Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review
Abstract
:1. Introduction
2. Acute Otitis Media (AOM)
3. Tonsillitis
3.1. Can Scoring Systems Help to Determine Treatment of Tonsillitis?
3.2. What Is the Role of Rapid Antigen Detection Tests?
3.3. How Are Antibiotics Best Used?
4. Community-Acquired Pneumonia
4.1. Are Antibiotics Always Required?
4.2. Are Intravenous Antibiotics Necessary in Children Admitted to Hospital with CAP?
5. Preseptal Cellulitis
6. Urinary-Tract Infections
- Neonates;
- abdominal and/or bladder mass;
- kidney and urinary-tract anomalies;
- urosepsis;
- organisms other than Escherichia coli;
- atypical clinical course, including the absence of clinical response to an antibiotic within 72 h;
- renal abscess.
6.1. Diagnosis
6.1.1. Which Children Need A Urine Sample?
6.1.2. How Should Urine Be Collected?
6.1.3. Interpretation of the Results
6.2. Treatment
Intravenous vs. Oral Antibiotics
- younger than two to three months;
- urogenital anatomical alteration (e.g., high-grade RVU, severe bladder dysfunction);
- complicated infections;
- unable to tolerate oral therapy;
- ill-appearing.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chai, G.; Governale, L.; McMahon, A.W.; Trinidad, J.P.; Staffa, J.; Murphy, D. Trends of outpatient prescription drug utilization in US children, 2002–2010. Pediatrics 2012, 130, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 5 January 2023).
- van de Voort, E.M.F.; Mintegi, S.; Gervaix, A.; Moll, H.A.; Oostenbrink, R. Antibiotic Use in Febrile Children Presenting to the Emergency Department: A Systematic Review. Front. Pediatr. 2018, 6, 260. [Google Scholar] [CrossRef] [Green Version]
- Snyder, R.L.; King, L.M.; Hersh, A.L.; Fleming-Dutra, K.E. Unnecessary Antibiotic Prescribing in Pediatric Ambulatory Care Visits for Bronchitis and Bronchiolitis in the United States, 2006–2015. Infect. Control Hosp. Epidemiol. 2021, 42, 612–615. [Google Scholar] [CrossRef]
- Fleming-Dutra, K.E.; Hersh, A.L.; Shapiro, D.J.; Bartoces, M.; Enns, E.A.; File, T.M., Jr.; Finkelstein, J.A.; Gerber, J.S.; Hyun, D.Y.; Linder, J.A.; et al. Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010–2011. JAMA 2016, 315, 1864–1873. [Google Scholar] [CrossRef] [Green Version]
- Brigadoi, G.; Rossin, S.; Visentin, D.; Barbieri, E.; Giaquinto, C.; Da Dalt, L.; Donà, D. The impact of Antimicrobial Stewardship Programmes in paediatric emergency departments and primary care: A systematic review. Ther. Adv. Infect. Dis. 2023, 10, 204993612211417. [Google Scholar] [CrossRef]
- Mistry, R.D.; May, L.S.; Pulia, M.S. Improving Antimicrobial Stewardship in Pediatric Emergency Care: A Pathway Forward. Pediatrics 2019, 143, e20182972. [Google Scholar] [CrossRef] [Green Version]
- Dftb, T. Ears Looking at You, Kid. Dont Forget Bubbles. 26 December 2016. Available online: https://dontforgetthebubbles.com/ears-looking-at-you-kid/ (accessed on 28 December 2022).
- Dftb, T. Otitis Media. Dont Forget Bubbles. 11 September 2013. Available online: https://dontforgetthebubbles.com/otitis-media/ (accessed on 28 December 2022).
- Cohen, J.F.; Pauchard, J.-Y.; Hjelm, N.; Cohen, R.; Chalumeau, M. Efficacy and safety of rapid tests to guide antibiotic prescriptions for sore throat. Cochrane Database Syst. Rev. 2020, 2020, CD012431. [Google Scholar] [CrossRef]
- Munro, S.P. A Respiratory Tract Infections in Children. Dont Forget Bubbles. 5 May 2019. Available online: https://dontforgetthebubbles.com/respiratory-tract-infections-children/ (accessed on 3 January 2023).
