Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus faecalis Invasive Infections: “The Times They Are A-Changin”
Abstract
:1. Introduction
2. Results
3. Discussion
- Ceftobiprole medocaril is a new cephalosporin approved for community-acquired pneumonia and nosocomial pneumonia (including ventilated hospital-acquired pneumonia but not ventilator-acquired pneumonia) with very low cumulative E. faecalis MIC percent distribution (MIC90 4 mg/L) [7]. Studies of clinical pharmacology demonstrated a 99% probability of PK-PD target attainment up to a MIC of 4 mg/L for Gram-positive cocci for the 500 mg 8-hourly dosing regimen approved for the aforementioned indications [35].
- An epidemiologic analysis of the populations of E. faecalis isolated in our Institution showed a ceftobiprole MIC distribution constantly ≤2 mg/L.
- As a member of the pyrrolidinone-3-ylidene methyl cephems, ceftobiprole binds with high affinity to the E. faecalis PBPs [8]. Unlike ceftriaxone, ceftobiprole exhibits the ability to inhibit non-essential high-molecular-weight enterococcal PBPs [38,39] and maintains a higher affinity for the low-molecular-weight essential PBP4 [40]. PBP4 is a very critical lethal target and is the main determinant of beta-lactam sensitivity in E. faecalis; conformational alteration of this enzyme may be responsible for reduced beta-lactam susceptibility due to alteration of its catalytic motif [40,41,42,43], although hyperexpression of pbp4 gene and mutations in PBP4 amino acid sequence may be responsible for reduced beta-lactam E. faecalis susceptibility, this seems not to be the case for ceftobiprole bactericidal activity that remains unaffected [40].
- An epidemiologic analysis of the populations of E. faecalis isolated in our Institution showed an ampicillin MIC distribution constantly ≤2 mg/L.
- A pharmacologic study by Arensdorff and colleagues showed the achievement of a mean plasma amoxicillin concentration of 18.5 mg/L after administration of the drug by continuous intravenous infusion [43].
- In our hospital, ceftobiprole and ampicillin TDM is available for proper drug dosing.
4. Materials and Methods
4.1. Study Design, Patients, Definitions
4.2. Statistical Analysis and Measures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kajihara, T.; Nakamura, S.; Iwanaga, N.; Oshima, K.; Takazono, T.; Miyazaki, T.; Izumikawa, K.; Yanagihara, K.; Kohno, N.; Kohno, S. Clinical characteristics and risk factors of enterococcal infections in Nagasaki, Japan: A retrospective study. BMC Infect. Dis. 2015, 15, 426. [Google Scholar] [CrossRef] [PubMed]
- Dahl, A.; Iversen, K.; Tonder, N.; Hoest, N.; Arpi, M.; Dalsgaard, M.; Chehri, M.; Soerensen, L.L.; Fanoe, S.; Junge, S.; et al. Prevalence of Infective Endocarditis in Enterococcus faecalis Bacteremia. J. Am. Coll. Cardiol. 2019, 74, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Siddiqui, N.; Saif, M.W. Enterococcus Faecalis Infective Endocarditis and Colorectal Carcinoma: Case of New Association Gaining Ground. Gastroenterol. Res. 2018, 11, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Pericàs, J.M.; Corredoira, J.; Moreno, A.; García-País, M.J.; Falces, C.; Rabuñal, R.; Mestres, C.A.; Alonso, M.P.; Marco, F.; Quintana, E.; et al. Relationship Between Enterococcus faecalis Infective Endocarditis and Colorectal Neoplasm: Preliminary Results From a Cohort of 154 Patients. Rev. Esp. Cardiol. 2017, 70, 451–458. [Google Scholar] [CrossRef]
- Hook, E.W., 3rd; Roberts, R.B.; Sande, M.A. Antimicrobial therapy of experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1975, 8, 564–570. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Ceftobiprole Activity against over 60,000 Clinical Bacterial Pathogens Isolated in Europe, Turkey, and Israel from 2005 to 2010. Antimicrob. Agents Chemother. 2014, 58, 3882–3888. [Google Scholar] [CrossRef]
- Arias, C.A.; Singh, K.V.; Panesso, D.; Murray, B.E. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J. Antimicrob. Chemother. 2007, 60, 594–598. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Guillotel, E.; Luque-Paz, D.; Maataoui, N.; Lescure, F.X.; Cattoir, V. In vitro bactericidal activity of amoxicillin combined with different cephalosporins against endocarditis-associated Enterococcus faecalis clinical isolates. J. Antimicrob. Chemother. 2019, 74, 3511–3514. [Google Scholar] [CrossRef]
- Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.; Strynadka, N.C. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 2012, 287, 32096–32102. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Continuous versus intermittent infusion of antibiotics in Gram-negative multidrug-resistant infections. Curr. Opin. Infect. Dis. 2021, 34, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Bennet, J.E.; Dolin, R. Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 2492–2504. [Google Scholar]
- Fowler, V.G., Jr.; Miro, J.M.; Hoen, B.; Cabell, C.H.; Abrutyn, E.; Rubinstein, E.; Corey, G.R.; Spelman, D.; Bradley, S.F.; Barsic, B.; et al. Staphylococcus aureus endocarditis: A consequence of medical progress. JAMA 2005, 293, 3012–3021. [Google Scholar] [CrossRef]
- Diekema, D.J.; Beekman, S.E.; Chapin, K.C.; Morel, K.A.; Munson, E.; Doern, G.V. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J. Clin. Microbiol. 2003, 41, 3655–3660. [Google Scholar] [CrossRef] [PubMed]
- Fernández Guerrero, M.L.; Goyenechea, A.; Verdejo, C.; Roblas, R.F.; de Górgolas, M. Enterococcal endocarditis on native and prosthetic valves: A review of clinical and prognostic factors with emphasis on hospital-acquired infections as a major determinant of outcome. Medicine 2007, 86, 363–377. [Google Scholar] [CrossRef]
- Parker, M.T.; Ball, L.C. Streptococci and aerococci associated with systemic infection in man. J. Med. Microbiol. 1976, 9, 275–302. [Google Scholar] [CrossRef]
- Baldassarri, L.; Creti, R.; Arciola, C.R.; Montanaro, L.; Venditti, M.; Di Rosa, R. Analysis of virulence factors in cases of enterococcal endocarditis. Clin. Microbiol. Infect. 2004, 10, 1006–1008. [Google Scholar] [CrossRef] [PubMed]
- Coque, T.M.; Patterson, J.E.; Steckelberg, J.M.; Murray, B.E. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J. Infect. Dis. 1995, 171, 1223–1229. [Google Scholar] [CrossRef]
- Singh, K.V.; Nallapareddy, S.R.; Sillanpää, J.; Murray, B.E. Importance of the Collagen Adhesin Ace in Pathogenesis and Protection against Enterococcus faecalis Experimental Endocarditis. PLoS Pathog. 2010, 6, e1000716. [Google Scholar] [CrossRef]
- Rich, R.L.; Kreikemeyer, B.; Owens, R.T.; LaBrenz, S.; Narayana, S.V.; Weinstock, G.M.; Murray, B.E.; Höök, M. Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J. Biol. Chem. 1999, 274, 26939–26945. [Google Scholar] [CrossRef]
- Giuliano, S.; Guastalegname, M.; Russo, A.; Falcone, M.; Ravasio, V.; Rizzi, M.; Bassetti, M.; Viale, P.; Pasticci, M.B.; Durante-Mangoni, E.; et al. Candida endocarditis: Systematic literature review from 1997 to 2014 and analysis of 29 cases from the Italian Study of Endocarditis. Expert Rev. Anti Infect. Ther. 2017, 15, 807–818. [Google Scholar] [CrossRef]
- Nallapareddy, S.R.; Singh, K.V.; Sillanpää, J.; Garsin, D.A.; Höök, M.; Erlandsen, S.L.; Murray, B.E. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Investig. 2006, 116, 2799–2807. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.E.; Sweeney, A.H.; Simms, M.; Carley, N.; Mangi, R.; Sabetta, J.; Lyons, R.W. An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine 1995, 74, 191–200. [Google Scholar]
- Fontana, R.; Grossato, A.; Ligozzi, M.; Tonin, E.A. In vitro response to bactericidal activity of cell wall-active antibiotics does not support the general opinion that enterococci are naturally tolerant to these antibiotics. Antimicrob. Agents Chemother. 1990, 34, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Bayer, A.S. Significance of in-vitro penicillin tolerance in experimental enterococcal endocarditis. J. Antimicrob. Chemother. 1987, 19, 475–485. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, J.T.; van Vianen, W.; Hu, E.; van Leeuwen, W.B.; Valkenburg, H.A.; Thompson, J.; Michel, M.F. Distribution, antibiotic susceptibility and tolerance of bacterial isolates in culture-positive cases of endocarditis in The Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 728–734. [Google Scholar] [CrossRef]
