Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Study Variables
4.3. Data Collection Process
4.4. Statistical Analysis
4.5. Study Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, K.; Bari, Y.A.; Younas, M.; Javaid, S.T.; Imran, A. Progress of COVID-19 Epidemic in Pakistan. Asia Pac. J. Public Health 2020, 32, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Shafi, M.; Liu, J.; Ren, W. Impact of COVID-19 pandemic on micro, small, and medium-sized Enterprises operating in Pakistan. Res. Glob. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Salman, M.; Mustafa, Z.U.; Khan, T.M.; Shehzadi, N.; Hussain, K. How Prepared Was Pakistan for the COVID-19 Outbreak? Disaster Med. Public Health Prep. 2020, 14, e44–e45. [Google Scholar] [CrossRef]
- Aheron, S.; Victory, K.R.; Imtiaz, A.; Fellows, I.; Gilani, S.I.; Gilani, B.; Reed, C.; Hakim, A.J. A Nationally Representative Survey of COVID-19 in Pakistan, 2021–2022. Emerg. Infect. Dis. 2022, 28, S69–S75. [Google Scholar] [CrossRef]
- Taimoor, M.; Ali, S.; Shah, I.; Muwanika, F.R. COVID-19 Pandemic Data Modeling in Pakistan Using Time-Series SIR. Comput. Math. Methods Med. 2022, 2022, 6001876. [Google Scholar] [CrossRef]
- Abbas, A.; Mannan, A. Reasons behind declining of cases during the COVID-19 wavelets in Pakistan: Public healthcare system or government smart lockdown policy? Cien. Saude. Colet. 2022, 27, 2973–2984. [Google Scholar] [CrossRef]
- Akhtar, H.; Afridi, M.; Akhtar, S.; Ahmad, H.; Ali, S.; Khalid, S.; Awan, S.M.; Jahangiri, S.; Khader, Y.S. Pakistan’s Response to COVID-19: Overcoming National and International Hypes to Fight the Pandemic. JMIR Public Health Surveill. 2021, 7, e28517. [Google Scholar] [CrossRef]
- Kamran, K.; Ali, A. Challenges and Strategies for Pakistan in the Third Wave of COVID-19: A Mini Review. Front. Public Health 2021, 9, 690820. [Google Scholar] [CrossRef]
- Rasheed, R.; Rizwan, A.; Javed, H.; Sharif, F.; Zaidi, A. Socio-economic and environmental impacts of COVID-19 pandemic in Pakistan—An integrated analysis. Environ. Sci. Pollut. Res. 2021, 28, 19926–19943. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 25 February 2023).
- WHO. COVID-19. Pakistan. 2023. Available online: https://covid19.who.int/region/emro/country/pk (accessed on 10 April 2023).
- Mustafa, Z.U.; Khan, A.H.; Harun, S.N.; Salman, M.; Godman, B. Antibiotic Overprescribing among Neonates and Children Hospitalized with COVID-19 in Pakistan and the Implications. Antibiotics 2023, 12, 646. [Google Scholar] [CrossRef]
- Ramzan, K.; Shafiq, S.; Raees, I.; Mustafa, Z.U.; Salman, M.; Khan, A.H.; Meyer, J.C.; Godman, B. Co-Infections, Secondary Infections, and Antimicrobial Use in Patients Hospitalized with COVID-19 during the First Five Waves of the Pandemic in Pakistan; Findings and Implications. Antibiotics 2022, 11, 789. [Google Scholar] [CrossRef]
- Khan, E.A. COVID-19 in children: Epidemiology, presentation, diagnosis and management. J. Pak. Med. Assoc. 2020, 70 (Suppl. 3), S108–S112. [Google Scholar] [CrossRef]
- Mustafa, Z.U.; Kow, C.S.; Salman, M.; Kanwal, M.; Riaz, M.B.; Parveen, S.; Hasan, S.S. Pattern of medication utilization in hospitalized patients with COVID-19 in three District Headquarters Hospitals in the Punjab province of Pakistan. Explor. Res. Clin. Soc. Pharm. 2021, 5, 100101. [Google Scholar] [CrossRef]
- Iqtadar, S.; Khan, A.; Mumtaz, S.U.; Pascual-Figal, D.A.; Livingstone, S.; Abaidullah, S. Tocilizumab therapy for severely-ill COVID-19 pneumonia patients: A single-centre retrospective study. J. Physiol. Pharmacol. 2022, 73, 547–553. [Google Scholar]
- Kamran, S.H.; Mustafa, Z.U.; Rao, A.Z.; Hasan, S.S.; Zahoor, F.; Sarwar, M.U.; Khan, S.; Butt, S.; Rameez, M.; Asif Abbas, M. SARS-CoV-2 infection pattern, transmission and treatment: Multi-center study in low to middle-income districts hospitals in Punjab, Pakistan. Pak. J. Pharm. Sci. 2021, 34 (Suppl. 3), 1135–1142. [Google Scholar]
