Prevalence of Antibiotic-Resistant Shigella spp. in Bangladesh: A Systematic Review and Meta-Analysis of 44,519 Samples
Abstract
:1. Introduction
2. Results
2.1. Study Selection
2.2. Characteristics of the Included Studies
2.3. Quality Assessment
2.4. Overall Antibiotic Resistance Pattern
2.5. Representation of Outlier Studies with Prevalence of Any-Drug and Multi-Drug Resistance
2.6. Subgroup and Sensitivity Analysis
3. Discussion
4. Materials and Methods
4.1. Guideline and Protocol
4.2. Literature Search Strategy and Study Selection
4.3. Eligibility Criteria
4.4. Definitions and Data Abstraction
4.5. Quality Assessment
4.6. Data Analysis
4.7. Subgroup and Sensitivity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabuuchi, E. Bacillus dysentericus (sic) 1897 was the first taxonomic rather than Bacillus dysenteriae 1898. Int. J. Syst. Evol. Microbiol. 2002, 52, 1041. [Google Scholar] [CrossRef]
- Barrantes, K.; Achí, R. The importance of integrons for development and propagation of resistance in Shigella: The case of Latin America. Braz. J. Microbiol. 2016, 47, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Glass, R.I.; Huq, M.I.; Khan, M.U.; Banu, H.; Holt, J. Epidemiologic and Clinical Features of Patients Infected with Shigella Who Attended a Diarrheal Disease Hospital in Bangladesh. J. Infect. Dis. 1982, 146, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Connor, J.D. Extraintestinal manifestations of shigellosis. Am. J. Gastroenterol. 1970, 53, 234–245. [Google Scholar]
- Echeverria, P.; Sethabutr, O.; Pitarangsi, C. Microbiology and diagnosis of infections with Shigella and enteroinvasive Eschrichia coli. Rev. Inf. Dis. 1991, 13, S220–S225. [Google Scholar] [CrossRef]
- Khan, W.A.; Griffiths, J.K.; Bennish, M.L. Gastrointestinal and Extra-Intestinal Manifestations of Childhood Shigellosis in a Region Where All Four Species of Shigella Are Endemic. PLoS ONE 2013, 8, e64097. [Google Scholar] [CrossRef]
- Nave, H.H.; Mansouri, S.; Sadeghi, A.; Moradi, M. Molecular diagnosis and anti-microbial resistance pat-terns among Shigella spp. isolated from patients with diarrhea. Gastroenterol. Hepatol. Bed. Bench. 2016, 9, 205. [Google Scholar]
- Nave, H.H.; Mansouri, S.; Emaneini, M.; Moradi, M. Distribution of genes encoding virulence factors and molecular analysis of Shigella spp. isolated from patients with diarrhea in Kerman, Iran. Microb. Pathog. 2016, 92, 68–71. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Platts-Mills, J.A.; Nasrin, D.; Roose, A.; Blackwelder, W.C.; Levine, M.M.J.V. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine 2017, 35, 6783–6789. [Google Scholar] [CrossRef]
- Sansonetti, P.J. Shigellosis: An Old Disease in New Clothes? PLOS Med. 2006, 3, e354. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Kumar, N.; Kumar, S.; Trigun, V. Antimicrobial Resistance: Progress in the Decade since Emergence of New Delhi Metallo-β-Lactamase in India. Indian J. Community Med. 2019, 44, 4–8. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The World Health Report 2007: A Safer Future: Global Public Health Security in the 21st Century; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Mokomane, M.; Kasvosve, I.; de Melo, E.; Pernica, J.M.; Goldfarb, D.M. The global problem of childhood diarrhoeal diseases: Emerging strategies in prevention and management. Ther. Adv. Infect. Dis. 2018, 5, 29–43. [Google Scholar] [CrossRef]