- Katip, W.; Okonogi, S.; Oberdorfer, P. The Thirty-Day Mortality Rate and Nephrotoxicity Associated With Trough Serum Vancomycin Concentrations During Treatment of Enterococcal Infections: A Propensity Score Matching Analysis. Front. Pharmacol. 2022, 12, 773994. [Google Scholar] [CrossRef]
- Wu, T.; Meyer, K.; Moeck, G.; Arhin, F.F.; Mendes, R.E. In vitro activity of oritavancin alone or in combination against vancomycin-susceptible and -resistant enterococci. J. Antimicrob. Chemother. 2019, 74, 1300–1305. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Bolger, A.F.; Levison, M.E.; Ferrieri, P.; Gerber, M.A.; Tani, L.Y.; Gewitz, M.; et al. Infective endocarditis: Diagnosis, antimicrobial therapy, and management of complications: A statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: Endorsed by the Infectious Diseases Society of America. Circulation 2005, 111, e394–e434. [Google Scholar]
- Mainardi, J.L.; Gutmann, L.; Acar, J.F.; Goldstein, F.W. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob. Agents Chemother. 1995, 39, 1984–1987. [Google Scholar] [CrossRef]
- Moon, T.M.; D’Andréa, E.D.; Lee, C.W.; Soares, A.; Jakoncic, J.; Desbonnet, C.; Garcia-Solache, M.; Rice, L.B.; Page, R.; Peti, W. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance. J. Biol. Chem. 2018, 293, 18574–18584. [Google Scholar] [CrossRef]
- Gavaldà, J.; Len, O.; Miró, J.M.; Muñoz, P.; Montejo, M.; Alarcón, A.; de la Torre-Cisneros, J.; Peña, C.; Martínez-Lacasa, X.; Sarria, C.; et al. Brief communication: Treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann. Intern. Med. 2007, 146, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Hidalgo, N.; Almirante, B.; Gavaldà, J.; Gurgui, M.; Peña, C.; de Alarcón, A.; Ruiz, J.; Vilacosta, I.; Montejo, M.; Vallejo, N.; et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating enterococcus faecalis infective endocarditis. Clin. Infect. Dis. 2013, 56, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Fernández-Hidalgo, N.; Pilmis, B.; Tattevin, P.; Mainardi, J.L. Aminoglycosides for infective endocarditis: Time to say goodbye? Clin. Microbiol. Infect. 2020, 26, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Murthy, B.; Schmitt-Hoffmann, A. Pharmacokinetics and Pharmacodynamics of Ceftobiprole, an Anti-MRSA Cephalosporin with Broad-Spectrum Activity. Clin. Pharmacokinet. 2008, 47, 21–33. [Google Scholar] [CrossRef]
- Martin, C.; Viviand, X.; Alaya, M.; Lokiec, F.; Ennabli, K.; Said, R.; Pecking, M. Penetration of ceftriaxone (1 or 2 grams intravenously) into mediastinal and cardiac tissues in humans. Antimicrob. Agents Chemother. 1996, 40, 812–815. [Google Scholar] [CrossRef]
- Boni, S.; Antonucci, M.; Manca, A.; De Nicolò, A.; Martinelli, L.; Artioli, S.; Pacini, G.; Di Perri, G.; D’avolio, A. Ceftobiprole and daptomycin concentrations in valve tissue in a patient with mitralic native valve endocarditis. J. Chemother. 2022, 34, 416–418. [Google Scholar] [CrossRef]
- Henry, X.; Amoroso, A.; Coyette, J.; Joris, B. Interaction of ceftobiprole with the low-affinity PBP 5 of Enterococcus faecium. Antimicrob. Agents Chemother. 2010, 54, 953–955. [Google Scholar] [CrossRef]
- Henry, X.; Verlaine, O.; Amoroso, A.; Coyette, J.; Frère, J.-M.; Joris, B. Activity of ceftaroline against Enterococcus faecium PBP5. Antimicrob. Agents Chemother. 2013, 57, 6358–6360. [Google Scholar] [CrossRef]
- Lazzaro, L.M.; Cassisi, M.; Stefani, S.; Campanile, F. Impact of PBP4 Alterations on β-Lactam Resistance and Ceftobiprole Non-Susceptibility among Enterococcus faecalis. Clinical Isolates. Front. Cell Infect. Microbiol. 2022, 11, 816657. [Google Scholar] [CrossRef]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef]