- Harris, M.; Clark, J.; Coote, N.; Fletcher, P.; Harnden, A.; McKean, M.; Thomson, A. British Thoracic Society guidelines for the management of community acquired pneumonia in children: Update 2011. Thorax 2011, 66, ii1–ii23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, C.; Bourget, D. Periorbital Cellulitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470408/ (accessed on 28 December 2022).
- Dftb, T. Peri-Orbital vs. Orbital Cellulitis. Dont Forget Bubbles. 29 September 2013. Available online: https://dontforgetthebubbles.com/peri-orbital-v-orbital-cellulitis/ (accessed on 28 December 2022).
- Beal, F. UTI Whizzdom—The Next Steps. Dont Forget Bubbles. 21 March 2021. Available online: https://dontforgetthebubbles.com/uti-whizzdom-the-next-steps/ (accessed on 17 January 2023).
- Danishyar, A.; Ashurst, J.V. Acute Otitis Media. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470332/ (accessed on 28 December 2022).
- Venekamp, R.P.; Sanders, S.L.; Glasziou, P.P.; Del Mar, C.B.; Rovers, M.M. Antibiotics for acute otitis media in children. Cochrane Database Syst. Rev. 2015, 6, CD000219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overview|Otitis Media (Acute): Antimicrobial Prescribing|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng91 (accessed on 28 December 2022).
- Suzuki, H.G.; Dewez, J.E.; Nijman, R.G.; Yeung, S. Clinical practice guidelines for acute otitis media in children: A systematic review and appraisal of European national guidelines. BMJ Open 2020, 10, e035343. [Google Scholar] [CrossRef]
- Csonka, P.; Palmu, S.; Heikkilä, P.; Huhtala, H.; Korppi, M. Outpatient Antibiotic Prescribing for 357,390 Children With Otitis Media. Pediatr. Infect. Dis. J. 2022, 41, 947–952. [Google Scholar] [CrossRef]
- Lieberthal, A.S.; Carroll, A.E.; Chonmaitree, T.; Ganiats, T.G.; Hoberman, A.; Jackson, M.A.; Joffe, M.D.; Miller, D.T.; Rosenfeld, R.M.; Sevilla, X.D.; et al. The Diagnosis and Management of Acute Otitis Media. Pediatrics 2013, 131, e964–e999. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.V.; Hamdy, R.F.; Liu, C.M.; Jones, H.; Montalbano, A.; Nedved, A. Antibiotic Prescribing Patterns for Pediatric Urgent Care Clinicians. Pediatr. Emerg. Care 2022, 38, e1538–e1540. [Google Scholar] [CrossRef] [PubMed]
- Nedved, A.; Lee, B.R.; Hamner, M.; Wirtz, A.; Burns, A.; El Feghaly, R.E. Impact of an antibiotic stewardship program on antibiotic choice, dosing, and duration in pediatric urgent cares. Am. J. Infect. Control 2023, 51, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Venekamp, R.P.; Schilder, A.G.M.; van den Heuvel, M.; Hay, A.D. Acute middle ear infection (acute otitis media) in children. BMJ 2020, 371, m4238. [Google Scholar] [CrossRef] [PubMed]
- Spurling, G.K.; Del Mar, C.B.; Dooley, L.; Foxlee, R.; Farley, R. Delayed Antibiotics for Respiratory Infections. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; p. CD004417. [Google Scholar] [CrossRef] [Green Version]
- Davidson, L.; Foley, D.A.; Clifford, P.; Blyth, C.C.; Bowen, A.C.; Hazelton, B.; Kuthubutheen, J.; McLeod, C.; Rodrigues, S.; Tay, S.M.; et al. Infectious complications and optimising infection prevention for children with cochlear implants. J. Paediatr. Child Health 2022, 58, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Vila, P.M.; Ghogomu, N.T.; Odom-John, A.R.; Hullar, T.E.; Hirose, K. Infectious complications of pediatric cochlear implants are highly influenced by otitis media. Int. J. Pediatr. Otorhinolaryngol. 2017, 97, 76–82. [Google Scholar] [CrossRef]