- Baker, S.; The, H. Recent insights into Shigella: A major contributor to the global diarrhoeal disease burden. Curr. Opin. Infect. Dis. 2018, 31, 449. [Google Scholar] [CrossRef] [PubMed]
- Hussen, S.; Mulatu, G.; Kassa, Z.Y. Prevalence of Shigella species and its drug resistance pattern in Ethiopia: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 22. [Google Scholar] [CrossRef]
- Shahsavan, S.; Owlia, P.; Lari, A.R.; Bakhshi, B.; Nobakht, M. Investigation of Efflux-Mediated Tetracycline Resistance in Shigella Isolates Using the Inhibitor and Real Time Polymerase Chain Reaction Method. Iran. J. Pathol. 2017, 12, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Thamizhmani, R.; Sayi, D.S.; Reesu, R.; Anwesh, M.; Kartick, C.; Bharadwaj, A.P.; Singhania, M.; Sugunan, A.P.; Roy, S. Shigellosis in Bay of Bengal Islands, India: Clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 157–170. [Google Scholar] [CrossRef]
- Raja, S.B.; Murali, M.R.; Devaraj, S.N. Differential expression of ompC and ompF in multidrug-resistant Shigella dysenteriae and Shigella flexneri by aqueous extract of Aegle marmelos, altering its susceptibility toward β-lactam antibiotics. Diagn. Microbiol. Infect Dis. 2008, 61, 321–328. [Google Scholar] [CrossRef]
- Kar, A.K.; Ghosh, A.S.; Chauhan, K.; Ahamed, J.; Basu, J.; Chakrabarti, P.; Kundu, M. Involvement of a 43-kilodalton outer membrane protein in beta-lactam resistance of Shigella dysenteriae. Antimicrob. Agents Chemother. 1997, 41, 2302–2304. [Google Scholar] [CrossRef]
- Das, S.K.; Klontz, E.H.; Azmi, I.J.; Ud-Din, A.I.; Chisti, M.J.; Afrad, M.H.; Malek, M.A.; Ahmed, S.; Das, J.; Talukder, K.A. Characteristics of multidrug resistant Shigella and Vibrio cholerae O1 infections in patients treated at an urban and a rural hospital in Bangladesh. ISRN Microbiol. 2013, 2013, 213915. [Google Scholar] [CrossRef] [PubMed]
- Garbern, S.C.; Chu, T.-C.; Gainey, M.; Kanekar, S.S.; Nasrin, S.; Qu, K.; Barry, M.A.; Nelson, E.J.; Leung, D.T.; Schmid, C.H.; et al. Multidrug-resistant enteric pathogens in older children and adults with diarrhea in Bangladesh: Epidemiology and risk factors. Trop. Med. Health 2021, 49, 34. [Google Scholar] [CrossRef]
- Shahunja, K.M.; Ahmed, T.; Hossain, I.; Islam, M.; Monjory, M.B.; Bin Shahid, A.S.M.S.; Faruque, A.S.G.; Chisti, M.J. Clinical and laboratory characteristics of children under five hospitalized with diarrhea and bacteremia. PLoS ONE 2020, 15, e0243128. [Google Scholar] [CrossRef]