- Fontana, R.; Canepari, P.; Satta, G.; Coyette, J. Identification of the lethal target of benzylpenicillin in Streptococcus faecalis by in vivo penicillin binding studies. Nature 1980, 287, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Fontana, R.; Cerini, R.; Longoni, P.; Grossato, A.; Canepari, P. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J. Bacteriol. 1983, 155, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Arensdorff, L.; Boillat-Blanco, N.; Decosterd, L.; Buclin, T.; De Vallière, S. Adequate plasma drug concentrations suggest that amoxicillin can be administered by continuous infusion using elastomeric pumps. J. Antimicrob. Chemother. 2017, 72, 2613–2615. [Google Scholar] [CrossRef] [PubMed]
- Campanile, F.; Bongiorno, D.; Mongelli, G.; Zanghì, G.; Stefani, S. Bactericidal activity of ceftobiprole combined with different antibiotics against selected Gram-positive isolates. Microbiol. Infect. Dis. 2019, 93, 77–81. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef]
- Craig, W.A. Antimicrobial resistance issues of the future. Diagn. Microbiol. Infect. Dis. 1996, 25, 213–217. [Google Scholar] [CrossRef]
- Craig, W.A. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn. Microbiol. Infect. Dis. 1995, 22, 89–96. [Google Scholar] [CrossRef]
- Giuliano, S.; Angelini, J.; Flammini, S.; Tascini, C. Comment on: Streptococcal and enterococcal endocarditis: Time for individualized antibiotherapy? J. Antimicrob. Chemother. 2022, 77, 2044–2045. [Google Scholar] [CrossRef]
- Flateau, C.; Riazi, A.; Cassard, B.; Camus, M.; Diamantis, S. Streptococcal and enterococcal endocarditis: Time for individualized antibiotherapy? J. Antimicrob. Chemother. 2021, 76, 3073–3076. [Google Scholar] [CrossRef]
- Thieme, L.; Klinger-Strobel, M.; Hartung, A.; Stein, C.; Makarewicz, O.; Pletz, M.V. In vitro synergism and anti-biofilm activity of ampicillin, gentamicin, ceftaroline and ceftriaxone against Enterococcus faecalis. J. Antimicrob. Chemother. 2018, 73, 1553–1561. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, B.D.; Alcantara, J.; Costerton, J.W. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob. Agents Chemother. 1992, 36, 2054–2056. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Allison, D.G.; Gilbert, P. Resistance of bacterial biofilms to antibiotics: A growth-rate related effect? J. Antimicrob. Chemother. 1988, 22, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Jarzembowski, T.; Daca, A.; Witkowski, J.; Rutkowski, B.; Gołębiewska, J.; Dębska-Ślizień, A. Changes of PBP5 gene expression in enterococcal isolates from renal transplantation recipients. Biomed. Res. Int. 2013, 2013, 687156. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.A.; Balwit, J.M.; Vesga, O. Variant subpopulations of Staphylococcus aureus as cause of persistent and recurrent infections. Infect. Agents Dis. 1994, 3, 302–312. [Google Scholar]
- Edwards, A.M. Phenotype switching is a natural consequence of Staphylococcus aureus replication. J. Bacteriol. 2012, 194, 5404–5412. [Google Scholar] [CrossRef]
- Abbanat, D.; Shang, W.; Amsler, K.; Santoro, C.; Baum, E.; Crespo-Carbone, S.; Lynch, A.S. Evaluation of the in vitro activities of ceftobiprole and comparators in staphylococcal colony or microtitre plate biofilm assays. Int. J. Antimicrob. Agents 2014, 43, 32–39. [Google Scholar] [CrossRef]
- Attanasio, V.; Di Luca, M.; Carozza, A.; Severino, S.; Pallotto, C.; Capoluongo, N.; Palmiero, G.; Bernardo, M.; Tascini, C. Clinical efficacy of amoxicillin/clavulanate plus cefditoren as de-escalation combination therapy for endocarditis due to strongly biofilm-forming Enterococcus faecalis. Infect. Dis. 2020, 52, 376–379. [Google Scholar] [CrossRef]
- Giuliano, S.; Acquasanta, A.; Martini, L.; Sbrana, F.; Flammini, S.; Tascini, C. Cefditoren: A clinical overview. New Microbiol. 2023, 46, 9–17. [Google Scholar]
- Chong, Y.P.; Moon, S.M.; Bang, K.M.; Park, H.J.; Park, S.Y.; Kim, M.N.; Park, K.H.; Kim, S.H.; Lee, S.O.; Choi, S.H.; et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: Analysis of a prospective observational cohort study. Antimicrob. Agents Chemother. 2013, 57, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Sexton, D.J.; Mick, N.; Nettles, R.; Fowler, V.G., Jr.; Ryan, T.; Bashore, T.; Corey, G.R. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 2000, 30, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Graupner, C.; Vilacosta, I.; Ng, C.S.; Underwood, M.J. Periannular extension of infective endocarditis. J. Am. Coll. Cardiol. 2002, 39, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Habib, G.; Hoen, B.; Tornos, P.; Thuny, F.; Prendergast, B.; Vilacosta, I.; Moreillon, P.; de Jesus Antunes, M.; Thilen, U.; Lekakis, J.; et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): The Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur. Heart J. 2009, 30, 2369–2413. [Google Scholar]