- Rose, O.; Moriarty, R.; Brown, C.; Teagle, H.; Neeff, M. Vaccination rates in cochlear implant patients: A review of paediatric recipients. J. Laryngol. Otol. 2022, 136, 628–631. [Google Scholar] [CrossRef]
- Raveh, E.; Ulanovski, D.; Attias, J.; Shkedy, Y.; Sokolov, M. Acute mastoiditis in children with a cochlear implant. Int. J. Pediatr. Otorhinolaryngol. 2016, 81, 80–83. [Google Scholar] [CrossRef]
- Restuti, R.D.; Sriyana, A.A.; Priyono, H.; Saleh-Saleh, R.R.; Airlangga, T.J.; Zizlavsky, S.; Suwento, R.; Yasin, F.H. Chronic suppurative otitis media and immunocompromised status in paediatric patients. Med. J. Malays. 2022, 77, 619–621. [Google Scholar]
- Frost, H.M.; Bizune, D.; Gerber, J.S.; Hersh, A.L.; Hicks, L.A.; Tsay, S.V. Amoxicillin Versus Other Antibiotic Agents for the Treatment of Acute Otitis Media in Children. J. Pediatr. 2022, 251, 98–104.e5. [Google Scholar] [CrossRef]
- Kozyrskyj, A.L.; Klassen, T.P.; Moffatt, M.; Harvey, K. Short-course antibiotics for acute otitis media. Cochrane Database Syst. Rev. 2010, 9, CD001095. [Google Scholar] [CrossRef] [PubMed]
- Hoberman, A.; Paradise, J.L.; Rockette, H.E.; Kearney, D.H.; Bhatnagar, S.; Shope, T.R.; Martin, J.M.; Kurs-Lasky, M.; Copelli, S.J.; Colborn, D.K.; et al. Shortened Antimicrobial Treatment for Acute Otitis Media in Young Children. N. Engl. J. Med. 2016, 375, 2446–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonsillitis—Symptoms, Diagnosis and Treatment|BMJ Best Practice US. Available online: https://bestpractice.bmj.com/topics/en-us/598 (accessed on 28 December 2022).
- Overview|Sore Throat (Acute) in Adults: Antimicrobial Prescribing|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng84 (accessed on 28 December 2022).
- Management of Sore Throat and Indications for Tonsillectomy. Available online: https://testing36.scot.nhs.uk (accessed on 28 December 2022).
- Oliver, J.; Malliya Wadu, E.; Pierse, N.; Moreland, N.J.; Williamson, D.A.; Baker, M.G. Group A Streptococcus pharyngitis and pharyngeal carriage: A meta-analysis. PLoS Negl. Trop. Dis. 2018, 12, e0006335. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.J.; Barak-Corren, Y.; Neuman, M.I.; Mandl, K.D.; Harper, M.B.; Fine, A.M. Identifying Patients at Lowest Risk for Streptococcal Pharyngitis: A National Validation Study. J. Pediatr. 2020, 220, 132–138.e2. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, e360–e370. [Google Scholar] [CrossRef]
- Smith, D.R.M.; Shirreff, G.; Temime, L.; Opatowski, L. Collateral impacts of pandemic COVID-19 drive the nosocomial spread of antibiotic resistance: A modelling study. PLoS Med. 2023, 20, e1004240. [Google Scholar] [CrossRef] [PubMed]
- Yousafzai, A.D.K.; Bangash, A.H.; Asghar, S.Y.; Abbas, S.M.M.; Khawaja, H.F.; Zehra, S.; Khan, A.U.; Kamil, M.; Ayesha, N.; Khan, A.K.; et al. Clinical efficacy of Azithromycin for COVID-19 management: A systematic meta-analysis of meta-analyses. Heart Lung J. Crit. Care 2023, 60, 127–132. [Google Scholar] [CrossRef]
- Banerjee, S.; Ford, C. Clinical Decision Rules and Strategies for the Diagnosis of Group A Streptococcal Infection: A Review of Clinical Utility and Guidelines. In CADTH Rapid Response Reports; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK532209/ (accessed on 28 December 2022).
