In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chua, K.P.; Fischer, M.A.; Linder, J.A. Appropriateness of outpatient antibiotic prescribing among privately insured US patients: ICD-10-CM based cross sectional study. BMJ 2019, 364, k5092. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Saito, M.; Sato, J.; Goda, K.; Mitsutake, N.; Kitsuregawa, M.; Nalgai, R.; Hatakeyama, S. Indications and classes of outpatient antibiotic prescriptions in Japan: A descriptive study using the national database of electronic health insurance claims, 2012–2015. Int. J. Infect. Dis. 2020, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Cullen, I.M.; Manecksha, R.P.; McCullagh, E.; Ahmad, S.; O’kelly, F.; Flynn, R.; McDermott, T.E.D.; Murphy, P.; Grainger, R.; Fennell, J.P.; et al. An 11-year analysis of the prevalent uropathogens and the changing pattern of Escherichia coli antibiotic resistance in 38,530 community urinary tract infections, Dublin 1999–2009. Ir. J. Med. Sci. 2013, 182, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; McCarthy, N.; Paul, P.; McDonald, L.C.; Kallen, A.; et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Jain, A.; Mendes, R.E. Resistance among urinary tract pathogens collected in Europe during 2018. J. Glob. Antimicrob. Resist. 2020, 23, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial resistance trends in urine Escherichia coli isolates from adult and adolescent females in the United States from 2011 to 2019: Rising ESBL strains and impact on patient management. Clin. Infect. Dis. 2021, 73, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. Geneva. 2017. Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (accessed on 4 May 2023).
- Macone, A.B.; Caruso, B.K.; Leahy, R.G.; Donatelli, J.; Weir, S.; Draper, M.P.; Tanaka, S.K.; Levy, S.B. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob. Agents Chemother. 2014, 58, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; et al. Omadacycline: A novel oral and intravenous aminomethylcycline antibiotic agent. Drugs 2020, 80, 285–313. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- USFaDARasticfo. Available online: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria (accessed on 3 April 2020).
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183 (Suppl. S1), S1–S4. [Google Scholar] [CrossRef]
- Raya, G.B.; Dhoubhadel, B.G.; Shrestha, D.; Raya, S.; Laghu, U.; Shah, A.; Raya, B.B.; Kafle, R.; Parry, C.M.; Ariyoshi, K. Multidrug-resistant and extended-spectrum beta-lactamase-producing uropathogens in children in Bhaktapur, Nepal. Trop. Med. Health 2020, 48, 65. [Google Scholar] [CrossRef]
- Critchley, I.A.; Cotroneo, N.; Pucci, M.J.; Mendes, R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS ONE 2019, 14, e0220265. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Lin, H.C.; Lin, Y.C.; Yu, S.-H.; Wu, W.-H.; Lee, Y.-J. Antimicrobial susceptibilities of urinary extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J. Microbiol. Immunol. Infect. 2011, 44, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Overcash, J.S.; Tzanis, E.; Manley, A.; Sirbu, A.; Serio, A.W.; White, T.; Wright, K.; Chitra, S.; Eckburg, P.B. Omadacycline in female adults with cystitis: Results from a randomized, double-blinded, adaptive phase 2 study. In Proceedings of the ID Week 2020, Virtual Event, 21–25 October 2020. [Google Scholar]
- Overcash, J.S.; Tzanis, E.; Manley, A.; Sirbu, A.; Serio, A.W.; White, T.; Wright, K.; Chitra, S.; Eckburg, P.B. Omadacycline in female adults with acute pyelonephritis: Results from a randomized, double-blind, adaptive phase 2 study. In Proceedings of the ID Week 2020, Virtual Event, 21–25 October 2020. [Google Scholar]
- Pagano, P.; Marra, A.; Shinabarger, D.; Pillar, C. In vitro activity of omadacycline and levofloxacin against Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus in human urine supplemented with calcium and magnesium. J. Antimicrob. Chemother. 2020, 75, 2160–2163. [Google Scholar] [CrossRef] [PubMed]
- Huband, M.D.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. J. Glob. Antimicrob. Resist. 2019, 19, 56–63. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, J.J.; Zhang, G.; Yang, W.H.; Kong, F.; Kudinha, T.; Xu, Y.C. Antimicrobial activity of omadacycline in vitro against bacteria isolated from 2014 to 2017 in China, a multi-center study. BMC Microbiol. 2020, 20, 350. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rhomberg, P.R.; Huband, M.D.; Flamm, R.K. Activity of omadacycline tested against Enterobacteriaceae causing urinary tract infections from a global surveillance program (2014). Diagn. Microbiol. Infect. Dis. 2018, 91, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Huband, M.D.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02488-19. [Google Scholar] [CrossRef] [PubMed]
