Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections
Abstract
:1. Introduction
2. Results
2.1. Polyphenol Profile of Latvia Common Monofloral Honey
2.2. Effect of Honey on Bacterial Growth
2.2.1. Well-Diffusion Method
2.2.2. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimums Fungicidal Concentration (MFC)
2.2.3. Effect of Honey on Biofilms
Antibiofilm Activity—Prevention of Biofilm Development
The Activity of Honey Samples against Preformed Biofilm
2.3. Chemometric Characterisation
3. Discussion
4. Materials and Methods
4.1. Origin and Characterization of Honey Samples
4.2. Analytical Methods
4.2.1. Melissopalynological Analysis
4.2.2. Characterisation by pH
4.2.3. Characterization via UHPLC-HRMS Systems
4.3. Antibacterial Activity Assay
4.3.1. Bacterial and Fungal Strains
4.3.2. The Antimicrobial Activity Using the Well-Diffusion Method
4.3.3. Determining of Minimum Inhibitory Concentration (MIC), Minimal Bactericidal Concentration (MBC) and the Minimum Fungicidal Concentration (MFC) with Broth Microdilution Method
4.3.4. Antibiofilm Activity—Prevention of Biofilm Development
4.3.5. Antibiofilm Activity—The Activity of Honey Samples against Preformed Biofilms
4.3.6. Evaluation of Antibiofilm Activity with Scanning Electron Microscopy (SEM)
4.4. Chemometric and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Barui, A.; Mandal, N.; Majumder, S.; Das, R.K.; Sengupta, S.; Banerjee, P.; Ray, A.K.; RoyChaudhuri, C.; Chatterjee, J. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience. Mater. Sci. Eng. C 2013, 33, 3418–3425. [Google Scholar] [CrossRef] [PubMed]
- Tatsimo, S.J.; Tamokou Jde, D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against Drug-Resistant Pathogenic Microbes. Molecules 2016, 27, 836. [Google Scholar] [CrossRef] [PubMed]
- Combarros-Fuertes, P.; Fresno, J.M.; Estevinho, M.M.; Sousa-Pimenta, M.; Tornadijo, M.E.; Estevinho, L.M. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Ribeiro, H.G.; Silva, A.C.; Silva, M.D.; Sousa, J.C.; Rodrigues, C.F.; Melo, L.D.R.; Henriques, A.F.; Sillankorva, S. Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms. Front. Microbiol. 2017, 8, 2407. [Google Scholar] [CrossRef]
- Abd-El Aal, A.M.; El-Hadidy, M.R.; El-Mashad, N.B.; El-Sebaie, A.H. Antimicrobial effect of bee honey in comparison to antibiotics on organisms isolated from infected burns. Ann. Burn. Fire Disasters 2007, 20, 83–88. [Google Scholar]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Valverde, S.; Ares, A.M.; Stephen Elmore, J.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef]
- Balázs, V.L.; Nagy-Radványi, L.; Bencsik-Kerekes, E.; Koloh, R.; Szabó, D.; Kocsis, B.; Kocsis, M.; Farkas, Á. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023, 11, 509. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 2014, 30, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr. Med. Chem. 2020, 27, 2576–2606. [Google Scholar] [CrossRef]
- Afrin, S.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Manna, P.P.; Battino, M.; Giampieri, F. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem. Toxicol. 2018, 121, 203–213. [Google Scholar] [CrossRef]
- Schuhladen, K.; Mukoo, P.; Liverani, L.; Neščáková, Z.; Boccaccini, A.R. Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomed. Mater. 2020, 15, 65002. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Lasch, K.; Weidinger, J.; Boccaccini, A.R. Manuka Honey and Zein Coatings Impart Bioactive Glass Bone Tissue Scaffolds Antibacterial Properties and Superior Mechanical Properties. Front. Mater. 2021, 7, 610889. [Google Scholar] [CrossRef]
- Abd El-Malek, F.F.; Yousef, A.S.; El-Assar, S.A. Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. J. Glob. Antimicrob. Resist. 2017, 11, 171–176. [Google Scholar] [CrossRef]
- Ankley, L.M.; Monteiro, M.P.; Camp, K.M.; O’Quinn, R.; Castillo, A.R. Manuka honey chelates iron and impacts iron regulation in key bacterial pathogens. J. Appl. Microbiol. 2020, 128, 1015–1024. [Google Scholar] [CrossRef]
- Boateng, J.; Diunase, K.N. Comparing the Antibacterial and Functional Properties of Cameroonian and Manuka Honeys for Potential Wound Healing-Have We Come Full Cycle in Dealing with Antibiotic Resistance? Molecules 2015, 20, 16068–16084. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.A.; Blair, S.E.; Cokcetin, N.N.; Bouzo, D.; Brooks, P.; Schothauer, R.; Harry, E.J. Therapeutic Manuka Honey: No Longer So Alternative. Front. Microbiol. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. Aims Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Hixon, K.R.; Lu, T.; Carletta, M.N.; McBride-Gagyi, S.H.; Janowiak, B.E.; Sell, S.A. A preliminary in vitro evaluation of the bioactive potential of cryogel scaffolds incorporated with Manuka honey for the treatment of chronic bone infections. J. Biomed. Mater. Res. 2018, 106, 1918–1933. [Google Scholar] [CrossRef] [PubMed]
- Labsvards, K.D.; Rudovica, V.; Kluga, R.; Rusko, J.; Busa, L.; Bertins, M.; Eglite, I.; Naumenko, J.; Salajeva, M.; Viksna, A. Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods 2022, 11, 42. [Google Scholar] [CrossRef]
- Rusko, J.; Vainovska, P.; Vilne, B.; Bartkevics, V. Phenolic profiles of raw mono-and polyfloral honeys from Latvia. J. Food Compos. Anal. 2021, 98, 103813. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef]
- Pruskowski, K.A.; Mitchell, T.A.; Kiley, J.L.; Wellington, T.; Britton, G.W.; Cancio, L.C. Diagnosis and Management of Invasive Fungal Wound Infections in Burn Patients. Eur. Burn. J. 2021, 2, 168–183. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Content of Phenolic Acids as a Marker of Polish Honey Varieties and Relationship with Selected Honey-Quality-Influencing Variables. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef]
- Dżugan, M.; Grabek-Lejko, D.; Swacha, S.; Tomczyk, M.; Bednarska, S.; Kapusta, I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Biosci. 2020, 34, 100538. [Google Scholar] [CrossRef]
- Ramanauskiene, K.; Stelmakiene, A.; Briedis, V.; Ivanauskas, L.; Jakštas, V. The quantitative analysis of biologically active compounds in Lithuanian honey. Food Chem. 2012, 132, 1544–1548. [Google Scholar] [CrossRef]
- Almasaudi, S.B.; Al-Nahari, A.A.M.; Abd El-Ghany, E.S.M.; Barbour, E.; Al Muhayawi, S.M.; Al-Jaouni, S.; Azhar, E.; Qari, M.; Qari, Y.A.; Harakeh, S. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J. Biol. Sci. 2017, 24, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Cui, W.; Xing, X.; Zou, R.; Huang, X.; Wang, X.; Wu, T.; Bello-Onaghise, G.; Yuan, S.; Li, Y. Rutin, A Natural Inhibitor of IGPD Protein, Partially Inhibits Biofilm Formation in Staphylococcus xylosus ATCC700404 in vitro and in vivo. Front. Pharmacol. 2021, 12, 728354. [Google Scholar] [CrossRef] [PubMed]
- Sathiya Deepika, M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 2018, 90, 282–294. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Chen, K.; Peng, C.; Chi, F.; Yu, C.; Yang, Q.; Li, Z. Antibacterial and Antibiofilm Activities of Chlorogenic Acid Against Yersinia enterocolitica. Front. Microbiol. 2022, 13, 885092. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Bārzdiņa, A.; Paulausks, A.; Bandere, D.; Brangule, A. The Potential Use of Herbal Fingerprints by Means of HPLC and TLC for Characterization and Identification of Herbal Extracts and the Distinction of Latvian Native Medicinal Plants. Molecules 2022, 27, 2555. [Google Scholar] [CrossRef]
- Bucekova, M.; Bugarova, V.; Godocikova, J.; Majtan, J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1970, 51, 125–138. [Google Scholar] [CrossRef]
- Requirements for Food Quality Schemes, Procedures for the Implementation, Operation, Monitoring, and Control Annex 7. Available online: https://likumi.lv/ta/en/en/id/268347-requirements-for-food-quality-schemes-procedures-for-theimplementation-operation-monitoring-and-control-thereof (accessed on 30 March 2023).