- Roggen, I.; van Berlaer, G.; Gordts, F.; Pierard, D.; Hubloue, I. Centor criteria in children in a paediatric emergency department: For what it is worth. BMJ Open 2013, 3, e002712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, A.M.; Nizet, V.; Mandl, K.D. Large-scale validation of the Centor and McIsaac scores to predict group A streptococcal pharyngitis. Arch. Intern. Med. 2012, 172, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Little, P.; Hobbs, F.R.; Moore, M.; Mant, D.; Williamson, I.; McNulty, C.; Lasseter, G.; Cheng, M.E.; Leydon, G.; McDermott, L.; et al. Randomised Controlled Trial of a Clinical Score and Rapid Antigen Detection Test for Sore Throats; NIHR Journals Library: Southampton, UK, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK261549/ (accessed on 28 December 2022).
- Freer, J.; Ally, T.; Brugha, R. Impact of Centor scores on determining antibiotic prescribing in children. Int. J. Health Care Qual. Assur. 2017, 30, 319–326. [Google Scholar] [CrossRef]
- Pelucchi, C.; Grigoryan, L.; Galeone, C.; Esposito, S.; Huovinen, P.; Little, P.; Verheij, T. Guideline for the management of acute sore throat. Clin. Microbiol. Infect. 2012, 18, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Shulman, S.T.; Bisno, A.L.; Clegg, H.W.; Gerber, M.A.; Kaplan, E.L.; Lee, G.; Martin, J.M.; Van Beneden, C. Clinical Practice Guideline for the Diagnosis and Management of Group A Streptococcal Pharyngitis: 2012 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2012, 55, e86–e102. [Google Scholar] [CrossRef] [Green Version]
- Ralph, A.P.; Noonan, S.; Wade, V.; Currie, B.J. The 2020 Australian guideline for prevention, diagnosis and management of acute rheumatic fever and rheumatic heart disease. Med. J. Aust. 2021, 214, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.; Bertille, N.; Cohen, R.; Chalumeau, M. Rapid antigen detection test for group A streptococcus in children with pharyngitis. Cochrane Database Syst. Rev. 2016, 2016, CD010502. [Google Scholar] [CrossRef] [PubMed]
- Willis, B.H.; Coomar, D.; Baragilly, M. Comparison of Centor and McIsaac scores in primary care: A meta-analysis over multiple thresholds. Br. J. Gen. Pract. 2020, 70, e245–e254. [Google Scholar] [CrossRef] [PubMed]
- Lean, W.L.; Arnup, S.; Danchin, M.; Steer, A.C. Rapid Diagnostic Tests for Group A Streptococcal Pharyngitis: A Meta-analysis. Pediatrics 2014, 134, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Dodd, H.K.; Atkinson, A. 1572 The use of Centor and/or FeverPain Scoring Criteria to Determine Antibiotic Prescribing in Acute Sore Throat according to NICE NG84 Guideline. In Proceedings of the Abstracts; BMJ Publishing Group Ltd.: London, UK; Royal College of Paediatrics and Child Health: Singapore, 2021; pp. A418–A419. [Google Scholar]
- Baker, M.G.; Gurney, J.; Oliver, J.; Moreland, N.J.; Williamson, D.A.; Pierse, N.; Wilson, N.; Merriman, T.R.; Percival, T.; Murray, C.; et al. Risk Factors for Acute Rheumatic Fever: Literature Review and Protocol for a Case-Control Study in New Zealand. Int. J. Environ. Res. Public Health 2019, 16, 4515. [Google Scholar] [CrossRef] [Green Version]
- Wi, D.; Choi, S.-H. Positive Rate of Tests for Group a Streptococcus and Viral Features in Children with Acute Pharyngitis. Children 2021, 8, 599. [Google Scholar] [CrossRef]