Microorganisms (n a) | Antibiotics | MIC µg/mL | S% | ||||
---|---|---|---|---|---|---|---|
MIC50 | MIC90 | Minimum MIC | Maximum MIC | Modal MIC | |||
All ESBL-producing isolates (102) | Omadacycline | 4 | >32 | 0.25 | >32 | 4 | 54.9 b |
Tetracycline | >8 | >8 | ≤4 | >8 | >8 | 26.1 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | ≤4/2 | >16/8 | 16/8 | 51.1 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 19.6 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 14.1 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 72.8 | |
All non-ESBL-producing isolates (102) | Omadacycline | 3 | 6 | 0.25 | >32 | 4 | 91.2 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 80.4 | |
Amoxicillin-clavulanate | ≤4/2 | 16/8 | ≤4/2 | >16/8 | ≤4/2 | 89.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 79.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 87.3 | |
Nitrofurantoin | ≤32 | 64 | ≤32 | >64 | ≤32 | 77.5 | |
ESBL-Producing E. coli (51) | Omadacycline | 4 | 16 | 0.25 | >32 | 4 | 74.5 b |
Tetracycline | >8 | >8 | ≤4 | >8 | >8 | 26.5 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | 16/8 | 16/8 | 63.3 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 26.5 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 10.2 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 91.8 | |
Non-ESBL-Producing E. coli (51) | Omadacycline | 2 | 4 | 1 | 8 | 3 | 100 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 72.6 | |
Amoxicillin-clavulanate | <4/2 | 16/8 | <4/2 | >16/8 | <4/2 | 86.3 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 78.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 82.4 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 94.1 | |
ESBL-Producing K. pneumoniae (51) | Omadacycline | 8 | >32 | 2 | >32 | 4 | 35.3 |
Tetracycline | ≤4 | >8 | >8 | >8 | >8 | 25.6 | |
Amoxicillin-clavulanate | <4/2 | >16/8 | <4/2 | >16/8 | 16/8 | 37.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 11.6 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | >2 | 18.6 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 51.2 | |
Non-ESBL-Producing K. pneumoniae (51) | Omadacycline | 4 | 8 | 2 | >32 | 4 | 82.3 |
Tetracycline | ≤4 | 8 | ≤4 | >8 | ≤4 | 86.3 | |
Amoxicillin-clavulanate | <4/2 | 8/4 | <4/2 | >16/8 | <4/2 | 92.2 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 80.4 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 92.2 | |
Nitrofurantoin | <32 | >64 | ≤32 | >64 | ≤32 | 60.8 | |
All E. coli (102) | Omadacycline | 4 | 8 | 0.25 | >32 | 4 | 87.3 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 47.3 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | >16/8 | <4/2 | 73.1 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 49.5 | |
Ciprofloxacin | >2 | >2 | ≤1 | >2 | >2 | 45.2 | |
Nitrofurantoin | ≤32 | ≤32 | ≤32 | >64 | ≤32 | 92.5 | |
All K. pneumoniae (102) | Omadacycline | 4 | >32 | 1.5 | >32 | 4 | 61.8 |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 58.0 | |
Amoxicillin-clavulanate | <4/2 | >16/8 | <4/2 | >16/8 | <4/2 | 65.9 | |
Trimethoprim-sulfamethoxazole | >2/38 | >2/38 | ≤2/38 | >2/38 | >2/38 | 45.5 | |
Ciprofloxacin | ≤1 | >2 | ≤1 | >2 | ≤1 | 55.7 | |
Nitrofurantoin | ≤32 | >64 | ≤32 | >64 | ≤32 | 55.7 | |
Total (204) | Omadacycline | 4 | 16 | 0.25 | >32 | 4 | 74.5 b |
Tetracycline | ≤4 | >8 | ≤4 | >8 | ≤4 | 52.5 | |
Amoxicillin-clavulanate | 8/4 | 16/8 | <4/2 | >16/8 | <4/2 | 69.6 | |
Trimethoprim-sulfamethoxazole | ≤2/38 | >2/38 | ≤2/38 | >2/38 | ≤2/38 | 47.5 | |
Ciprofloxacin | 2 | >2 | ≤1 | >2 | ≤1 | 50.3 | |
Nitrofurantoin | 64 | >64 | ≤32 | >64 | ≤32 | 74.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stone, T.J.; Kilic, A.; Williamson, J.C.; Palavecino, E.L. In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics 2023, 12, 953. https://doi.org/10.3390/antibiotics12060953
Stone TJ, Kilic A, Williamson JC, Palavecino EL. In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics. 2023; 12(6):953. https://doi.org/10.3390/antibiotics12060953
Chicago/Turabian StyleStone, Tyler J., Abdullah Kilic, John C. Williamson, and Elizabeth L. Palavecino. 2023. "In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates" Antibiotics 12, no. 6: 953. https://doi.org/10.3390/antibiotics12060953
APA StyleStone, T. J., Kilic, A., Williamson, J. C., & Palavecino, E. L. (2023). In Vitro Activity of Omadacycline and Comparator Antibiotics against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Urinary Isolates. Antibiotics, 12(6), 953. https://doi.org/10.3390/antibiotics12060953