- Mustafa, Z.U.; Salman, M.; Aldeyab, M.; Kow, C.S.; Hasan, S.S. Antimicrobial consumption among hospitalized patients with COVID-19 in Pakistan. SN ComPract. Clin. Med. 2021, 3, 1691–1695. [Google Scholar] [CrossRef]
- Mustafa, Z.U.; Saleem, M.S.; Ikram, M.N.; Salman, M.; Butt, S.A.; Khan, S.; Godman, B.; Seaton, R.A. Co-infections and antimicrobial use among hospitalized COVID-19 patients in Punjab, Pakistan: Findings from a multicenter, point prevalence survey. Pathog. Glob. Health 2022, 116, 421–427. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Seaton, R.A.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Godman, B.; Fatima, M.; Ahmad, Z.; Sajid, A.; Rehman, I.U.; Nadeem, M.U.; Javaid, Z.; Malik, M.; et al. Sale of WHO AWaRe groups antibiotics without a prescription in Pakistan: A simulated client study. J. Pharm. Policy Pract. 2020, 13, 26. [Google Scholar] [CrossRef]
- Torres, N.F.; Chibi, B.; Kuupiel, D.; Solomon, V.P.; Mashamba-Thompson, T.P.; Middleton, L.E. The use of non-prescribed antibiotics; prevalence estimates in low-and-middle-income countries. A systematic review and meta-analysis. Arch. Public Health 2021, 79, 2. [Google Scholar] [CrossRef]
- Aslam, A.; Zin, C.S.; Jamshed, S.; Ab Rahman, N.S.; Ahmed, S.I.; Pallós, P.; Gajdács, M. Self-Medication with Antibiotics: Prevalence, Practices and Related Factors among the Pakistani Public. Antibiotics 2022, 11, 795. [Google Scholar] [CrossRef]
- Bilal, M.; Haseeb, A.; Khan, M.H.; Arshad, M.H.; Ladak, A.A.; Niazi, S.K.; Musharraf, M.D.; Manji, A.A. Self-Medication with Antibiotics among People Dwelling in Rural Areas of Sindh. J. Clin. Diagn. Res. 2016, 10, OC08–OC13. [Google Scholar] [CrossRef]
- Asghar, S.; Atif, M.; Mushtaq, I.; Malik, I.; Hayat, K.; Babar, Z.-U. Factors associated with inappropriate dispensing of antibiotics among non-pharmacist pharmacy workers. Res. Soc. Adm. Pharm. 2019, 16, 805–811. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Auta, A.; Hadi, M.A.; Oga, E.; Adewuyi, E.O.; Abdu-Aguye, S.N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D.J. Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis. J. Infect. 2019, 78, 8–18. [Google Scholar] [CrossRef]
- Belachew, S.A.; Hall, L.; Selvey, L.A. Non-prescription dispensing of antibiotic agents among community drug retail outlets in Sub-Saharan African countries: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2021, 10, 13. [Google Scholar] [CrossRef]
- Ocan, M.; Obuku, E.A.; Bwanga, F.; Akena, D.; Richard, S.; Ogwal-Okeng, J.; Obua, C. Household antimicrobial self-medication: A systematic review and meta-analysis of the burden, risk factors and outcomes in developing countries. BMC Public Health 2015, 15, 742. [Google Scholar] [CrossRef] [Green Version]
- Nepal, G.; Bhatta, S. Self-medication with Antibiotics in WHO Southeast Asian Region: A Systematic Review. Cureus 2018, 10, e2428. [Google Scholar] [CrossRef] [Green Version]
- Yeika, E.V.; Ingelbeen, B.; Kemah, B.L.; Wirsiy, F.S.; Fomengia, J.N.; van der Sande, M.A.B. Comparative assessment of the prevalence, practices and factors associated with self-medication with antibiotics in Africa. Trop. Med. Int. Health 2021, 26, 862–881. [Google Scholar] [CrossRef]
- Torres, N.; Chibi, B.; Middleton, L.; Solomon, V.; Mashamba-Thompson, T. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: A systematic scoping review. Public Health 2019, 168, 92–101. [Google Scholar] [CrossRef]
- Belachew, S.A.; Hall, L.; Erku, D.A.; Selvey, L.A. No prescription? No problem: Drivers of non-prescribed sale of antibiotics among community drug retail outlets in low and middle income countries: A systematic review of qualitative studies. BMC Public Health 2021, 21, 1056. [Google Scholar] [CrossRef]