- Holm, A.E.; Llor, C.; Bjerrum, L.; Cordoba, G. Short- vs. Long-Course Antibiotic Treatment for Acute Streptococcal Pharyngitis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antibiotics 2020, 9, 733. [Google Scholar] [CrossRef]
- Powell, L.M.; Choi, S.J.; Chipman, C.E.; Grund, M.E.; LaSala, P.R.; Lukomski, S. Emergence of Erythromycin-Resistant Invasive Group A Streptococcus, West Virginia, USA, 2020–2021. Emerg. Infect. Dis. 2023, 29, 898. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Echeverría-Esnal, D.; Martin-Ontiyuelo, C.; Navarrete-Rouco, M.E.; De-Antonio Cuscó, M.; Ferrández, O.; Horcajada, J.P.; Grau, S. Azithromycin in the treatment of COVID-19: A review. Expert Rev. Anti Infect. Ther. 2021, 19, 147–163. [Google Scholar] [CrossRef]
- Tadesse, M.; Hailu, Y.; Biset, S.; Ferede, G.; Gelaw, B. Prevalence, Antibiotic Susceptibility Profile and Associated Factors of Group A Streptococcal pharyngitis Among Pediatric Patients with Acute Pharyngitis in Gondar, Northwest Ethiopia. Infect. Drug Resist. 2023, 16, 1637–1648. [Google Scholar] [CrossRef] [PubMed]
- Randel, A. Infectious Disease Society of America IDSA Updates Guideline for Managing Group A Streptococcal Pharyngitis. Am. Fam. Physician 2013, 88, 338–340. [Google Scholar] [PubMed]
- Mustafa, Z.; Ghaffari, M. Diagnostic Methods, Clinical Guidelines, and Antibiotic Treatment for Group A Streptococcal Pharyngitis: A Narrative Review. Front. Cell. Infect. Microbiol. 2020, 10, 563627. [Google Scholar] [CrossRef]
- Brook, I. Treatment Challenges of Group A Beta-hemolytic Streptococcal Pharyngo-Tonsillitis. Int. Arch. Otorhinolaryngol. 2017, 21, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, S.; Khalil, A.; Khalaiwi, K.A.; Milner, R.A.; Pusic, M.V.; Al Othman, M.A. Short-term late-generation antibiotics versus longer term penicillin for acute streptococcal pharyngitis in children. Cochrane Database Syst. Rev. 2012, 8, CD004872. [Google Scholar] [CrossRef] [Green Version]
- Management of Community-Acquired Pneumonia in Infants and Children Older than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America|Clinical Infectious Diseases|Oxford Academic. Available online: https://academic.oup.com/cid/article/53/7/e25/424286 (accessed on 3 January 2023).
- World Health Organization. Revised WHO Classification and Treatment of Pneumonia in Children at Health Facilities: Evidence Summaries; World Health Organization: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/137319 (accessed on 3 January 2023)ISBN 978-92-4-150781-3.
- Effect of Amoxicillin Dose and Treatment Duration on the Need for Antibiotic Re-Treatment in Children With Community-Acquired Pneumonia: The CAP-IT Randomized Clinical Trial|Infectious Diseases|JAMA|JAMA Network. Available online: https://jamanetwork.com/journals/jama/fullarticle/2785716 (accessed on 3 January 2023).
- Williams, D.J.; Creech, C.B.; Walter, E.B.; Martin, J.M.; Gerber, J.S.; Newland, J.G.; Howard, L.; Hofto, M.E.; Staat, M.A.; Oler, R.E.; et al. Short- vs. Standard-Course Outpatient Antibiotic Therapy for Community-Acquired Pneumonia in Children: The SCOUT-CAP Randomized Clinical Trial. JAMA Pediatr. 2022, 176, 253–261. [Google Scholar] [CrossRef]
- Short-Course Antimicrobial Therapy for Pediatric Community-Acquired Pneumonia: The SAFER Randomized Clinical Trial|Emergency Medicine|JAMA Pediatrics|JAMA Network. Available online: https://jamanetwork.com/journals/jamapediatrics/fullarticle/2776976 (accessed on 3 January 2023).