Patient Number; Sex; Age | Diagnosis | Duration ABPR (Days) | Partial Oral Treatment Duration after ABPR (Days) | Surgery | Microbiological Eradication | Clinical Outcome |
---|---|---|---|---|---|---|
1; male; 41 | IE (prosthetic aortic valve endocarditis) | 8 | linezolid; 20 | Valve replacement with bioprosthesis | yes | cure |
2; male; 80 | IE (prosthetic aortic valve endocarditis) | 30 | amoxicillin/ clavulanate cefditoren; 37 | Valve replacement with bioprosthesis | no | cure |
3; female; 79 | IE (prosthetic aortic valve endocarditis) | 22 | / | Valve replacement with bioprosthesis | no | cure |
4; male; 83 | IE (prosthetic aortic valve endocarditis) | 5 | / | / | yes | death |
5; male; 52 | IE (native aortic and mitral valve endocarditis) | 19 | amoxicillin /clavulanate cefditoren; 20 | Valve replacement with bioprosthesis | yes | relapse |
6; male; 62 | IE (native mitral valve endocarditis) | 33 | amoxicillin /clavulanate cefditoren; 13 | Mitral valvuloplasty | yes | cure |
7; male; 64 | IE (native aortic valve endocarditis) | Not known | / | Valve replacement with bioprosthesis | yes | cure |
8; female; 81 | IE (prosthetic aortic valve endocarditis and spondylodiscitis) | 40 | / | / | yes | cure |
9; male; 75 | Primary, complicated bacteremia (aortic vascular graft infection) | 23 | / | / | yes | cure |
10; male; 82 | IE (prosthetic aortic valve endocarditis) | 43 | amoxicillin/ clavulanate cefditoren; 5 | Valve replacement with bioprosthesis | yes | cure |
11; male; 80 | IE (native mitral valve endocarditis) | 21 | / | / | yes | death |
12; male; 83 | IE (prosthetic aortic valve endocarditis) | 25 | / | / | yes | cure |
13; female; 61 | IE (native aortic valve endocarditis) | 27 | / | Valve replacement with bioprosthesis | yes | cure |
14; female; 85 | IE (prosthetic aortic and native mitral valve endocarditis) | 60 | / | Valve replacement with bioprosthesis | no | death |
15; male; 76 | Primary, uncomplicated bacteremia | 14 | / | / | yes | cure |
16; female; 68 | Primary, complicated bacteremia (septic arthritis) | 46 | / | / | yes | cure |
17; female; 84 | Primary, uncomplicated bacteremia | 14 | / | / | yes | cure |
18; male; 60 | Primary, uncomplicated bacteremia | 27 | / | / | yes | cure |
19; male; 27 | Primary, uncomplicated bacteremia | 12 | / | / | yes | cure |
20; female; 68 | Primary, complicated bacteremia (vertebral osteomyelitis) | 17 | amoxicillin/ clavulanate cefditoren; indefinite | / | yes | cure |
21; male; 74 | Primary, complicated bacteremia (vertebral osteomyelitis) | 10 | / | / | yes | cure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliano, S.; Angelini, J.; D’Elia, D.; Geminiani, M.; Barison, R.D.; Giacinta, A.; Sartor, A.; Campanile, F.; Curcio, F.; Cotta, M.O.; et al. Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus faecalis Invasive Infections: “The Times They Are A-Changin”. Antibiotics 2023, 12, 879. https://doi.org/10.3390/antibiotics12050879
Giuliano S, Angelini J, D’Elia D, Geminiani M, Barison RD, Giacinta A, Sartor A, Campanile F, Curcio F, Cotta MO, et al. Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus faecalis Invasive Infections: “The Times They Are A-Changin”. Antibiotics. 2023; 12(5):879. https://doi.org/10.3390/antibiotics12050879
Chicago/Turabian StyleGiuliano, Simone, Jacopo Angelini, Denise D’Elia, Monica Geminiani, Roberto Daniele Barison, Alessandro Giacinta, Assunta Sartor, Floriana Campanile, Francesco Curcio, Menino Osbert Cotta, and et al. 2023. "Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus faecalis Invasive Infections: “The Times They Are A-Changin”" Antibiotics 12, no. 5: 879. https://doi.org/10.3390/antibiotics12050879