11 | 1 (9.1) | 1 (9.1) | 9 (81.8) | 1 (9.1) |
Pseudomonas sp. | 8 | 4 (50.0) | 3 (37.5) | 4 (50.0) | 0 |
Diphtheroids 3 | 6 | 0 | 0 | 6 (100) | 0 |
Anaerobic sp. | 4 | 1 (25.0) | 0 | 1 (25.0) | 2 (50.0) |
Candida sp. | 1 | 0 | 0 | 1 (100) | 0 |
No growth | 14 | n/a | n/a | 11 (78.6) | 3 (21.4) |
Antimicrobial Agents | n (%) | PJI n = 76 | FRI n = 30 | OM n = 19 |
---|---|---|---|---|
Gentamicin | 37 (29.6) | 15 | 15 | 7 |
Tobramycin | 18 (14.4) | 0 | 9 | 9 |
Vancomycin | 3 (2.4) | 3 | 0 | 0 |
Gentamicin plus Vancomycin | 16 (12.8) | 11 | 4 | 1 |
None | 51 (40.1) | 47 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, B.C.; Dudareva, M.; Vicentine, M.P.; Hotchen, A.J.; Ferguson, J.; McNally, M. Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics 2023, 12, 708. https://doi.org/10.3390/antibiotics12040708
Young BC, Dudareva M, Vicentine MP, Hotchen AJ, Ferguson J, McNally M. Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics. 2023; 12(4):708. https://doi.org/10.3390/antibiotics12040708
Chicago/Turabian StyleYoung, Bernadette C., Maria Dudareva, Margarete P. Vicentine, Andrew J. Hotchen, Jamie Ferguson, and Martin McNally. 2023. "Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection" Antibiotics 12, no. 4: 708. https://doi.org/10.3390/antibiotics12040708
APA StyleYoung, B. C., Dudareva, M., Vicentine, M. P., Hotchen, A. J., Ferguson, J., & McNally, M. (2023). Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics, 12(4), 708. https://doi.org/10.3390/antibiotics12040708