- Huq, A.F.M.A.; Biswas, S.K.; Sheam, M.M.; Syed, S.B.; Elahi, M.T.; Tang, S.-S.; Rahman, M.M.; Roy, A.K.; Paul, D.K.J.B. Identification and antibiotic pattern analysis of bacillary dysentery causing bacteria isolated from stool samples of infected patients. Biologia 2022, 78, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Pholwat, S.; Liu, J.; Taniuchi, M.; Haque, R.; Alam, M.M.; Faruque, A.S.G.; Ferdous, T.; Ara, R.; Platts-Mills, J.A.; Houpt, E.R. Use of Molecular Methods To Detect Shigella and Infer Phenotypic Resistance in a Shigella Treatment Study. J. Clin. Microbiol. 2022, 60, e01774-21. [Google Scholar] [CrossRef] [PubMed]
- Nuzhat, S.; Das, R.; Das, S.; Islam, S.B.; Palit, P.; Haque, M.A.; Chakraborty, S.; Khan, S.H.; Ahmed, D.; Alam, B. Antimi-crobial resistance in shigellosis: A surveillance study among urban and rural children over 20 years in Bangladesh. PLoS ONE 2022, 17, e0277574. [Google Scholar] [CrossRef]
- Houpt, E.R.; Ferdous, T.; Ara, R.; Ibrahim, M.; Alam, M.; Kabir, M.; Platts-Mills, J.; Ahmed, T.; Faruque, A.S.G.; Taniuchi, M.; et al. Clinical Outcomes of Drug-resistant Shigellosis Treated With Azithromycin in Bangladesh. Clin. Infect. Dis. 2021, 72, 1793–1798. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Johnson, R.A.; Das, S.K.; Nelson, E.J.; Spivak, E.S.; Contreras, J.R.; Faruque, A.; Leung, D.T. Socioeconomic Determinants of Ciprofloxacin-Resistant Shigella Infections in Bangladeshi Children. Pathog. Immun. 2017, 2, 89–101. [Google Scholar] [CrossRef]
- Rahman, M.; Haque, A.F.; Deeba, I.M.; Ahmed, D.; Zahidi, T.; Rimu, A.H.; Akter, M.; Akter, F.; Talukder, K.A. Emergence of Extensively Drug-resistant Shigella sonnei in Bangladesh. Immunol. Infect. Dis. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Rahman, M.; Islam, R.; Banik, A.; Amin, M.B.; Akter, F.; Talukder, K.A. Plasmid-mediated sulfamethoxa-zole resistance encoded by the sul2 gene in the multidrug-resistant Shigella flexneri 2a isolated from patients with acute diarrhea in Dhaka, Bangladesh. PLoS ONE 2014, 9, e85338. [Google Scholar] [CrossRef]
- Ud-Din, A.I.M.S.; Wahid, S.U.H.; Latif, H.A.; Shahnaij, M.; Akter, M.; Azmi, I.J.; Hasan, T.N.; Ahmed, D.; Hossain, M.A.; Faruque, A.S.G.; et al. Changing Trends in the Prevalence of Shigella Species: Emergence of Multi-Drug Resistant Shigella sonnei Biotype g in Bangladesh. PLoS ONE 2013, 8, e82601. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Hoque, A.; Elahi, M.; Endtz, H.; Hossain, M.J.E. Infection. Bacterial aetiology of diarrhoeal diseases and antimi-crobial resistance in Dhaka, Bangladesh, 2005–2008. Epidemiol. Infect. 2012, 140, 1678–1684. [Google Scholar] [CrossRef]
- Mahbubur, R.; Shoma, S.; Rashid, H.; El Arifeen, S.; Baqui, A.; Siddique, A.; Nair, G.; Sack, D. Increasing Spectrum in Antimicrobial Resistance of Shigella Isolates in Bangladesh: Resistance to Azithromycin and Ceftriaxone and Decreased Susceptibility to Ciprofloxacin. J. Health Popul. Nutr. 2007, 25, 158–167. [Google Scholar]