- Little, P.; Francis, N.A.; Stuart, B.; O’Reilly, G.; Thompson, N.; Becque, T.; Hay, A.D.; Wang, K.; Sharland, M.; Harnden, A.; et al. Antibiotics for lower respiratory tract infection in children presenting in primary care in England (ARTIC PC): A double-blind, randomised, placebo-controlled trial. Lancet Lond. Engl. 2021, 398, 1417–1426. [Google Scholar] [CrossRef]
- Davis, T. How Long should We Treat Children with Pneumonia for?—The Results of CAP-IT. Dont Forget Bubbles. 2 November 2021. Available online: https://dontforgetthebubbles.com/cap-it/ (accessed on 3 January 2023).
- The CAP-IT Trial: Amoxicillin Dose and Duration in Children with Community-Acquired Pneumonia—REBEL EM—Emergency Medicine Blog. Available online: https://rebelem.com/the-cap-it-trial-amoxicillin-dose-and-duration-in-children-with-community-acquired-pneumonia/ (accessed on 5 January 2023).
- The SCOUT–CAP Trial: 5d Abx vs. 10d Abx in Pediatric CAP—REBEL EM—Emergency Medicine Blog. Available online: https://rebelem.com/the-scout-cap-trail-5d-of-abx-vs-10d-abx-in-pediatric-cap/ (accessed on 5 January 2023).
- Bloise, S.; Marcellino, A.; Sanseviero, M.; Martucci, V.; Testa, A.; Leone, R.; Del Giudice, E.; Frasacco, B.; Gizzone, P.; Proietti Ciolli, C.; et al. Point-of-Care Thoracic Ultrasound in Children: New Advances in Pediatric Emergency Setting. Diagnostics 2023, 13, 1765. [Google Scholar] [CrossRef]
- Yan, J.-H.; Yu, N.; Wang, Y.-H.; Gao, Y.-B.; Pan, L. Lung ultrasound vs chest radiography in the diagnosis of children pneumonia: Systematic evidence. Medicine 2020, 99, e23671. [Google Scholar] [CrossRef]
- Ciuca, I.M.; Dediu, M.; Pop, L.L. Pediatric pneumonia (PedPne) lung ultrasound score and inflammatory markers: A pilot study. Pediatr. Pulmonol. 2022, 57, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Li, H.K.; Agweyu, A.; English, M.; Bejon, P. An Unsupported Preference for Intravenous Antibiotics. PLoS Med. 2015, 12, e1001825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arancibia, A.; Guttmann, J.; González, G.; González, C. Absorption and disposition kinetics of amoxicillin in normal human subjects. Antimicrob. Agents Chemother. 1980, 17, 199–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder, R.A. Question 1 Are oral antibiotics as efficacious as intravenous antibiotics for the treatment of community acquired pneumonia? Arch. Dis. Child. 2011, 96, 103–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, M.; Lakhanpaul, M.; Smyth, A.; Vyas, H.; Weston, V.; Sithole, J.; Owen, V.; Halliday, K.; Sammons, H.; Crane, J.; et al. Comparison of oral amoxicillin and intravenous benzyl penicillin for community acquired pneumonia in children (PIVOT trial): A multicentre pragmatic randomised controlled equivalence trial. Thorax 2007, 62, 1102–1106. [Google Scholar] [CrossRef] [Green Version]
- Addo-Yobo, E.; Chisaka, N.; Hassan, M.; Hibberd, P.; Lozano, J.M.; Jeena, P.; MacLeod, W.B.; Maulen, I.; Patel, A.; Qazi, S.; et al. Oral amoxicillin versus injectable penicillin for severe pneumonia in children aged 3 to 59 months: A randomised multicentre equivalency study. Lancet 2004, 364, 1141–1148. [Google Scholar] [CrossRef]
- Bari, A.; Sadruddin, S.; Khan, A.; Khan, I.u.H.; Khan, A.; Lehri, I.A.; Macleod, W.B.; Fox, M.P.; Thea, D.M.; Qazi, S.A. Community case management of severe pneumonia with oral amoxicillin in children aged 2-59 months in Haripur district, Pakistan: A cluster randomised trial. Lancet Lond. Engl. 2011, 378, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Hazir, T.; Fox, L.M.; Nisar, Y.B.; Fox, M.P.; Ashraf, Y.P.; MacLeod, W.B.; Ramzan, A.; Maqbool, S.; Masood, T.; Hussain, W.; et al. Ambulatory short-course high-dose oral amoxicillin for treatment of severe pneumonia in children: A randomised equivalency trial. Lancet Lond. Engl. 2008, 371, 49–56. [Google Scholar] [CrossRef]
