Cranberry/Chondroitin Sulfate Co-precipitate as a New Method for Controlling Urinary Tract Infections
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Biofilm Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary Tract Infection Syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Guglietta, A. Recurrent urinary tract infections in women: Risk factors, etiology, pathogenesis and prophylaxis. Futur. Microbiol. 2017, 12, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, F.; Allaert, F.A. Single-dose treatment of cystitis with fosfomycin trometamol (Monuril®): An analysis of 15 comparative trials on 2,048 patients. Mdd Mal. Infect. 1996, 26, 338–343. [Google Scholar] [CrossRef]
- Nicolle, L.E. Pivmecillinam in the treatment of urinary tract infections. J. Antimicrob. Chemother. 2000, 46 (Suppl. 1), 35. [Google Scholar] [CrossRef]
- Huttner, A.; Verhaegh, E.M.; Harbarth, S.; Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother. 2015, 70, 2456. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Roberts, P.L.; Stamm, W.E. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch. Intern. Med. 2007, 167, 2207. [Google Scholar] [CrossRef]
- Gupta, K.; Stamm, W.E. Outcomes associated with trimethoprim/sulphamethoxazole (TMP/SMX) therapy in TMP/SMXresistant community-acquired UTI. Int. J. Antimicrob. Agents 2002, 19, 554. [Google Scholar] [CrossRef]
- Wang, R.; LaSala, C. Role of antibiotic resistance in urinary tract infection management: A cost-effectiveness analysis. Am. J. Obstet. Gynecol. 2021, 225, 550.e1–550.e10. [Google Scholar] [CrossRef]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat. Rev. Genet. 2020, 18, 211–226. [Google Scholar] [CrossRef]
- Fu, Z.; Liska, D.; Talan, D.; Chung, M. Cranberry Reduces the Risk of Urinary Tract Infection Recurrence in Otherwise Healthy Women: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 2282. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Fang, C.-C.; Chen, N.-C.; Liu, S.S.-H.; Yu, P.-H.; Wu, T.-Y.; Chen, W.-T.; Lee, C.-C.; Chen, S.-C. Cranberry-containing products for prevention of urinary tract infections in susceptible populations: A systematic review and meta-analysis of randomized controlled trials. Arch. Intern. Med. 2012, 172, 988. [Google Scholar] [CrossRef] [PubMed]
- Lenger, S.; Bradley, M.S.; Thomas, D.A.; Bertolet, M.H.; Lowder, J.L.; Sutcliffe, S. D-mannose vs other agents for recurrent urinary tract infection prevention in adult women: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2020, 223, 265.e1–265.e13. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. Infection: Lactobacillus probiotic could prevent recurrent UTI. Nat. Rev. Urol. 2011, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Brust, G.J.; Fernández, A.R.; Villanueva-Ruiz, G.J.; Velasco, R.; Trujillo-Hernández, B.; Vásquez, C. Daily intake of 100 mg ascorbic acid as urinary tract infection prophylactic agent during pregnancy. Acta Obstet. Gynecol. Scand. 2007, 86, 783–787. [Google Scholar] [CrossRef]
- De Vita, D.; Giordano, S. Effectiveness of intravesical hyaluronic acid/chondroitin sulfate in recurrent bacterial cystitis: A randomized study. Int. Urogynecol J. 2012, 23, 1707. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.C.; Janssen, D.A.W. Intravesical hyaluronic acid and chondroitin sulfate for recurrent urinary tract infections: Systematic review and meta-analysis. Int. Urogynecol J. 2018, 29, 933. [Google Scholar] [CrossRef]
- Manoharan, A.; Ognenovska, S.; Paino, D.; Whiteley, G.; Glasbey, T.; Kriel, F.H.; Farrell, J.; Moore, K.H.; Manos, J.; Das, T. N-Acetylcysteine Protects Bladder Epithelial Cells from Bacterial Invasion and Displays Antibiofilm Activity against Urinary Tract Bacterial Pathogens. Antibiotics 2021, 10, 900. [Google Scholar] [CrossRef]
- Kranjčec, B.; Papeš, D.; Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: A ran-domized clinical trial. World J. Urol. 2014, 32, 79–84. [Google Scholar] [CrossRef]
- Stracy, M.; Snitser, O.; Yelin, I.; Amer, Y.; Parizade, M.; Katz, R.; Rimler, G.; Wolf, T.; Herzel, E.; Koren, G.; et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 2022, 375, 889–894. [Google Scholar] [CrossRef]
- Martinez, J.J.; Hultgren, S.J. Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli. Cell. Microbiol. 2002, 4, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Iavazzo, C.; Athanasiou, S.; Pitsouni, E.; Falagas, M.E. Hyaluronic Acid: An Effective Alternative Treatment of Interstitial Cystitis, Recurrent Urinary Tract Infections, and Hemorrhagic Cystitis? Eur. Urol. 2007, 51, 1534–1541. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C.; Hanno, P.; Kumar, K.; Thomas, H. Second multicenter, randomized, double-blind, parallel-group evaluation of effec-tiveness and safety of intravesical sodium chondroitin sulfate compared with inactive vehicle control in subjects with interstitial cystitis/bladder pain syndrome. Urology 2012, 79, 1220–12244. [Google Scholar] [CrossRef] [PubMed]
- Cicione, A.; Cantiello, F.; Ucciero, G.; Salonia, A.; Madeo, I.; Bava, I.; Aliberti, A.; Damiano, R. Restoring the glycosaminoglycans layer in recurrent cystitis: Experimental and clinical foundations. Int. J. Urol. 2014, 21, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Damiano, R.; Quarto, G.; Bava, I.; Ucciero, G.; De Domenico, R.; Palumbo, M.I.; Autorino, R. Prevention of Recurrent Urinary Tract Infections by Intravesical Administration of Hyaluronic Acid and Chondroitin Sulphate: A Placebo-Controlled Randomised Trial. Eur. Urol. 2011, 59, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Palleschi, G.; Carbone, A.; Zanello, P.P.; Mele, R.; Leto, A.; Fuschi, A.; Al Salhi, Y.; Velotti, G.; Al Rawashdah, S.; Coppola, G.; et al. Prospective study to compare antibiosis versus the association of N-acetylcysteine, D-mannose and Morinda citrifolia fruit extract in preventing urinary tract infections in patients submitted to urodynamic investigation. Arch. Ital. di Urol. e Androl. 2017, 89, 45–50. [Google Scholar] [CrossRef][Green Version]
- Cela-López, J.M.; Roldán, C.J.C.; Gómez-Lizarraga, G.; Martínez, V. A Natural Alternative Treatment for Urinary Tract Infections: Itxasol©, the Importance of the Formulation. Molecules 2021, 26, 4564. [Google Scholar] [CrossRef]
- Benderev, T.V. Acetylcysteine for Urinary Tract Mucolysis. J. Urol. 1988, 139, 353–354. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Codini, M.; Cataldi, S.; Vannini, S.; Lazzarini, A.; Floridi, A.; Moretti, M.; Villarini, M.; Fioretti, B.; Beccari, T.; et al. Acid sphingomyelinase as target of Lycium Chinense: Promising new action for cell health. Lipids Heal. Dis. 2016, 15, 183. [Google Scholar] [CrossRef]
- Foo, L.Y.; Lu, Y.; Howell, A.B.; Vorsa, N. A-Type Proanthocyanidin Trimers from Cranberry that Inhibit Adherence of Uropathogenic P-Fimbriated Escherichia coli. J. Nat. Prod. 2000, 63, 1225–1228. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Meudt, J.J.; Shanmuganayagam, D.; Krueger, C.G.; Reed, J.D. Ratio of “A-type” to “B-type” Proanthocyanidin Interflavan Bonds Affects Extra-intestinal Pathogenic Escherichia coli Invasion of Gut Epithelial Cells. J. Agric. Food Chem. 2013, 62, 3919–3925. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Schaich, K.M. Phytochemicals of Cranberries and Cranberry Products: Characterization, Potential Health Effects, and Processing Stability. Crit. Rev. Food Sci. Nutr. 2009, 49, 741–781. [Google Scholar] [CrossRef] [PubMed]
- Zafriri, D.; Ofek, I.; Adar, R.; Pocino, M.; Sharon, N. Inhibitory activity of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli to eucaryotic cells. Antimicrob. Agents Chemother. 1989, 33, 92–98. [Google Scholar] [CrossRef]
- Howell, A.B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef]
- de Servi, B.; Ranzini, F.; Piqué, N. Effect of Utipro® (containing gelatin-xyloglucan) against Escherichia coli invasion of intestinal epithelial cells: Results of an in vitro study. Futur. Microbiol. 2016, 11, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Iannitti, R.G.; Floridi, A.; Lazzarini, A.; Tantucci, A.; Russo, R.; Ragonese, F.; Monarca, L.; Caglioti, C.; Spogli, R.; Leonardi, L.; et al. Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Represents an Oral Formulation of Resveratrol With Better Gastric Absorption and Bioavailability Respect to Pure Resveratrol. Front. Nutr. 2020, 7, 570047. [Google Scholar] [CrossRef]
- Arcuri, C.; Monarca, L.; Ragonese, F.; Mecca, C.; Bruscoli, S.; Giovagnoli, S.; Donato, R.; Bereshchenko, O.; Fioretti, B.; Costantino, F. Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. Nanomaterials 2018, 8, 867. [Google Scholar] [CrossRef]
- Sklan, D.; Hurwitz, S. Movement and Absorption of Major Minerals and Water in Ovine Gastrointestinal Tract. J. Dairy. Sci. 1985, 68, 1659–1666. [Google Scholar] [CrossRef]
- Griffith, M.L.; Halloran, J. Scattering of ultraviolet radiation in turbid suspensions. J. Appl. Phys. 1997, 81, 2538–2546. [Google Scholar] [CrossRef]
- Sobota, A. Inhibition of Bacterial Adherence by Cranberry Juice: Potential Use For the Treatment of Urinary Tract Infections. J. Urol. 1984, 131, 1013–1016. [Google Scholar] [CrossRef]
- Howell, A.B.; Vorsa, N.; Der Marderosian, A.; Foo, L.Y. Inhibition of the Adherence of P-Fimbriated Escherichia coli to Uroep-ithelial-Cell Surfaces by Proanthocyanidin Extracts from Cranberries. N. Engl. J. Med. 1998, 339, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Konstantinidis, C.; Ward, S.A. A non-pharmacological approach to the treatment of urinary tract infections: Case reports with Utipro® Plus. Drugs Context 2021, 24, 2021–2022. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.D. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995, 3, 149–154. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tsukamoto, T.; Terai, A.; Kurazono, H.; Takeda, Y.; Yoshida, O. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J. Urol. 1997, 157, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Dellino, M.; Cascardi, E.; Laganà, A.S.; Di Vagno, G.; Malvasi, A.; Zaccaro, R.; Maggipinto, K.; Cazzato, G.; Scacco, S.; Tinelli, R.; et al. Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women? Infect. Agents Cancer 2022, 17, 53. [Google Scholar] [CrossRef]
- Anghel, I.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Anghel, A.G.; Chifiriuc, M.C. Biohybrid Nanostructured Iron Oxide Nanoparticles and Satureja hortensis to Prevent Fungal Biofilm Development. Int. J. Mol. Sci. 2013, 14, 18110–18123. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Tabibian, J.H.; Gornbein, J.; Heidari, A.; Dien, S.L.; Lau, V.H.; Chahal, P.; Churchill, B.M.; Haake, D.A. Uropathogens and Host Characteristics. J. Clin. Microbiol. 2008, 46, 3980–3986. [Google Scholar] [CrossRef]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef]
- Aravamudhan, A.; Ramos, D.M.; Nada, A.A.; Kumbar, S.G. Natural polymers: Polysaccharides and their derivatives for biomedical applications. In Natural and Synthetic Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–89. [Google Scholar] [CrossRef]
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef] [PubMed]
- Artini, M.; Imperlini, E.; Buonocore, F.; Relucenti, M.; Porcelli, F.; Donfrancesco, O.; Assanti, V.T.G.; Fiscarelli, E.V.; Papa, R.; Selan, L. Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Int. J. Mol. Sci. 2022, 23, 13494. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.R.; Junior, R.N.D.C. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr. Polym. 2020, 246, 116613. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; van Griensven, L.; Jakovljevic, D.; Todorovic, N.; Wan-Mohtar, W.A.A.Q.I.; Vunduk, J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: Nature of the application. Food Sci. Hum. Wellness 2023, 12, 378–396. [Google Scholar] [CrossRef]
- Choocheep, K.; Nathip, N. Detection of a Non-animal Source of Glycosaminoglycans from Edible Mushrooms in Northern Thailand. Chiang Mai Univ. J. Nat. Sci. 2018, 17, 213–218. [Google Scholar] [CrossRef]
Solution | Active | Experimental Concentration Solution (mg/mL) |
---|---|---|
A | Cranberry | 15 |
B | Chondroitin sulfate | 50 |
C | N-acetyl cysteine, NAC | 100 |
D | Hyaluronic acid | 5 |
Solution | EtOH 90% | A | B | C | D |
---|---|---|---|---|---|
1 | 200 | 100 | |||
2 | 100 | 100 | 100 | ||
3 | 100 | 100 | 100 | ||
4 | 100 | 100 | 100 | ||
5 | 100 | 100 | 50 | 50 | |
6 | 100 | 100 | 50 | 50 | |
7 | 100 | 100 | 50 | 50 | |
8 | 100 | 100 | 33 | 33 | 33 |
Solutions | A | B | C | D |
---|---|---|---|---|
9 | 100 | 33 | 33 | 33 |
10 | 100 | 40 | 30 | 30 |
11 | 100 | 50 | 40 | 10 |
12 | 100 | 50 | 30 | 20 |
13 | 100 | 50 | 20 | 30 |
14 | 100 | 50 | 10 | 40 |
15 | 100 | 50 | 25 | 25 |
16 | 80 | 50 | 25 | 25 |
17 | 60 | 50 | 25 | 25 |
18 | 40 | 50 | 25 | 25 |
19 | 20 | 50 | 25 | 25 |
Penicillins | Cephalosporins | Carbapenem | Monobactams | Fluoroquinolone | Aminoglycoside | Miscellaneous | 24 h Biofilm | |||
---|---|---|---|---|---|---|---|---|---|---|
AMP | AMC | FOX | CRO | IM | ATM | CIP | AK | SXT | Absorbance | |
(10 μg) | (30 μg) | (30 μg) | (30 μg) | (10 μg) | (30 μg) | (5μg) | (30 μg) | (25 μg) | (590 nm) | |
ATCC25922 | S | S | S | S | S | S | S | S | S | 0.332 ± 0.063 |
ATCC8739 | S | S | S | S | S | S | S | S | S | 0.230 ± 0.025 |
ECNDM1 | R | R | R | R | S | R | R | S | S | 0.529 ± 0.236 |
ECNDM2 | R | R | R | R | R | R | R | S | R | 0.351 ± 0.166 |
ECNDM3 | R | R | R | R | S | R | R | S | S | 0.175 ± 0.083 |
ECNDM4 | R | R | R | R | R | R | R | S | R | 0.177 ± 0.087 |
ECNDM5 | R | R | R | R | R | R | R | S | R | 0.370 ± 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caglioti, C.; Iannitti, R.; Ceccarelli, G.; Selan, L.; Artini, M.; Papa, R.; Malvasi, A.; Gentile, R.; Del Bianco, D.; Apone, F.; et al. Cranberry/Chondroitin Sulfate Co-precipitate as a New Method for Controlling Urinary Tract Infections. Antibiotics 2023, 12, 1053. https://doi.org/10.3390/antibiotics12061053
Caglioti C, Iannitti R, Ceccarelli G, Selan L, Artini M, Papa R, Malvasi A, Gentile R, Del Bianco D, Apone F, et al. Cranberry/Chondroitin Sulfate Co-precipitate as a New Method for Controlling Urinary Tract Infections. Antibiotics. 2023; 12(6):1053. https://doi.org/10.3390/antibiotics12061053
Chicago/Turabian StyleCaglioti, Concetta, Rossana Iannitti, Giada Ceccarelli, Laura Selan, Marco Artini, Rosanna Papa, Antonio Malvasi, Rosaria Gentile, Diletta Del Bianco, Florinda Apone, and et al. 2023. "Cranberry/Chondroitin Sulfate Co-precipitate as a New Method for Controlling Urinary Tract Infections" Antibiotics 12, no. 6: 1053. https://doi.org/10.3390/antibiotics12061053
APA StyleCaglioti, C., Iannitti, R., Ceccarelli, G., Selan, L., Artini, M., Papa, R., Malvasi, A., Gentile, R., Del Bianco, D., Apone, F., Angelini, P., Palazzetti, F., & Fioretti, B. (2023). Cranberry/Chondroitin Sulfate Co-precipitate as a New Method for Controlling Urinary Tract Infections. Antibiotics, 12(6), 1053. https://doi.org/10.3390/antibiotics12061053