- Bert, F.; Previti, C.; Calabrese, F.; Scaioli, G.; Siliquini, R. Antibiotics Self Medication among Children: A Systematic Review. Antibiotics 2022, 11, 1583. [Google Scholar] [CrossRef]
- Lubwama, M.; Onyuka, J.; Ayazika, K.T.; Ssetaba, L.J.; Siboko, J.; Daniel, O.; Mushi, M.F. Knowledge, attitudes, and perceptions about antibiotic use and antimicrobial resistance among final year undergraduate medical and pharmacy students at three universities in East Africa. PLoS ONE 2021, 16, e0251301. [Google Scholar] [CrossRef]
- Edessa, D.; Sisay, M.; Hagos, B.; Amare, F. Antimicrobial Use and Management of Childhood Diarrhea at Community Drug Retail Outlets in Eastern Ethiopia: A Matched Questionnaire-Based and Simulated Patient-Case Study. Pediatr. Health Med. Ther. 2022, 13, 63–79. [Google Scholar] [CrossRef]
- Sulis, G.; Sayood, S.; Katukoori, S.; Bollam, N.; George, I.; Yaeger, L.H.; Chavez, M.A.; Tetteh, E.; Yarrabelli, S.; Pulcini, C.; et al. Exposure to World Health Organization’s AWaRe antibiotics and isolation of multidrug resistant bacteria: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 1193–1202. [Google Scholar] [CrossRef]
- Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low- and middle-income countries: Current status and future directions. Expert Rev. Anti-Infect. Ther. 2021, 20, 147–160. [Google Scholar] [CrossRef]
- Lai, C.-C.; Chen, S.-Y.; Ko, W.-C.; Hsueh, P.-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Hashmi, F.K. Pakistan’s national action plan for antimicrobial resistance: Translating ideas into reality. Lancet Infect. Dis. 2018, 18, 1066–1067. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Gandra, S.; Alvarez-Uria, G.; Turner, P.; Joshi, J.; Limmathurotsakul, D.; van Doorn, H.R. Antimicrobial Resistance Surveillance in Low- and Middle-Income Countries: Progress and Challenges in Eight South Asian and Southeast Asian Countries. Clin. Microbiol. Rev. 2020, 33, e00048-19. [Google Scholar] [CrossRef]
- WHO. Call to Action on Antimicrobial Resistance (AMR)-2021. Available online: https://www.un.org/pga/75/wp-content/uploads/sites/100/2021/04/Call-to-Action-on-Antimicrobial-Resistance-AMR-2021.pdf (accessed on 9 April 2023).
- Godman, B.; Egwuenu, A.; Haque, M.; Malande, O.O.; Schellack, N.; Kumar, S.; Saleem, Z.; Sneddon, J.; Hoxha, I.; Islam, S.; et al. Strategies to Improve Antimicrobial Utilization with a Special Focus on Developing Countries. Life 2021, 11, 528. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, e3463–e3470. [Google Scholar] [CrossRef] [Green Version]
- Bilal, H.; Khan, M.N.; Rehman, T.; Hameed, M.F.; Yang, X. Antibiotic resistance in Pakistan: A systematic review of past decade. BMC Infect. Dis. 2021, 21, 244. [Google Scholar] [CrossRef]
- Arshad, F.; Saleem, S.; Tahir, R.; Ghazal, A.; Khawaja, A.; Jahan, S. Four year trend of antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus in a tertiary care hospital, Lahore. J. Pak. Med. Assoc. 2022, 72, 296–299. [Google Scholar]
- WHO. Global Action Plan on Antimicrobial Resistance-Report by the Secretariat. 2016. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_24-en.pdf (accessed on 8 April 2023).
- OECD Health Policy Studies. Stemming the Superbug Tide. 2018. Available online: https://www.oecd-ilibrary.org/sites/9789264307599-en/index.html?itemId=/content/publication/9789264307599-en&mimeType=text/html. (accessed on 8 April 2023).
- World Bank Group. Pulling Together to Beat Superbugs Knowledge and Implementation Gaps in Addressing Antimicrobial Resistance. 2019. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/32552/Pulling-Together-to-Beat-Superbugs-Knowledge-and-Implementation-Gaps-in-Addressing-Antimicrobial-Resistance.pdf?sequence=1&isAllowed=y (accessed on 8 April 2023).
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. Available online: https://www.who.int/publications/i/item/9789240027336 (accessed on 8 April 2023).
- Saleem, Z.; Godman, B.; Azhar, F.; Kalungia, A.C.; Fadare, J.; Opanga, S.; Markovic-Pekovic, V.; Hoxha, I.; Saeed, A.; Al-Gethamy, M.; et al. Progress on the national action plan of Pakistan on antimicrobial resistance (AMR): A narrative review and the implications. Expert Rev. Anti-Infect. Ther. 2021, 20, 71–93. [Google Scholar] [CrossRef]
- Saleem, Z.; Haseeb, A.; Godman, B.; Batool, N.; Altaf, U.; Ahsan, U.; Khan, F.U.; Mustafa, Z.U.; Nadeem, M.U.; Farrukh, M.J.; et al. Point Prevalence Survey of Antimicrobial Use during the COVID-19 Pandemic among Different Hospitals in Pakistan: Findings and Implications. Antibiotics 2022, 12, 70. [Google Scholar] [CrossRef]
- Yau, J.W.; Thor, S.M.; Tsai, D.; Speare, T.; Rissel, C. Antimicrobial stewardship in rural and remote primary health care: A narrative review. Antimicrob. Resist Infect. Control. 2021, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.; Apisarnthanarak, A.; Schellack, N.; Cornistein, W.; Al Maani, A.; Adnan, S.; Stevens, M.P. Global Antimicrobial Stewardship with a Focus on Low- and Middle-Income Countries: A position statement for the international society for infectious diseases. Int. J. Infect. Dis. 2020, 96, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Sharland, M.; Pulcini, C.; Harbarth, S.; Zeng, M.; Gandra, S.; Mathur, S.; Magrini, N. Classifying antibiotics in the WHO Essential Medicines List for optimal use—Be AWaRe. Lancet Infect. Dis. 2018, 18, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharland, M.; Gandra, S.; Huttner, B.; Moja, L.; Pulcini, C.; Zeng, M.; Mendelson, M.; Cappello, B.; Cooke, G.; Magrini, N.; et al. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use—The new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. Lancet Infect. Dis. 2019, 19, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Bednarčuk, N.; Golić Jelić, A.; Stoisavljević Šatara, S.; Stojaković, N.; Marković Peković, V.; Stojiljković, M.P.; Popović, N.; Škrbić, R. Antibiotic Utilization during COVID-19: Are We Over-Prescribing? Antibiotics 2023, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Daria, S.; Islam, M.R. Indiscriminate Use of Antibiotics for COVID-19 Treatment in South Asian Countries is a Threat for Future Pandemics Due to Antibiotic Resistance. Clin Pathol. 2022, 15, 2632010X221099889. [Google Scholar] [CrossRef]
- Malik, S.S.; Mundra, S. Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance. Antibiotics 2022, 12, 45. [Google Scholar] [CrossRef]
- Satria, Y.A.A.; Utami, M.S.; Prasudi, A. Prevalence of antibiotics prescription amongst patients with and without COVID-19 in low- and middle-income countries: A systematic review and meta-analysis. Ann. Trop. Med. Parasitol. 2022, 1–13. [Google Scholar] [CrossRef]
- Nandi, A.; Pecetta, S.; Bloom, D.E. Global antibiotic use during the COVID-19 pandemic: Analysis of pharmaceutical sales data from 71 countries, 2020–2022. Eclinicalmedicine 2023, 57, 101848. [Google Scholar] [CrossRef]
- WHO. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book. 2022. Available online: https://www.who.int/publications/i/item/9789240062382 (accessed on 8 April 2023).
- Rachina, S.; Kozlov, R.; Kurkova, A.; Portnyagina, U.; Palyutin, S.; Khokhlov, A.; Reshetko, O.; Zhuravleva, M.; Palagin, I.; on behal of Russian Working Group of the Project. Antimicrobial Dispensing Practice in Community Pharmacies in Russia during the COVID-19 Pandemic. Antibiotics 2022, 11, 586. [Google Scholar] [CrossRef]
- Islam, A.; Akhtar, Z.; Hassan, Z.; Chowdhury, S.; Rashid, M.; Aleem, M.A.; Ghosh, P.K.; Mah-E-Muneer, S.; Parveen, S.; Ahmmed, K.; et al. Pattern of Antibiotic Dispensing at Pharmacies According to the WHO Access, Watch, Reserve (AWaRe) Classification in Bangladesh. Antibiotics 2022, 11, 247. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.A.; Darwish, S.F.; Zewail, M.B.; Mohammed, M.; Saeed, H.; Rabea, H. Antibiotic misuse and compliance with infection control measures during COVID-19 pandemic in community pharmacies in Egypt. Int. J. Clin. Pract. 2021, 75, e14081. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Khan, F.U.; Ali, S.; Rahman, A.U.; Khan, S.A. Assessment of without prescription antibiotic dispensing at community pharmacies in Hazara Division, Pakistan: A simulated client’s study. PLoS ONE 2022, 17, e0263756. [Google Scholar] [CrossRef]
- Punjab, GO. Punjab Drug Rules 2007. Available online: https://punjablaws.punjab.gov.pk/uploads/articles/drug-rules-pdf.pdf. (accessed on 10 May 2023).
- Cox, J.A.; Vlieghe, E.; Mendelson, M.; Wertheim, H.; Ndegwa, L.; Villegas, M.V.; Gould, I.; Levy Hara, G. Antibiotic stewardship in low- and middle-income countries: The same but different? Clin. Microbiol. Infect. 2017, 23, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, H.; Masood, R.A.; Tariq, H.; Khalid, W.; Rashid, M.A.; Munir, M.U. Current pharmacy practices in low- and middle-income countries; recommendations in response to the COVID-19 pandemic. Drugs Ther. Perspect. 2020, 36, 355–357. [Google Scholar] [CrossRef]
- Hedima, E.W.; Adeyemi, M.S.; Ikunaiye, N.Y. Community pharmacists: On the frontline of health service against COVID-19 in LMICs. Res. Soc. Adm. Pharm. 2021, 17, 1964–1966. [Google Scholar] [CrossRef]
- Sami, S.A.; Marma, K.K.S.; Chakraborty, A.; Singha, T.; Rakib, A.; Uddin, G.; Hossain, M.K.; Uddin, S.M.N. A comprehensive review on global contributions and recognition of pharmacy professionals amidst COVID-19 pandemic: Moving from present to future. Futur. J. Pharm. Sci. 2021, 7, 119. [Google Scholar] [CrossRef]
- Cadogan, C.A.; Hughes, C.M. On the frontline against COVID-19: Community pharmacists’ contribution during a public health crisis. Res. Soc. Adm. Pharm. 2020, 17, 2032–2035. [Google Scholar] [CrossRef]
- Kibuule, D.N.L.; Sefah, I.A.; Kurdi, A.; Phuong, T.N.T.; Kwon, H.-Y.; Godman, B. Activities in Namibia to limit the prevalence and mortality from COVID-19 including community pharmacy activities and the implications. Sch. Acad. J. Pharm. 2021, 5, 82–92. [Google Scholar] [CrossRef]
- Mustafa, Z.U.; Nazir, M.; Majeed, H.K.; Salman, M.; Hayat, K.; Khan, A.H.; Meyer, J.C.; Godman, B. Exploring Knowledge of Antibiotic Use, Resistance, and Stewardship Programs among Pharmacy Technicians Serving in Ambulatory Care Settings in Pakistan and the Implications. Antibiotics 2022, 11, 921. [Google Scholar] [CrossRef]
- Abdu-Aguye, S.N.; Barde, K.G.; Yusuf, H.; Lawal, B.K.; Shehu, A.; Mohammed, E. Investigating Knowledge of Antibiotics, Antimicrobial Resistance and Antimicrobial Stewardship Concepts Among Final Year Undergraduate Pharmacy Students in Northern Nigeria. Integr. Pharm. Res. Pract. 2022, 11, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Jamshed, S.; Rosenthal, M.; Haq, N.U.; Chang, J.; Rasool, M.F.; Malik, U.R.; Rehman, A.U.; Khan, K.M.; Fang, Y. Understanding of Pharmacy Students towards Antibiotic Use, Antibiotic Resistance and Antibiotic Stewardship Programs: A Cross-Sectional Study from Punjab, Pakistan. Antibiotics 2021, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Atif, M.; Asghar, S.; Mushtaq, I.; Malik, I. Community pharmacists as antibiotic stewards: A qualitative study exploring the current status of Antibiotic Stewardship Program in Bahawalpur, Pakistan. J. Infect. Public Health 2019, 13, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Godman, B.; Mukokinya, M.M.A.; Opanga, S.; Oluka, M. Dispensing of antimicrobials in Kenya: A cross-sectional pilot study and its implications. J. Res. Pharm. Pract. 2018, 7, 77–82. [Google Scholar] [CrossRef]
- Marković-Peković, V.; Grubiša, N.; Burger, J.; Bojanić, L.; Godman, B. Initiatives to Reduce Nonprescription Sales and Dispensing of Antibiotics: Findings and Implications. J. Res. Pharm. Pract. 2017, 6, 120–125. [Google Scholar] [CrossRef]
- Babar, Z.-U. Ten recommendations to improve pharmacy practice in low and middle-income countries (LMICs). J. Pharm. Policy Pract. 2021, 14, 6. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Do, T.X.; Nguyen, H.A.; Nguyen, C.T.T.; Meyer, J.C.; Godman, B.; Skosana, P.; Nguyen, B.T. A National Survey of Dispensing Practice and Customer Knowledge on Antibiotic Use in Vietnam and the Implications. Antibiotics 2022, 11, 1091. [Google Scholar] [CrossRef]
- Setia, M.S. Methodology series module 5: Sampling strategies. Indian J. Dermatol. 2016, 61, 505–509. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Jager, J.; Putnick, D.L. Sampling in developmental science: Situations, shortcomings, solutions, and standards. Dev. Rev. 2013, 33, 357–370. [Google Scholar] [CrossRef] [Green Version]
- WHO. Anatomical Therapeutic Chemical (ATC) Classification. 2021. Available online: https://www.who.int/tools/atc-ddd-toolkit/atc-classification (accessed on 5 March 2023).
- Teng, C.L.; Achike, F.I.; Phua, K.L.; Nurjahan, M.I.; Mastura, I.; Asiah, H.N.; Mariam, A.M.; Narayanan, S.; Norsiah, A.; Sabariah, I.; et al. Modifying antibiotic prescribing: The effectiveness of academic detailing plus information leaflet in a Malaysian primary care setting. Med. J. Malays. 2006, 61, 323–331. [Google Scholar]
- Awad, A.I.; Eltayeb, I.B.; Baraka, O.Z. Changing antibiotics prescribing practices in health centers of Khartoum State, Sudan. Eur. J. Clin. Pharmacol. 2006, 62, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.K.A.; Khan, O.F.; Matin, M.A.; Begum, K.; Galib, M.A. Effect of standard treatment guidelines with or without prescription audit on prescribing for acute respiratory tract infection (ARI) and diarrhoea in some thana health complexes (THCs) of Bangladesh. Bangladesh Med. Res. Counc. Bull. 2007, 33, 21–30. [Google Scholar] [PubMed]
- Kafle, K.K.; Bhuju, G.B.; Karkee, S.B.; Prasad, R.R.; Shrestha, N.; Shrestha, A.D.; Das, P.L.; Chataut, B.D.; Daud, M. An intervention improving prescribing practices and monitoring drugs availability in a district. Nepal Med. Coll. J. NMCJ 2009, 11, 217–221. [Google Scholar]
- Boonyasiri, A.; Thamlikitkul, V. Effectiveness of multifaceted interventions on rational use of antibiotics for patients with upper respiratory tract infections and acute diarrhea. J. Med. Assoc. Thail. 2014, 97 (Suppl 3), S13–S19. [Google Scholar]
- Egger, J.R.; Stankevitz, K.; Korom, R.; Angwenyi, P.; Sullivan, B.; Wang, J.; Hatfield, S.; Smith, E.; Popli, K.; Gross, J. Evaluating the effects of organizational and educational interventions on adherence to clinical practice guidelines in a low-resource primary-care setting in Kenya. Health Policy Plan. 2017, 32, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Lunn, A.D. Reducing inappropriate antibiotic prescribing in upper respiratory tract infection in a primary care setting in Kolkata, India. BMJ Open Qual. 2018, 7, e000217. [Google Scholar] [CrossRef]
- Tay, K.H.; Ariffin, F.; Sim, B.L.; Chin, S.Y.; Sobry, A.C. Multi-Faceted Intervention to Improve the Antibiotic Prescriptions among Doctors for Acute URI and Acute Diarrhoea Cases: The Green Zone Antibiotic Project. Malays. J. Med. Sci. 2019, 26, 101–109. [Google Scholar] [CrossRef]
- Chowdhury, F.; Sturm-Ramirez, K.; Al Mamun, A.; Iuliano, A.D.; Chisti, M.J.; Ahmed, M.; Bhuiyan, M.U.; Hossain, K.; Haider, M.S.; Aziz, S.A.; et al. Effectiveness of an educational intervention to improve antibiotic dispensing practices for acute respiratory illness among drug sellers in pharmacies, a pilot study in Bangladesh. BMC Health Serv. Res. 2018, 18, 676. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Xu, S.; Zhu, S.; Li, Z.; Yu, J.; Zhang, Y.; Zu, J.; Fang, Y.; Ross-Degnan, D. Assessment of non-prescription antibiotic dispensing at community pharmacies in China with simulated clients: A mixed cross-sectional and longitudinal study. Lancet Infect. Dis. 2019, 19, 1345–1354. [Google Scholar] [CrossRef]
- Opanga, S.R.N.; Wamaitha, A.; Abebrese Sefah, I.; Godman, B.B. Availability of Medicines in Community Pharmacy to Manage Patients with COVID-19 in Kenya; Pilot Study and Implications. Sch. Acad. J. Pharm. 2021, 3, 36–42. [Google Scholar] [CrossRef]
- Kimathi, G.; Kiarie, J.; Njarambah, L.; Onditi, J.; Ojakaa, D. A cross-sectional study of antimicrobial use among self-medicating COVID-19 cases in Nyeri County, Kenya. Antimicrob. Resist. Infect. Control. 2022, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Muloi, D.; Fèvre, E.M.; Bettridge, J.; Rono, R.; Ong’Are, D.; Hassell, J.M.; Karani, M.K.; Muinde, P.; van Bunnik, B.; Street, A.; et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J. Glob. Health 2019, 9, 010412. [Google Scholar] [CrossRef] [PubMed]
- WHO. Kenya National Action Plan on Antimicrobial Resistance: Review of Progress in the Human Health Sector. 2022. Available online: https://www.who.int/publications/i/item/9789240062689 (accessed on 18 March 2023).
- Godman, B.; Kamati, M.; Kibuule, D. Prevalence of self-medication for acute respiratory infections in young children in namibia: Findings and implications. J. Res. Pharm. Pract. 2019, 8, 220–224. [Google Scholar] [CrossRef]
- Marković-Peković, V.; Grubiša, N. Self-medication with antibiotics in the Republic of Srpska community pharmacies: Pharmacy staff behavior. Pharmacoepidemiol. Drug Saf. 2012, 21, 1130–1133. [Google Scholar] [CrossRef]
- Kitutu, F.E.; Kalyango, J.N.; Mayora, C.; Selling, K.E.; Peterson, S.; Wamani, H. Integrated community case management by drug sellers influences appropriate treatment of paediatric febrile illness in South Western Uganda: A quasi-experimental study. Malar. J. 2017, 16, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtz, V.; Herrera-Patino, J.J.; Santa-Ana-Tellez, Y.; Dreser, A.; Elseviers, M.; Stichele, R.V. Analysing policy interventions to prohibit over-the-counter antibiotic sales in four Latin American countries. Trop. Med. Int. Health 2013, 18, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacca, C.P.; Nino, C.Y.; Reveiz, L. Restriction of antibiotic sales in pharmacies in Bogota, Colombia: A descriptive study. Rev. Panam. De Salud Publica 2011, 30, 586–591. [Google Scholar]
Division | D1 | D2 | D3 | D4 | Total (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Drug Outlets | Pharmacy | Medical Store | Pharmacy | Medical Store | Pharmacy | Medical Store | Pharmacy | Medical Store | |
Numbers of drug sale outlets per division | 9 | 13 | 8 | 10 | 12 | 16 | 10 | 14 | 92 |
Drug outlet type | |||||||||
Chain | 4 | 0 | 5 | 2 | 5 | 4 | 4 | 2 | 26 (28.3) |
Independent | 5 | 13 | 3 | 8 | 5 | 12 | 3 | 12 | 66 (71.7) |
Location of drug sale outlets | |||||||||
Urban | 7 | 6 | 7 | 5 | 10 | 6 | 8 | 7 | 56 (60.9) |
Rural | 2 | 7 | 1 | 5 | 2 | 10 | 2 | 7 | 36 (39.1) |
Presence of qualified person | |||||||||
Yes | 3 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 30 (32.6) |
No | 6 | 10 | 3 | 7 | 7 | 13 | 5 | 11 | 62 (67.4) |
No. of encounters | 1322 | 812 | 1405 | 736 | 2673 | 1436 | 1792 | 916 | 11,092 |
Gender | |||||||||
Male | 872 | 455 | 752 | 245 | 1671 | 652 | 967 | 507 | 6121 (55.2) |
Female | 450 | 357 | 653 | 491 | 1002 | 784 | 825 | 409 | 4971 (44.8) |
Age (years) | |||||||||
<15 | 324 | 136 | 371 | 152 | 581 | 354 | 418 | 171 | 2507 (22.6) |
15–30 | 112 | 115 | 161 | 73 | 365 | 206 | 247 | 137 | 1416 (12.8) |
31–45 | 267 | 110 | 246 | 118 | 472 | 275 | 308 | 224 | 2020 (18.2) |
46–60 | 362 | 234 | 340 | 236 | 893 | 414 | 512 | 287 | 3278 (29.5) |
>60 | 257 | 217 | 287 | 157 | 362 | 187 | 307 | 97 | 1871 (16.9) |
Regions | D1 | D2 | D3 | D4 | Total (%) |
---|---|---|---|---|---|
Total encounters | 2134 | 2141 | 4109 | 2708 | 11,092 |
Encounters supplied with an antimicrobial | 1252 | 1446 | 2937 | 1810 | 7445 (67.1) |
Type of antimicrobial dispensed | |||||
Antibiotics | 1132 | 1014 | 3014 | 1522 | 6682 (74.3) |
Antivirals | 43 | 26 | 235 | 252 | 556 (6.2) |
Antifungals | 87 | 112 | 442 | 273 | 914 (10.2) |
Anthelmintics | 126 | 171 | 311 | 106 | 714 (7.9) |
Antiprotozoals | 12 | 31 | 54 | 34 | 131 (1.4) |
Total | 1400 | 1354 | 4056 | 2187 | 8997 |
Encounters suppled with an antimicrobial by route of administration | |||||
Oral | 640 | 720 | 2168 | 854 | 4382 (48.7) |
IV | 703 | 613 | 1562 | 1172 | 4050 (45.1) |
Topical | 57 | 21 | 326 | 161 | 565 (6.2) |
Antimicrobials supplied on prescription | |||||
Yes | 940 | 795 | 2847 | 1423 | 6005 (66.8) |
No | 460 | 559 | 1209 | 764 | 2992 (33.2) |
Indications | D1 | D2 | D3 | D4 | Total (%) |
---|---|---|---|---|---|
Respiratory tract infection | 382 | 316 | 1072 | 523 | 2293 (34.3) |
Gastrointestinal infection | 133 | 177 | 526 | 284 | 1120 (16.8) |
Skin and soft-tissue infection | 162 | 153 | 367 | 178 | 860 (12.9) |
Pre- or post-operative prophylaxis | 171 | 132 | 381 | 158 | 842 (12.6) |
COVID-19 | 158 | 117 | 363 | 170 | 808 (12.0) |
Urinary tract infection | 76 | 68 | 133 | 136 | 413 (6.2) |
Eye/ear infection | 36 | 24 | 118 | 41 | 219 (3.3) |
Others | 14 | 27 | 54 | 32 | 127 (1.9) |
Name of the Antibiotic and Classification | D1 | D2 | D3 | D4 | Total (%) |
---|---|---|---|---|---|
Ceftriaxone—‘W’ | 226 | 148 | 621 | 234 | 1229 (18.4) |
Amoxicillin—‘A’ | 213 | 208 | 426 | 186 | 1033 (15.4) |
Azithromycin—‘A’ | 156 | 157 | 474 | 211 | 998 (14.9) |
Metronidazole—‘A’ | 122 | 96 | 305 | 126 | 649 (9.7) |
Ciprofloxacin—‘A’ | 111 | 131 | 265 | 123 | 630 (9.4) |
Co-amoxiclav—‘A’ | 86 | 66 | 183 | 84 | 419 (6.3) |
Cefixime—‘W’ | 58 | 46 | 137 | 68 | 309 (4.6) |
Cefoperazone + sulbactam—‘W’ | 43 | 28 | 126 | 48 | 245 (3.7) |
Doxycycline—‘A’ | 36 | 23 | 86 | 36 | 181 (2.7) |
Co-trimoxazole—A’ | 18 | 13 | 98 | 27 | 156 (2.3) |
Name of Agent | D1 | D2 | D3 | D4 | Total (%) |
---|---|---|---|---|---|
Ceftriaxone—‘W’ | 34 | 27 | 114 | 52 | 227 (28.0) |
Azithromycin—‘W’ | 53 | 32 | 78 | 39 | 202 (25.0) |
Amoxicillin—‘A’ | 19 | 16 | 103 | 43 | 181 (22.4) |
Ciprofloxacin—‘W’ | 18 | 15 | 35 | 20 | 88 (10.9) |
Co-amoxiclav—‘A’ | 21 | 16 | 22 | 16 | 75 (9.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, B.; Sana, M.; Saleem, A.; Mustafa, Z.U.; Salman, M.; Khan, Y.H.; Mallhi, T.H.; Sono, T.M.; Meyer, J.C.; Godman, B.B. Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan. Antibiotics 2023, 12, 1018. https://doi.org/10.3390/antibiotics12061018
Gul B, Sana M, Saleem A, Mustafa ZU, Salman M, Khan YH, Mallhi TH, Sono TM, Meyer JC, Godman BB. Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan. Antibiotics. 2023; 12(6):1018. https://doi.org/10.3390/antibiotics12061018
Chicago/Turabian StyleGul, Bushra, Maria Sana, Aneela Saleem, Zia Ul Mustafa, Muhammad Salman, Yusra Habib Khan, Tauqeer Hussain Mallhi, Tiyani Milta Sono, Johanna C. Meyer, and Brian B. Godman. 2023. "Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan" Antibiotics 12, no. 6: 1018. https://doi.org/10.3390/antibiotics12061018
APA StyleGul, B., Sana, M., Saleem, A., Mustafa, Z. U., Salman, M., Khan, Y. H., Mallhi, T. H., Sono, T. M., Meyer, J. C., & Godman, B. B. (2023). Antimicrobial Dispensing Practices during COVID-19 and the Implications for Pakistan. Antibiotics, 12(6), 1018. https://doi.org/10.3390/antibiotics12061018