- Agweyu, A.; Gathara, D.; Oliwa, J.; Muinga, N.; Edwards, T.; Allen, E.; Maleche-Obimbo, E.; English, M.; Severe Pneumonia Study Group; Aweyo, F.; et al. Oral Amoxicillin Versus Benzyl Penicillin for Severe Pneumonia Among Kenyan Children: A Pragmatic Randomized Controlled Noninferiority Trial. Clin. Infect. Dis. 2015, 60, 1216–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addo-Yobo, E.; Anh, D.D.; El-Sayed, H.F.; Fox, L.M.; Fox, M.P.; MacLeod, W.; Saha, S.; Tuan, T.A.; Thea, D.M.; Qazi, S.; et al. Outpatient treatment of children with severe pneumonia with oral amoxicillin in four countries: The MASS study. Trop. Med. Int. Health 2011, 16, 995–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Saux, N.; Robinson, J.L.; Canadian Paediatric Society. Infectious Diseases and Immunization Committee Uncomplicated pneumonia in healthy Canadian children and youth: Practice points for management. Paediatr. Child Health 2015, 20, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Saeedy, D.; Gillani, S.W.; Al-Salloum, J.; Moosvi, A.; Eissa, M.; Gulam, S.M. Comparative Efficacy of Beta-Lactams and Macrolides in the Treatment of Pediatric Pneumonia: A Systematic Review. Curr. Pediatr. Rev. 2021, 16, 307–313. [Google Scholar] [CrossRef]
- Blyth, C.C.; Gerber, J.S. Macrolides in Children With Community-Acquired Pneumonia: Panacea or Placebo? J. Pediatr. Infect. Dis. Soc. 2018, 7, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hecke, O.; Butler, C.C.; Wang, K.; Tonkin-Crine, S. Parents’ perceptions of antibiotic use and antibiotic resistance (PAUSE): A qualitative interview study. J. Antimicrob. Chemother. 2019, 74, 1741–1747. [Google Scholar] [CrossRef] [Green Version]
- Shamim, M.A.; Padhi, B.K.; Satapathy, P.; Siddiq, A.; Manna, S.; Aggarwal, A.K.; Al-Ahdal, T.; Khubchandani, J.; Henao-Martinez, A.F.; Sah, R. Parents’ expectation of antibiotic prescriptions for respiratory infections in children: A systematic review and meta-analysis. Ther. Adv. Infect. Dis. 2023, 10, 20499361231169428. [Google Scholar] [CrossRef]
- Dantuluri, K.L.; Bonnet, K.R.; Schlundt, D.G.; Schulte, R.J.; Griffith, H.G.; Luu, A.; Charnogursky, C.; Perkins, J.M.; Whitmore, C.C.; Banerjee, R.; et al. Antibiotic perceptions, adherence, and disposal practices among parents of pediatric patients. PLoS ONE 2023, 18, e0281660. [Google Scholar] [CrossRef]
- James, V.; Mohamad Ikbal, M.F.; Min, N.C.; Chan, Y.H.; Ganapathy, S. Periorbital Cellulitis in Paediatric Emergency Medicine Department Patients. Ann. Acad. Med. Singap. 2018, 47, 420–423. [Google Scholar] [CrossRef]
- Mathew, A.V.; Craig, E.; Al-Mahmoud, R.; Batty, R.; Raghavan, A.; Mordekar, S.R.; Chan, J.; Connolly, D.J.A. Paediatric post-septal and pre-septal cellulitis: 10 years’ experience at a tertiary-level children’s hospital. Br. J. Radiol. 2014, 87, 20130503. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.J.; Levi, J. Management of pediatric orbital cellulitis: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2018, 110, 123–129. [Google Scholar] [CrossRef]
- Murphy, D.C.; Meghji, S.; Alfiky, M.; Bath, A.P. Paediatric periorbital cellulitis: A 10-year retrospective case series review. J. