In Vitro Activities of Ceftobiprole, Dalbavancin, Tedizolid and Comparators against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Study Design, Setting and Patient Population
4.2. Bacterial Isolates
4.3. Antimicrobial Susceptibility Testing
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, S.; Noviello, S.; Leone, S. Epidemiology and microbiology of skin and soft tissue infections. Curr. Opin. Infect. Dis. 2016, 29, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ray, G.T.; Suaya, J.A.; Baxter, R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: A retrospective population-based study. BMC Infect. Dis. 2013, 13, 252. [Google Scholar] [CrossRef]
- Poulakou, G.; Lagou, S.; Tsiodras, S. Whatʼs new in the epidemiology of skin and soft tissue infections in 2018? Curr. Opin. Infect. Dis. 2019, 32, 77–86. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Guidance for Industry. Acute Bacterial Skin and Skin-Structure Infections: Developing Drugs for Treatment. Guidance for Industry. 2013. Available online: https://www.fda.gov/downloads/Drugs/GuidanceCompli-anceRegulatoryInformation/Guidances/UCM071185.pdf (accessed on 25 March 2023).
- European Center for Disease and Prevention Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Long-Term Care Facilities 2016–2017. Stockholm, Sweden. ECDC 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use2016-2017.pdf (accessed on 10 March 2023).
- Nathwani, D.; Moitra, S.; Dunbar, J.; Crosby, G.; Peterkin, G.; Davey, P. Skin and soft tissue infections: Development of a collaborative management plan between community and hospital care. Int. J. Clin. Pract. 1998, 52, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kuti, J.L.; Nicolau, D.P. Antimicrobial Management of Complicated Skin and Skin Structure Infections in the Era of Emerging Resistance. Surg. Infect. 2005, 6, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Maraki, S.; Koumaki, D.; Manios, G.A.; Koumaki, V.; Kassotakis, D.; Zacharopoulos, G.V.; Kofteridis, D.P.; Manios, A.; de Bree, E. A Six-Year Retrospective Study of Microbiological Characteristics and Antimicrobial Resistance in Specimens from a Tertiary Hospital’s Surgical Ward. Antibiotics 2023, 12, 490. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.J.; Sexton, D.J.; Kanafani, Z.A.; Auten, G.; Kaye, K.S. Severe Surgical Site Infection in Community Hospitals: Epidemiology, Key Procedures, and the Changing Prevalence of Methicillin-Resistant Staphylococcus aureus. Infect. Control. Hosp. Epidemiol. 2007, 28, 1047–1053. [Google Scholar] [CrossRef]
- Macmorran, E.; Harch, S.; Athan, E.; Lane, S.; Tong, S.; Crawford, L.; Krishnaswamy, S.; Hewagama, S. The rise of methicillin resistant Staphylococcus aureus: Now the dominant cause of skin and soft tissue infection in Central Australia. Epidemiol. Infect. 2017, 145, 2817–2826. [Google Scholar] [CrossRef]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef]
- Morrissey, I.; Leakey, A.; Northwood, J.B. In vitro activity of ceftaroline and comparator antimicrobials against European and Middle East isolates from complicated skin and skin-structure infections collected in 2008–2009. Int. J. Antimicrob. Agents 2012, 40, 227–234. [Google Scholar] [CrossRef]
- Ray, G.T.; Suaya, J.A.; Baxter, R. Microbiology of skin and soft tissue infections in the age of community-acquired methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2013, 76, 24–30. [Google Scholar] [CrossRef]
- Pulido-Cejudo, A.; Guzmán-Gutierrez, M.; Jalife-Montaño, A.; Ortiz-Covarrubias, A.; Martínez-Ordaz, J.L.; Noyola-Villalobos, H.F.; Hurtado-Lopez, L.-M. Management of acute bacterial skin and skin structure infections with a focus on patients at high risk of treatment failure. Ther. Adv. Infect. Dis. 2017, 4, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Garau, J.; Ostermann, H.; Medina, J.; Ávila, M.; McBride, K.; Blasi, F.; REACH Study Group. Current management of patients hospitalized with complicated skin and soft tissue infections across Europe (2010–2011): Assessment of clinical practice patterns and real-life effectiveness of antibiotics from the REACH study. Clin. Microbiol. Infect. 2013, 19, E377–E385. [Google Scholar] [CrossRef]
- Edelsberg, J.; Berger, A.; Weber, D.J.; Mallick, R.; Kuznik, A.; Oster, G. Clinical and Economic Consequences of Failure of Initial Antibiotic Therapy for Hospitalized Patients with Complicated Skin and Skin-Structure Infections. Infect. Control. Hosp. Epidemiol. 2008, 29, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Labreche, M.J.; Lee, G.C.; Attridge, R.T.; Mortensen, E.M.; Koeller, J.; Du, L.C.; Nyren, N.R.; Treviño, L.B.; Treviño, S.B.; Peña, J.; et al. Treatment Failure and Costs in Patients with Methicillin-Resistant Staphylococcus aureus (MRSA) Skin and Soft Tissue Infections: A South Texas Ambulatory Research Network (STARNet) Study. J. Am. Board Fam. Med. 2013, 26, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Forcade, N.A.; Parchman, M.L.; Jorgensen, J.H.; Du, L.C.; Nyren, N.R.; Treviño, L.B.; Peña, J.; Mann, M.W.; Muñoz, A.; Treviño, S.B.; et al. Prevalence, Severity, and Treatment of Community-Acquired Methicillin-Resistant Staphylococcus aureus (CA-MRSA) Skin and Soft Tissue Infections in 10 Medical Clinics in Texas: A South Texas Ambulatory Research Network (STARNet) Study. J. Am. Board Fam. Med. 2011, 24, 543–550. [Google Scholar] [CrossRef]
- Smith, J.R.; Roberts, K.D.; Rybak, M.J. Dalbavancin: A Novel Lipoglycopeptide Antibiotic with Extended Activity Against Gram-Positive Infections. Infect. Dis. Ther. 2015, 4, 245–258. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Calic, D.; Schweizer, F.; Zelenitsky, S.; Adam, H.; Lagacé-Wiens, P.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Karlowsky, J.A. New lipoglycopeptides: A comparative review of dalbavancin, oritavancin and telavancin. Drugs 2010, 70, 859–886. [Google Scholar] [CrossRef]
- Liu, F.; Rajabi, S.; Shi, C.; Afifirad, G.; Omidi, N.; Kouhsari, E.; Khoshnood, S.; Azizian, K. Antibacterial activity of recently approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) strains: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 37. [Google Scholar] [CrossRef]
- Critchley, I.A.; Eckburg, P.B.; Jandourek, A.; Biek, D.; Friedland, H.D.; Thye, D.A. Review of ceftaroline fosamil microbiology: Integrated FOCUS studies. J. Antimicrob. Chemother. 2011, 66 (Suppl. 3), iii45–iii51. [Google Scholar] [CrossRef]
- Barbour, A.; Schmidt, S.; Rand, K.H.; Derendorf, H. Ceftobiprole: A novel cephalosporin with activity against Gram-positive and Gram-negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 2009, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rybak, J.M.; Roberts, K. Tedizolid Phosphate: A Next-Generation Oxazolidinone. Infect. Dis. Ther. 2015, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huband, M.; Pfaller, M.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. J. Glob. Antimicrob. Resist. 2019, 19, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Ocheretyaner, E.R.; Park, T.E. Delafloxacin: A novel fluoroquinolone with activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Expert Rev. Anti-infect. Ther. 2018, 16, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Streit, J.; Carvalhaes, C.; Huband, M.; Pfaller, M. Frequency and antimicrobial susceptibility of bacterial isolates from patients hospitalised with community-acquired skin and skin-structure infection in Europe, Asia and Latin America. J. Glob. Antimicrob. Resist. 2018, 17, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Dozois, A.; Thomsen, I.; Jimenez-Truque, N.; Soper, N.; Pearson, A.; Mohamed-Rambaran, P.; Dettorre, K.B.; Creech, C.B.; Wright, S.W. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus among skin and soft tissue infections in an emergency department in Guyana. Emerg. Med. J. 2014, 32, 800–803. [Google Scholar] [CrossRef]
- Diekema, D.J.; Pfaller, M.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 2019, 6 (Suppl. 1), S47–S53. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Gao, W.; Ouyang, W.; Wei, J.; Wen, Z. Epidemiology and outcomes of complicated skin and soft tissue infections among inpatients in Southern China from 2008 to 2013. PLoS ONE 2016, 11, e0149960. [Google Scholar] [CrossRef]
- Ray, G.T.; Suaya, J.A.; Baxter, R. Trends and Characteristics of Culture-Confirmed Staphylococcus aureus Infections in a Large U.S. Integrated Health Care Organization. J. Clin. Microbiol. 2012, 50, 1950–1957. [Google Scholar] [CrossRef]
- Szumowski, J.D.; Cohen, D.E.; Kanaya, F.; Mayer, K.H. Treatment and Outcomes of Infections by Methicillin-Resistant Staphylococcus aureus at an Ambulatory Clinic. Antimicrob. Agents Chemother. 2007, 51, 423–428. [Google Scholar] [CrossRef]
- Zervos, M.J.; Freeman, K.; Vo, L.; Haque, N.; Pokharna, H.; Raut, M.; Kim, M. Epidemiology and Outcomes of Complicated Skin and Soft Tissue Infections in Hospitalized Patients. J. Clin. Microbiol. 2012, 50, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Bouchiat, C.; Curtis, S.; Spiliopoulou, I.; Bes, M.; Cocuzza, C.E.; Codita, I.; Dupieux, C.; Giormezis, N.; Kearns, A.; Laurent, F.; et al. MRSA infections among patients in the emergency department: A European multicentre study. J. Antimicrob. Chemother. 2016, 72, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, C.; Ieronymaki, A.; Matoula, T.; Caroni, C.; Polythodoraki, E.; Chryssou, S.-E.; Kontochristopoulos, G.; Antoniou, C. Six-Year Retrospective Review of Hospital Data on Antimicrobial Resistance Profile of Staphylococcus aureus Isolated from Skin Infections from a Single Institution in Greece. Antibiotics 2017, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Nodaras, C.; Kotsaki, A.; Tziolos, N.; Kontopoulou, T.; Akinosoglou, K.; Chrisanthakopoulou, M.; Kranidioti, E.; Kritselis, I.; Voloudakis, N.; Vittoros, V.; et al. Microbiology of acute bacterial skin and skin-structure infections in Greece: A proposed clinical prediction score for the causative pathogen. Int. J. Antimicrob. Agents 2019, 54, 750–756. [Google Scholar] [CrossRef]
- Cascioferro, S.; Carbone, D.; Parrino, B.; Pecoraro, C.; Giovannetti, E.; Cirrincione, G.; Diana, P. Therapeutic Strategies To Counteract Antibiotic Resistance in MRSA Biofilm-Associated Infections. Chemmedchem 2020, 16, 65–80. [Google Scholar] [CrossRef]
- World Health Organization. Priorization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lee, G.C.; Dallas, S.D.; Wang, Y.; Olsen, R.J.; Lawson, K.A.; Wilson, J.; Frei, C.R. Emerging multidrug resistance in community-associated Staphylococcus aureus involved in skin and soft tissue infections and nasal colonization. J. Antimicrob. Chemother. 2017, 72, 2461–2468. [Google Scholar] [CrossRef]
- Shorr, A.F. Epidemiology and Economic Impact of Meticillin-Resistant Staphylococcus aureus: Review and analysis of the literature. Pharmacoeconomics 2007, 25, 751–768. [Google Scholar] [CrossRef]
- Cosgrove, S.E.; Carroll, K.C.; Perl, T.M. Staphylococcus aureus with Reduced Susceptibility to Vancomycin. Clin. Infect. Dis. 2004, 39, 539–545. [Google Scholar] [CrossRef]
- Dhand, A.; Sakoulas, G. Reduced vancomycin susceptibility among clinical Staphylococcus aureus isolates (‘the MIC Creep’): Implications for therapy. F1000 Med. Rep. 2012, 4, 4. [Google Scholar] [CrossRef]
- Jacob, J.T.; DiazGranados, C.A. High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections: A meta-analysis. Int. J. Infect. Dis. 2013, 17, e93–e100. [Google Scholar] [CrossRef]
- Flamm, R.K.; Duncan, L.R.; Hamed, K.A.; Smart, J.I.; Mendes, R.E.; Pfaller, M.A. Ceftobiprole Activity against Bacteria from Skin and Skin Structure Infections in the United States from 2016 through 2018. Antimicrob. Agents Chemother. 2020, 64, e02566-19. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.; Kothari, N.; Jemmely, N.; Redder, N. Susceptibility of ceftobiprole against Gram-positive and Gram-negative clinical isolates from 2019 from different European territories. J. Glob. Antimicrob. Resist. 2022, 29, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, T.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn. Microbiol. Infect. Dis. 2008, 61, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Dandan, Y.; Shi, W.; Yang, Y.; Yonggui, Z.; Zhu, D.; Yan, G.; Hu, F. Antimicrobial activity of ceftobiprole and comparator agents when tested against gram-positive and -negative organisms collected across China (2016–2018). BMC Microbiol. 2022, 22, 282. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, W.-C.; Lai, C.-C.; Shih, T.-P.; Tang, H.-J. Anti-MRSA Cephalosporin versus Vancomycin-Based Treatment for Acute Bacterial Skin and Skin Structure Infection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antibiotics 2021, 10, 1020. [Google Scholar] [CrossRef]
- Overcash, J.S.; Kim, C.; Keech, R.; Gumenchuk, I.; Ninov, B.; Gonzalez-Rojas, Y.; Waters, M.; Simeonov, S.; Engelhardt, M.; Saulay, M.; et al. Ceftobiprole Compared With Vancomycin Plus Aztreonam in the Treatment of Acute Bacterial Skin and Skin Structure Infections: Results of a Phase 3, Randomized, Double-blind Trial (TARGET). Clin. Infect. Dis. 2020, 73, e1507–e1517. [Google Scholar] [CrossRef]
- Klinker, K.; Borgert, S.J. Beyond Vancomycin: The Tail of the Lipoglycopeptides. Clin. Ther. 2015, 37, 2619–2636. [Google Scholar] [CrossRef]
- Citron, D.M.; Tyrrell, K.L.; Goldstein, E.J. Comparative in vitro activities of dalbavancin and seven comparator agents against 41 Staphylococcus species cultured from osteomyelitis infections and 18 VISA and hVISA strains. Diagn. Microbiol. Infect. Dis. 2014, 79, 438–440. [Google Scholar] [CrossRef]
- Di Pilato, V.; Ceccherini, F.; Sennati, S.; D’Agostino, F.; Arena, F.; D’Atanasio, N.; Di Giorgio, F.P.; Tongiani, S.; Pallecchi, L.; Rossolini, G.M. In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times. Diagn. Microbiol. Infect. Dis. 2019, 96, 114901. [Google Scholar] [CrossRef]
- Sivori, F.; Cavallo, I.; Kovacs, D.; Guembe, M.; Sperduti, I.; Truglio, M.; Pasqua, M.; Prignano, G.; Mastrofrancesco, A.; Toma, L.; et al. Role of Extracellular DNA in Dalbavancin Activity against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms in Patients with Skin and Soft Tissue Infections. Microbiol. Spectr. 2022, 10, e00351-22. [Google Scholar] [CrossRef]
- Monteagudo-Martínez, N.; del Pozo, J.S.-G.; Nava, E.; Ikuta, I.; Galindo, M.; Jordán, J. Acute Bacterial Skin and Skin-Structure Infections, efficacy of Dalbavancin: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2020, 20, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Scutera, S.; Sparti, R.; Comini, S.; Menotti, F.; Musso, T.; Cuffini, A.M.; Allizond, V.; Banche, G. Dalbavancin Boosts the Ability of Neutrophils to Fight Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2023, 24, 2541. [Google Scholar] [CrossRef] [PubMed]
- Papavramidis, T.; Gentile, I.; Cattelan, A.M.; Magnasco, L.; Viale, P.; Francisci, D.; Kofteridis, D.P.; Tiseo, G.; Giamarellos-Bourboulis, E.J.; Lagi, F.; et al. REDS study: Retrospective effectiveness study of dalbavancin and other standard of care of the same IV antibiotic class in patients with ABSSSI. Int. J. Antimicrob. Agents 2023, 61, 106746. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Hong, S.K.; Choi, S.; Im, W.; Yong, D.; Lee, K. In Vitro Activity of Tedizolid Against Gram-Positive Bacteria in Patients With Skin and Skin Structure Infections and Hospital-Acquired Pneumonia: A Korean Multicenter Study. Ann. Lab. Med. 2015, 35, 523–530. [Google Scholar] [CrossRef]
- Barber, K.E.; Smith, J.R.; Raut, A.; Rybak, M.J. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J. Antimicrob. Chemother. 2015, 71, 152–155. [Google Scholar] [CrossRef]
- Mikamo, H.; Takesue, Y.; Iwamoto, Y.; Tanigawa, T.; Kato, M.; Tanimura, Y.; Kohno, S. Efficacy, safety and pharmacokinetics of tedizolid versus linezolid in patients with skin and soft tissue infections in Japan—Results of a randomised, multicentre phase 3 study. J. Infect. Chemother. 2018, 24, 434–442. [Google Scholar] [CrossRef]
- Joseph, W.S.; Culshaw, D.; Anuskiewicz, S.; De Anda, C.; Prokocimer, P. Tedizolid and Linezolid for Treatment of Acute Bacterial Skin and Skin Structure Infections of the Lower Extremity versus Non–Lower-Extremity Infections. J. Am. Podiatr. Med. Assoc. 2017, 107, 264–271. [Google Scholar] [CrossRef]
- Biedenbach, D.J.; Bouchillon, S.K.; Johnson, B.; Alder, J.; Sahm, D.F. In vitro activity of tedizolid against Staphylococcus aureus and Streptococcus pneumoniae collected in 2013 and 2014 from sites in Latin American countries, Australia, New Zealand, and China. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1933–1939. [Google Scholar] [CrossRef]
- Hasannejad-Bibalan, M.; Mojtahedi, A.; Biglari, H.; Halaji, M.; Ebrahim-Saraie, H.S. Antibacterial Activity of Tedizolid, a Novel Oxazolidinone Against Methicillin-Resistant Staphylococcus aureus: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2019, 25, 1330–1337. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation for MICs and Zone Diameters: Version 12.0, Valid from 2022-01-01; EUCAST: Basel, Switzerland, 2021. [Google Scholar]
- CLSI M02; Performance Standards for Antimicrobial Susceptibility Testing, 13th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018.
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Antibiotic | Antibiotic Class | Mechanism of Action | Type of Activity | Antimicrobial Spectrum | Date of Approval | Reference |
---|---|---|---|---|---|---|
Dalbavancin | Lipoglycopeptide | Inhibits bacterial cell wall synthesis by binding to D-alanyl-D-alanyl residue on growing peptidoglycan | Bactericidal | MSSA, MRSA, VISA, S. pyogenes, S. agalactiae, S. anginosus, S. faecalis vancomycin-susceptible | FDA: May 2014 | [19,20,21] |
Telavancin | Lipoglycopeptide | Inhibits peptidoglycan cell wall synthesis and disrupts bacterial cell membrane integrity | Bactericidal | MSSA, MRSA, hVISA, VISA, S. pyogenes, S. agalactiae, S. anginosus group, PRSP, VSE | FDA: September 2009 | [20] |
Oritavancin | Lipoglycopeptide | Inhibits peptidoglycan cell wall synthesis and disrupts bacterial cell membrane integrity | Bactericidal | MSSA, MRSA, VISA, VRSA, VRE | FDA: August 2014 EMA: March 2015 | [20] |
Ceftaroline | Fifth–generation cephalosporin | Inhibits cell wall synthesis by binding to penicillin-binding proteins (PBPs) | Bactericidal | MSSA, MRSA, VRSA, S. pyo-genes, S. agalactiae, S. pneumoniae, E. faecalis, Gram-negative bacteria (except Pseudomonas and ESBL Enterobacterales) | FDA: October 2010 EMA: August 2012 | [22] |
Cefobiprole | Fifth–generation cephalosporin | Inhibits cell wall synthesis by binding to penicillin-binding proteins (PBPs) | Bactericidal | MSSA, MRSA, ampicillin-susceptible enterococci, PRSP, Gram-negative bacteria (except pathogens producing ESBLs) | EMA: October 2013 | [23] |
Tedizolid | Second- generation oxazolidinone | Inhibits bacterial protein synthesis by binding to the 50 S ribosomal subunit | Bacteriostatic | MSSA, MRSA, CoNS, S. pyogenes, S. agalactiae, S. anginosus group, VSE, VRE | FDA: June 2014 EMA: March 2015 | [24] |
Omadacycline | New-generation Broad-spectrum aminomethylcycline | Inhibits bacterial protein synthesis by binding to the 30 S ribosomal subunit | Bacteriostatic | MSSA, MRSA, PRSP, VSE, VRE | FDA: October 2018 | [25] |
Delafloxacin | New-generation anionic fluoroquinolone | Inhibits the activities of both bacterial topoisomerase IV and DNA gyrase | Bactericidal | MRSA, MSSA, CoNS, S. pyogenes, S. agalactiae, S. anginosus group, S. pneumoniae, E. coli, K. pneumoniae, E. cloacae, P. aeruginosa | FDA: June 2017 | [26] |
Antibiotic | MIC50 | MIC90 | Range | S% |
---|---|---|---|---|
Vancomycin | 1 | 2 | 0.38–2 | 100 |
Daptomycin | 0.5 | 1 | 0.125–1.5 | 98.4 |
Ceftobiprole | 0.38 | 1 | 0.064–1.5 | 100 |
Linezolid | 0.38 | 1 | 0.125–2 | 100 |
Tedizolid | 0.25 | 0.38 | 0.094–0.5 | 100 |
Dalbavancin | 0.064 | 0.094 | 0.008–0.125 | 100 |
Number of Isolates Inhibited at (mg/L) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic | 0.008 | 0.023 | 0.032 | 0.047 | 0.064 | 0.094 | 0.125 | 0.19 | 0.25 | 0.38 | 0.5 | 0.75 | 1 | 1.5 | 2 |
Vancomycin | 2 | 5 | 16 | 43 | 36 | 22 | |||||||||
Daptomycin | 2 | 4 | 24 | 12 | 20 | 12 | 48 | 2 | |||||||
Ceftobiprole | 4 | 5 | 12 | 19 | 28 | 28 | 12 | 4 | 12 | ||||||
Linezolid | 10 | 10 | 36 | 20 | 8 | 4 | 30 | 2 | 4 | ||||||
Tedizolid | 4 | 28 | 28 | 30 | 22 | 12 | |||||||||
Dalbavancin | 2 | 14 | 8 | 30 | 40 | 20 | 10 |
No. | ||
---|---|---|
Resistance to three indicated classes | 26 | |
1 | P-OX, FA, MU | 10 |
2 | P-OX, E, CM | 6 |
3 | P-OX, FA, LE | 4 |
4 | P-OX, GM, FA | 2 |
5 | P-OX, E, MU | 2 |
6 | P-OX, FA, TE | 2 |
Resistance to four indicated classes | 35 | |
7 | P-OX, E, CM, LE | 12 |
8 | P-OX, E, CM, TE | 9 |
9 | P-OX, FA, GM, TE | 8 |
10 | P-OX, CM, FA, MU | 2 |
11 | P-OX, FA, MU, LE | 2 |
12 | P-OX, E, FA, LE | 2 |
Resistance to five indicated classes | 16 | |
13 | P-OX, E, CM, FA, LE | 8 |
14 | P-OX, E, CM, FA, TE | 6 |
15 | P-OX, CM, TE, LE, SXT | 2 |
Resistance to six indicated classes | 12 | |
16 | P-OX, E, CM, FA, LE, TE | 8 |
17 | P-OX, E, CM, FA, LE, MU | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Iliaki-Giannakoudaki, E.; Hamilos, G. In Vitro Activities of Ceftobiprole, Dalbavancin, Tedizolid and Comparators against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections. Antibiotics 2023, 12, 900. https://doi.org/10.3390/antibiotics12050900
Maraki S, Mavromanolaki VE, Stafylaki D, Iliaki-Giannakoudaki E, Hamilos G. In Vitro Activities of Ceftobiprole, Dalbavancin, Tedizolid and Comparators against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections. Antibiotics. 2023; 12(5):900. https://doi.org/10.3390/antibiotics12050900
Chicago/Turabian StyleMaraki, Sofia, Viktoria Eirini Mavromanolaki, Dimitra Stafylaki, Evangelia Iliaki-Giannakoudaki, and George Hamilos. 2023. "In Vitro Activities of Ceftobiprole, Dalbavancin, Tedizolid and Comparators against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections" Antibiotics 12, no. 5: 900. https://doi.org/10.3390/antibiotics12050900
APA StyleMaraki, S., Mavromanolaki, V. E., Stafylaki, D., Iliaki-Giannakoudaki, E., & Hamilos, G. (2023). In Vitro Activities of Ceftobiprole, Dalbavancin, Tedizolid and Comparators against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus Associated with Skin and Soft Tissue Infections. Antibiotics, 12(5), 900. https://doi.org/10.3390/antibiotics12050900