- Talukder, K.A.; Khajanchi, B.K.; Islam, M.A.; Dutta, D.K.; Islam, Z.; Khan, S.I.; Nair, G.B.; Sack, D.A. The emerging strains of Shigella dysenteriae type 2 in Bangladesh are clonal. Epidemiol. Infect. 2006, 134, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Talukder, K.A.; Islam, Z.; Dutta, D.K.; Islam, M.A.; Khajanchi, B.K.; Azmi, I.J.; Iqbal, M.S.; Hossain, M.A.; Faruque, A.S.G.; Nair, G.B.; et al. Antibiotic resistance and genetic diversity of Shigella sonnei isolated from patients with diarrhoea between 1999 and 2003 in Bangladesh. J. Med. Microbiol. 2006, 55, 1257–1263. [Google Scholar] [CrossRef]
- Khan, A.I.; Huq, S.; Malek, M.A.; Hossain, M.I.; Talukder, K.A.; Faruque, A.S.G.; Salam, M.A.; Sack, D.A. Shigella serotypes among hospitalized patients in urban Bangladesh and their antimicrobial resistance. Epidemiol. Infect. 2004, 132, 773–777. [Google Scholar] [CrossRef]
- Talukder, K.A.; Islam, M.A.; Khajanchi, B.K.; Dutta, D.K.; Islam, Z.; Safa, A.; Alam, K.; Hossain, A.; Nair, G.B.; Sack, D.A. Temporal Shifts in the Dominance of Serotypes of Shigella dysenteriae from 1999 to 2002 in Dhaka, Bangladesh. J. Clin. Microbiol. 2003, 41, 5053–5058. [Google Scholar] [CrossRef]
- Talukder, K.A.; Islam, Z.; Aminul Islam, M.; Dutta, D.K.; Safa, A.; Ansaruzzaman, M.; Faruque, A.; Shahed, S.N.; Nair, G.; Sack, D. Phenotypic and genotypic characterization of provisional serotype Shigella flexneri 1c and clonal relationships with 1a and 1b strains isolated in Bangladesh. J. Clin. Microbiol. 2003, 41, 110–117. [Google Scholar] [CrossRef]
- Talukder, K.A.; Islam, M.A.; Dutta, D.K.; Hassan, F.; Safa, A.; Nair, G.; Sack, D. Phenotypic and genotypic characterization of serologically atypical strains of Shigella flexneri type 4 isolated in Dhaka, Bangladesh. J. Clin. Microbiol. 2002, 40, 2490–2497. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rahman, M.; Ahmed, Q.; Malek, M.; Sack, R.; Albert, M. Increasing frequency of mecillinam-resistant shigella isolates in urban Dhaka and rural Matlab, Bangladesh: A 6 year observation. J. Antimicrob. Chemother. 1998, 42, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Mamun, K.Z.; Tabassum, S.; Hussain, M.A.; Shears, P. Antimicrobial susceptibility of Shigella from a rural community in Bangladesh. Ann. Trop. Med. Parasitol. 1997, 91, 643–647. [Google Scholar] [CrossRef]
- Jahan, Y.; Hossain, A. Multiple drug-resistant Shigella dysenteriae type 1 in Rajbari district, Bangladesh. J. Diarrhoeal Dis. Res. 1997, 15, 17–20. [Google Scholar]
- Chowdhury, H.R.; Yunus, M.; Khan, E.H.; Zaman, K.; Rahman, R.; Sack, R.B. Pivmecillinam Resistant Shigella Infections in Rural Bangladesh. Trop. Dr. 1995, 25, 141–142. [Google Scholar] [CrossRef]
- Dhar, R.; Ghafoor, M.A.; Huq, E.; Chugh, T.D. Characterization of Shigella sonnei Strains from Three Different Geographical Locations. Med. Princ. Pract. 1992, 3, 44–50. [Google Scholar] [CrossRef]
- Bennish, M.L.; Salam, M.A.; Hossain, M.A.; Myaux, J.; Khan, E.H.; Chakraborty, J.; Henry, F.; Ronsmans, C. Antimicrobial resistance of Shigella isolates in Bangladesh, 1983–1990: Increasing frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Clin. Infect. Dis. 1992, 14, 1055–1060. [Google Scholar] [CrossRef]
- Munshi, M.; Haider, K.; Rahaman, M.; Sack, D.; Ahmed, Z.; Morshed, M. Plasmid-Mediated Resistance To Nalidixic Acid In Shigella Dysenteriae Type 1. Lancet 1987, 330, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Tacket, C.O.; Shahid, N.; Huq, M.; Alim, A.; Cohen, M. Usefulness of plasmid profiles for differentiation of Shigella isolates in Bangladesh. J. Clin. Microbiol. 1984, 20, 300–301. [Google Scholar] [CrossRef] [PubMed]
- De Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- Ferdous, F.; Ahmed, S.; Farzana, F.D.; DAS, J.; Malek, M.A.; DAS, S.K.; Salam, M.A.; Faruque, A.S.G. Aetiologies of diarrhoea in adults from urban and rural treatment facilities in Bangladesh. Epidemiol. Infect. 2015, 143, 1377–1387. [Google Scholar] [CrossRef]
- Jahan, Y.; Moriyama, M.; Hossain, S.; Rahman, M.; Ferdous, F.; Ahmed, S.; Das, S.K.; Hossain, I.; Faruque, A.S.G.; Ahmed, T.; et al. Relation of childhood diarrheal morbidity with the type of tube well used and associated factors of Shigella sonnei diarrhea in rural Bangladesh site of the Global Enteric Multicenter Study. Trop. Med. Health 2019, 47, 29. [Google Scholar] [CrossRef] [PubMed]
- Baharvand, A.; Molaeipour, L.; Alesaeidi, S.; Shaddel, R.; Mashatan, N.; Amiriani, T.; Sudkolaei, M.K.; Abbasian, S.; Al-Naqeeb, B.Z.T.; Kouhsari, E. The increasing antimicrobial resistance of Shigella species among Iranian pediatrics: A systematic review and meta-analysis. Ann. Trop. Med. Parasitol. 2023, 1–12. [Google Scholar] [CrossRef]
- Williams, P.; Berkley, J. Dysentery (shigellosis) current who guidelines and the WHO essential medicine list for children. Paediatr. Int. Child Health 2016. [Google Scholar]
- Pu, X.-Y.; Pan, J.-C.; Wang, H.-Q.; Zhang, W.; Huang, Z.-C.; Gu, Y.-M. Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. J. Antimicrob. Chemother. 2009, 63, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Suzuki, M.; Matsumoto, M.; Takahashi, M.; Sato, K.; Ibe, S.; Sakae, K. Cloning of a Novel Gene for Quinolone Resistance from a Transferable Plasmid in Shigella flexneri 2b. Antimicrob. Agents Chemother. 2005, 49, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Azmi, I.J.; Khajanchi, B.K.; Akter, F.; Hasan, T.N.; Shahnaij, M.; Akter, M.; Banik, A.; Sultana, H.; Hossain, M.A.; Ahmed, M.K.; et al. Fluoroquinolone Resistance Mechanisms of Shigella flexneri Isolated in Bangladesh. PLoS ONE 2014, 9, e102533. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Levy, S. The impact of antibiotic use on resistance development and persistence. Drug. Resist. Updat. 2000, 3, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Roy, D.N.; Tajmim, A.; Rajib, S.S.; Hossain, M.; Farzana, F.; Yasmen, N. Prescription antibiotics for outpatients in Bangladesh: A cross-sectional health survey conducted in three cities. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 15. [Google Scholar] [CrossRef]
- Biswas, M.; Roy, M.N.; Manik, M.I.N.; Hossain, M.S.; Tapu, S.T.A.; Moniruzzaman, M.; Sultana, S. Self medicated anti-biotics in Bangladesh: A cross-sectional health survey conducted in the Rajshahi City. BMC Public Health 2014, 14, 847. [Google Scholar] [CrossRef]
- Sutradhar, K.B.; Saha, A.; Huda, N.H.; Uddin, R. Irrational Use of Antibiotics and Antibiotic Resistance in Southern Rural Bangladesh: Perspectives from Both the Physicians and Patients. Annu. Res. Rev. Biol. 2014, 4, 1421–1430. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observa-tional epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Healthc. 2015, 13, 147–153. [Google Scholar] [CrossRef]
- Islam, A.; Alam, S.S.; Kundu, S.; Hossan, T.; Kamal, M.A.; Cavestro, C. Prevalence of Headache in Patients with Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis of 14,275 Patients. Front. Neurol. 2020, 11, 562634. [Google Scholar] [CrossRef] [PubMed]
- Hajissa, K.; Islam, M.A.; Sanyang, A.M.; Mohamed, Z. Prevalence of intestinal protozoan parasites among school children in africa: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2022, 16, e0009971. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
Study ID [References] | Study Design | Study Area | Study Duration | Total Number of Tested Samples | Age Groups | AST Method | Tested Antibiotics |
---|---|---|---|---|---|---|---|
Huq 2023 [23] | Cross-sectional | Kushtia | 2016 to 2018 | 12 | All ages <5 years; 5 to 18 years; ≥18 years | Disk diffusion method | AMP, AMC, TET, STM, KAN, CIP, FEP, NAL, CRO, and CHL |
Pholwat 2022 [24] | Cohort study | Dhaka | January 2019 to September 2019 | 154 | NR | Broth microdilution | AMP, AZM, CIP, and T-S |
Nuzhat 2022 [25] | Cross-sectional | Dhaka and Matlab | January 2001 to December 2020 | 2146 | <5 years | Disk diffusion method | CIP, MEC, AZM, and CTX |
Garbern 2021 [21] | Cross-sectional | Dhaka | March 2019 to March 2020 | 42 | Children (<18 years); adult (≥18 years) | Disk diffusion method | CEP, AMG, FQ, MAC, PEN, TET, and T-S |
Houpt 2020 [26] | Cohort study | Dhaka | January 2019 to September 2019 | 149 | All ages (5 months–58 years) | Disk diffusion method | CIP, T-S, AMP, AMC/CALV, CHL, TET, CRO, and MEM |
Gruninger 2017 [27] | Cross-sectional | Dhaka | January 2009 to December 2014 | 230 | Children (>5 years of age) | Disk diffusion method | CIP |
Rahman 2017 [28] | Cross-sectional | Dhaka | June 2015 to December 2015 | 134 | NR | Disk diffusion method | AMP, T-S, CIP, AZM, MEC, CRO/CFM, and MEM |
Shahunja 2020 [22] | Cross-sectional | Dhaka | June 2014 to May 2017 | 7 | Children (>5 years of age) | Disk diffusion method | AMP, CIP, AZM, CRO, CFM, and AMK |
Iqbal 2014 [29] | Cross-sectional | Dhaka | 2006 to 2011 | 200 | NR | Disk diffusion method | AMP, AZM, CRO, CHL, CIP, NAL, SUL, TMP, NOR, STM, TET, MEL, GEN, KAN, and AMK |
Das 2013 [20] | Cross-sectional | Dhaka | 2000 to 2012 | 2960 | NR | Disk diffusion | TMP, SUL, AMP, NAL, MEC, and CIP |
Uddin 2013 [30] | Cross-sectional | Dhaka | 2001 to 2011 | 200 | All ages | Disk diffusion method | AMP, STM, TET, CIP, NAL, MEC, T-S, CRO, CTX, CAZ, and IPM |
Ahmed 2012 [31] | Cross-sectional | Dhaka | January 2005 to December 2008 | 2847 | NR | Disk diffusion method | AMP, CRO, CHL, CIP, T-S, ER, NAL, and TET |
Rahman 2007 [32] | Cross-sectional | Dhaka | 2001 to 2002 | 266 | NR | Disk diffusion method | AMP, CHL, T-S, TET, NAL, CIP, ME, CRO, and GEN |
Talukder 2006 (a) [33] | Cross-sectional | Dhaka | January 1999 to December 2004 | 113 | NR | Disk diffusion method | AMP, MEC, NAL, T-S, and CIP |
Talukder 2006 (b) [34] | Cross-sectional | Dhaka | January 1999 and December 2003 | 445 | NR | Disk diffusion method | AMP, TET, MEC, NAL, T-S, AZM, CIP, NOR, OFX, and CRO |
Khan 2004 [35] | Cross-sectional | Dhaka | January 1997 to December 2001 | 227 | Children | Disk diffusion method | AMP, T-S, TET, CIP, NAL, and MEC |
Talukder 2003 (a) [36] | Cross-sectional | Dhaka | January 1997 to June 2001 | 358 | NR | Disk diffusion method | AMP, CIP, NAL, and MEC |
Talukder 2003 (b) [37] | Cross-sectional | Dhaka | January 2000 to September 2002 | 144 | NR | Disk diffusion method | AMP, T-S, TET, CIP, NAL, and MEC |
Talukder 2002 [38] | Cross-sectional | Dhaka | January 1999 to December 2002 | 21 | NR | Disk diffusion method | AMP, T-S, CIP, NAL, and MEC |
Hossain 1998 [39] | Cross-sectional | Dhaka (urban) and Matlab (rural | January 1991 to December 1996 | 14,915 | NR | Disk diffusion method | AMP, T-S, TET, CIP, NAL, and MEC |
Mamun 1997 [40] | Cross-sectional | Rajbari | January 1995 to December 1995 | 63 | All ages (4 months to 65 years) | Controlled diffusion method and disk diffusion method | AMP, T-S, TET, CIP, NAL, and CHL |
Jahan 1997 [41] | Cross-sectional | Rajbari | January 1994 to June 1995 | 21 | All ages (0 months to >20 years) | Disk diffusion method | AMP, T-S, TET, CIP, NAL, and CHL |
Chowdhury 1995 [42] | Cross-sectional | Matlab | 1991 to 1992 | 721 | NR | Disk diffusion method | AMP, T-S, PIV, and NAL |
Dhar 1992 [43] | Cross-sectional | Dhaka | NR | 23 | NR | Disk diffusion method | AMK, AMP, CHL, CEF, GEN, NAL, T-S, TMP, and TET |
Bennish 1992 [44] | Cross-sectional | Dhaka, Matlab, and Mirzapur | 1983 to 1990 | 16,344 | NR | Disk diffusion method | AMP, T-S, and NAL |
Munshi 1987 [45] | Cross-sectional | Teknaf | January to April 1985, January to December 1986, January to February 1987 | 1179 | NR | Disk diffusion method | SUL, NAL, TET, CHL, AMP, TMP, and STM |
Tacket 1984 [46] | Cross-sectional | Dhaka | January to October and December 1982 | 136 | NR | Disk diffusion method | AMP, CHL, GEN, KAN, STM, TET, and T-S |
Stoll 1982 [3] | Cross-sectional | Dhaka | December 1979 to November 1980 | 412 | All ages (<1 to ≥60 years) | Disk diffusion method | AMP, CHL, GEN, KAN, and TET |
Antibiotics | Prevalence of Antibiotic Resistance [95% CIs] (%) | Difference in Pooled Prevalence Compared to the Main Result | Number of Studies Analyzed | Total Number of Shigellosis Samples |
---|---|---|---|---|
Any-DR [excluding small studies (n < 100)] | ||||
Kanamycin | 0.3 [0.2–0.3] | 2.9% lower | 1 | 396 |
Cefixime | 1.9 [1.7–2.1] | Unchanged | 1 | 266 |
Chloramphenicol | 3.9 [0.2–64.3] | 7.7% lower | 3 | 811 |
Gentamicin | 4.1 [3.7–4.7] | Unchanged | 1 | 266 |
Amoxicillin/clavulanate | 10.7 [9.1–12.6] | Unchanged | 1 | 149 |