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
Floral Origins | Mean ± SD, μg/kg | |||||||
---|---|---|---|---|---|---|---|---|
Abscisic Acid | p-Hydroxybenzoic Acid | p-Coumaric Acid | 3,4-Dihydroxybenzoic Acid | Ferulic Acid | Syringic Acid | Chlorogenic Acid | Gallic Acid | |
Clover (n = 7) | 3392 ± 2570 CDE | 6935 ± 5050 B | 3589 ± 1251 B | 581 ± 335 B | 1707 ± 451 A | 95 ± 51 B | 87 ± 36 B | 84 ± 67 B |
Linden (n = 7) | 4111 ± 1571 DE | 723 ± 279 B | 2035 ± 490 B | 1360 ± 630 AB | 1269 ± 370 A | 210 ± 135 B | 37 ± 34 B | 113 ± 82 B |
Willow (n = 7) | 10,411 ± 3636 A | 4167 ± 3157 B | 2904 ± 817 B | 1138 ± 685 B | 2221 ± 1167 A | 73 ± 21 B | 93 ± 45 B | 163 ± 72 B |
Rapeseed (n = 6) | 4938 ± 1484 E | 1864 ± 401 B | 2401 ± 488 B | 421 ± 259 B | 1777 ± 555 A | 236 ± 157 B | 87 ± 50 B | 55 ± 32 B |
Buckwheat (n = 6) | 2868 ± 812 BCDE | 14,211 ± 4060 A | 5844 ± 1182 A | 1119 ± 162 AB | 1561 ± 662 A | 89 ± 27 B | 95 ± 39 B | 106 ± 66 B |
Heather (n = 3) | 5161 ± 1214 ABCDE | 2984 ± 494 B | 2519 ± 738 B | 362 ± 87 B | 1510 ± 578 A | 44 ± 14 B | 17 ± 4 B | 38 ± 8 B |
Apiaceae (n = 2) | 3869 ± 1072 ABCDE | 2216 ± 354 B | 2011 ± 14 B | 3860 ± 3184 A | 1461 ± 15 A | 618 ± 181 A | 351 ± 98 A | 298 ± 216 B |
Phacelia (n = 1) | 2254 ABCDE | 1684 AB | 1560 AB | 162 AB | 1635 A | 85 B | 88 B | 48 B |
Horse chestnut (n = 1) | 10,643 ABCDE | 1856 AB | 1898 AB | 578 AB | 1621 A | 71 B | 211 AB | 674 A |
Raspberry (n = 1) | 2543 ABCDE | 1157 B | 2329 AB | 1726 AB | 1321 A | 393 AB | 452 A | 934 A |
Floral Origins | Mean ± SD, μg/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|
Kaempferol | Rutin | Luteolin | Genistein | Galangin | Acacetin | Isovitexin | Formononetin | Pantothenic Acid | |
Clover (n = 7) | 868 ± 362 A | 101 ± 73 C | 306 ± 244 A | 187 ± 78 AB | 3–364 B | 152 ± 52 A | <1 A | 2.1 ± 1.7 A | 707 ± 228 B |
Linden (n = 7) | 36–2488 A | <5–28 C | 5–334 A | 65 ± 49 B | 3–295 B | 115 ± 52 A | <1 A | <1 A | 574 ± 174 B |
Willow (n = 7) | 1414 ± 783 A | 258 ± 202 BC | 124 ± 40 A | 157 ± 98 AB | 11–552 AB | 149 ± 54 A | <1–16 A | <1–2 AB | 846 ± 262 B |
Rapeseed (n = 6) | 1998 ± 865 A | 31 ± 26 C | 81 ± 29 A | 144 ± 125 AB | 9–325 AB | 134 ± 50 A | <1–56 A | <1 A | 492 ± 76 B |
Buckwheat (n = 6) | 1326 ± 421 A | 614 ± 172 A | 80 ± 33 A | 135 ± 44 AB | 7.7 ± 0.5 B | 81 ± 14 A | <1 A | <1 A | 801 ± 310 B |
Heather (n = 3) | 687 ± 338 A | <5 C | 67 ± 26 A | 296 ± 123 A | 21 ± 19 B | 120 ± 47 A | 5 ± 4 A | <1 AB | 1513 ± 250 A |
Apiaceae (n = 2) | 1718 ± 556 A | 706 ± 370 AB | 33 ± 20 A | 44 ± 26 AB | 185 ± 17 AB | 109 ± 38 A | <1 A | <1 AB | 1068 ± 48 AB |
Phacelia (n = 1) | 720 A | <5 ABC | 45 A | 134 AB | 7 AB | 107 A | <1 A | 2 AB | 624 AB |
Horse chestnut (n = 1) | 1113 A | 609 ABC | 27 A | 35 AB | 643 A | 118 A | <1 A | <1 AB | 478 B |
Raspberry (n = 1) | 614 A | 118 ABC | 57 A | 32 AB | 90 AB | 130 A | <1 A | <1 AB | 223 B |
EC | ES | SA | MR | PA | CA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | |
Api_1 | 10 | 10 | 20 | 20 | 5 | 5 | 5 | 5 | 10 | 10 | 40 | - |
Api_2 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | - |
Buck_1 | 10 | 20 | 20 | 20 | 5 | 5 | 5 | 10 | 20 | 20 | 40 | - |
Buck_2 | 10 | 20 | 20 | 20 | 5 | 5 | 5 | 5 | 10 | 20 | 40 | - |
Buck_3 | 20 | 20 | 20 | 20 | 10 | 10 | 5 | 5 | 20 | 20 | 40 | - |
Buck_4 | 10 | 10 | 20 | 20 | 5 | 5 | 5 | 10 | 10 | 10 | 20 | 40 |
Buck_5 | 10 | 20 | 20 | 20 | 5 | 5 | 5 | 5 | 10 | 10 | 40 | - |
Clo_1 | 20 | 20 | 40 | 40 | 20 | 20 | 10 | 10 | 20 | 20 | - | - |
Clo_2 | 40 | - | - | - | - | - | - | - | 40 | - | - | - |
Clo_3 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | - |
Clo_4 | 20 | 20 | 20 | 20 | 10 | 10 | 5 | 10 | 20 | 20 | 40 | - |
Clo_5 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | - |
Clo_6 | 20 | 20 | 20 | 20 | 10 | 10 | 10 | 20 | 20 | 20 | 40 | - |
Clo_7 | 10 | 20 | 20 | 20 | 10 | 10 | 10 | 10 | 20 | 20 | 40 | - |
Hea_1 | 20 | 20 | 20 | 40 | 10 | 10 | 10 | 20 | 20 | 20 | 40 | - |
Hea_2 | 40 | 40 | 40 | - | 40 | - | 20 | 40 | 40 | 40 | 40 | - |
Hea_3 | 20 | 20 | 20 | 40 | 10 | 10 | 10 | 10 | 20 | 20 | 40 | 40 |
Hor_1 | 20 | 20 | 20 | 40 | 10 | 10 | 10 | 10 | 20 | 20 | - | - |
Lin_1 | 20 | 40 | 40 | 40 | 20 | 20 | 10 | 20 | 40 | 40 | - | - |
Lin_2 | 40 | 40 | - | - | 40 | 40 | 40 | 40 | 40 | 40 | - | - |
Lin_3 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | - |
Lin_5 | 40 | 40 | - | - | 20 | 40 | 20 | 40 | 40 | 40 | - | - |
Lin_6 | 40 | 40 | 40 | - | 20 | 20 | 20 | 20 | 40 | 40 | - | - |
Lin_7 | 10 | 10 | 10 | 10 | 2.5 | 2.5 | 2.5 | 2.5 | 10 | 10 | 20 | 40 |
Phi_1 | 40 | - | - | - | - | - | - | - | 40 | - | - | - |
Ras_1 | 40 | 40 | 40 | 40 | 20 | 40 | 20 | 20 | 20 | 40 | - | - |
Rap_1 | 40 | - | - | - | - | - | - | - | 40 | - | - | - |
Rap_2 | 40 | - | - | - | - | - | - | - | 40 | - | - | - |
Rap_3 | 40 | - | 40 | - | 40 | - | 40 | 40 | 40 | 40 | - | - |
Rap_4 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | - |
Rap_5 | 10 | 20 | 20 | 20 | 5 | 5 | 5 | 5 | 10 | 20 | - | - |
Rap_6 | 20 | 40 | 40 | 40 | 20 | 20 | 20 | 20 | 20 | 40 | - | - |
Wil_1 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | |
Wil_2 | 40 | - | 40 | - | 40 | - | 40 | - | 40 | - | - | |
Wil_3 | 20 | 40 | 20 | 40 | 20 | 20 | 10 | 20 | 20 | 40 | - | - |
Wil_4 | 20 | 40 | 40 | - | 20 | 20 | 10 | 10 | 20 | 40 | - | - |
Wil_5 | 40 | 40 | 40 | - | 20 | 40 | 20 | 20 | 40 | 40 | - | - |
Wil_6 | 10 | 10 | 10 | 10 | 5 | 5 | 5 | 5 | 10 | 10 | 40 | - |
Wil_7 | 40 | 40 | 40 | - | 20 | 40 | 20 | 40 | 40 | 40 | - | - |
Man | 10 | 10 | 10 | 20 | 5 | 20 | 5 | 20 | 20 | 20 | 40 | - |
Honey Sample | Code | Number of Samples | Pollen Content, % | pH ± 0.02 | ||
---|---|---|---|---|---|---|
Min | Max | Min | Max | |||
Clover (Trifolium repens) | Clo | 7 | 48.8 | 78.0 | 3.56 | 4.67 |
Linden (Tilia cordata) | Lin | 7 | 18.4 | 91.2 | 3.96 | 4.86 |
Willow (Salix cinerea) | Wil | 7 | 52.0 | 79.6 | 3.73 | 4.60 |
Rapeseed (Brassica napus) | Rap | 6 | 68.8 | 88.8 | 3.97 | 4.30 |
Buckwheat (Fagopyrum esculentum) | Buck | 5 | 39.6 | 48.0 | 3.65 | 3.84 |
Heather (Calluna vulgaris) | Hea | 3 | 42.4 | 80.4 | 4.46 | 4.47 |
Apiaceae (Apiaceae sp.) | Api | 2 | 60.4 | 78.4 | 4.39 | 4.39 |
Phacelia (Phacelia tanacetifolia) | Pha | 1 | 82.4 | 3.78 | ||
Horse chestnut (Aesculus hippocastanum) | Hor | 1 | 52.4 | 3.96 | ||
Raspberry (Rubus idaeus) | Ras | 1 | 75.2 | 4.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skadiņš, I.; Labsvārds, K.D.; Grava, A.; Amirian, J.; Tomsone, L.E.; Ruško, J.; Viksna, A.; Bandere, D.; Brangule, A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics 2023, 12, 816. https://doi.org/10.3390/antibiotics12050816
Skadiņš I, Labsvārds KD, Grava A, Amirian J, Tomsone LE, Ruško J, Viksna A, Bandere D, Brangule A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics. 2023; 12(5):816. https://doi.org/10.3390/antibiotics12050816
Chicago/Turabian StyleSkadiņš, Ingus, Krišs Dāvids Labsvārds, Andra Grava, Jhaleh Amirian, Laura Elīna Tomsone, Jānis Ruško, Arturs Viksna, Dace Bandere, and Agnese Brangule. 2023. "Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections" Antibiotics 12, no. 5: 816. https://doi.org/10.3390/antibiotics12050816