Ceftriaxone | 11.3 [3.4–37.3] | 0.5% higher | 5 | 1350 |
Mecillinam | 13.7 [5.5–34.1] | Unchanged | 6 | 20,485 |
Pivmecillinam | 19.3 [17.9–20.7] | Unchanged | 1 | 721 |
Nalidixic | 31.3 [11.1–88.4] | 4.9% lower | 13 | 35,440 |
Ampicillin | 33.2 [22.8–48.3] | 1.3% lower | 16 | 35,167 |
Azithromycin | 35.2 [16.3–75.9] | 3.6% lower | 3 | 1003 |
Ciprofloxacin | 39.5 [13.0–119.7] | 8.4% higher | 9 | 8917 |
Tetracycline | 46.3 [19.8–108.3] | 4.1% lower | 7 | 1832 |
Erythromycin | 58.0 [50.5–66.6] | Unchanged | 1 | 200 |
Streptomycin | 65.0 [53.4–79.1] | 31.2% higher | 1 | 100 |
Trimethoprim–sulfamethoxazole | 67.8 [57.9–79.4] | 7% higher | 14 | 3679 |
Any-DR (excluding low- and moderate-quality studies) | ||||
Kanamycin | 0.3 [0.2–0.3] | 2.9% lower | 1 | 396 |
Aminoglycoside | 1.2 [0.9–1.6] | Unchanged | 1 | 42 |
Cephalosporin | 7.1 [5.3–9.7] | Unchanged | 1 | 42 |
Chloramphenicol | 15.0 [0.3–809.3] | 3.4% higher | 3 | 480 |
Mecillinam | 19.3 [6.2–60.1] | 5.6% higher | 4 | 20,085 |
Ciprofloxacin | 20.2 [5.5–73.9] | 10.9% lower | 7 | 8313 |
Macrolide | 26.2 [19.4–35.4] | Unchanged | 1 | 42 |
Ampicillin | 27.4 [16.8–44.6] | 7.1% lower | 10 | 32,728 |
Nalidixic acid | 29.2 [7.1–120.0] | 7.0% lower | 8 | 32,242 |
Ceftriaxone | 32.4 [30.0–35.1] | 21.6% higher | 1 | 601 |
Tetracycline | 33.0 [13.1–83.0] | 17.4% lower | 5 | 1099 |
Azithromycin | 37.5 [21.5–65.3] | 1.3% lower | 2 | 610 |
Penicillin | 40.5 [29.9–54.8] | Unchanged | 1 | 42 |
Fluoroquinolones | 61.9 [45.7–83.8] | Unchanged | 1 | 42 |
Trimethoprim–sulfamethoxazole | 68.1 [55.2–84.0] | 7.3% higher | 10 | 21,440 |
Multi-DR [excluding small (n < 100) and low- and moderate-quality studies] | ||||
Excluding small studies | 32.8 [13.7–78.6] | 0.6% lower | 6 | 4037 |
Excluding low- and moderate-quality studies | 50.4 [24.9–102.1] | 17% higher | 4 | 3223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Chowdhury, M.I.H.; Sultana, S.; Alam, S.S.; Marzan, M.; Islam, M.A. Prevalence of Antibiotic-Resistant Shigella spp. in Bangladesh: A Systematic Review and Meta-Analysis of 44,519 Samples. Antibiotics 2023, 12, 817. https://doi.org/10.3390/antibiotics12050817
Ahmed S, Chowdhury MIH, Sultana S, Alam SS, Marzan M, Islam MA. Prevalence of Antibiotic-Resistant Shigella spp. in Bangladesh: A Systematic Review and Meta-Analysis of 44,519 Samples. Antibiotics. 2023; 12(5):817. https://doi.org/10.3390/antibiotics12050817
Chicago/Turabian StyleAhmed, Saleh, Md Imrul Hasan Chowdhury, Shabiha Sultana, Sayeda Sadia Alam, Mahfuza Marzan, and Md Asiful Islam. 2023. "Prevalence of Antibiotic-Resistant Shigella spp. in Bangladesh: A Systematic Review and Meta-Analysis of 44,519 Samples" Antibiotics 12, no. 5: 817. https://doi.org/10.3390/antibiotics12050817
APA StyleAhmed, S., Chowdhury, M. I. H., Sultana, S., Alam, S. S., Marzan, M., & Islam, M. A. (2023). Prevalence of Antibiotic-Resistant Shigella spp. in Bangladesh: A Systematic Review and Meta-Analysis of 44,519 Samples. Antibiotics, 12(5), 817. https://doi.org/10.3390/antibiotics12050817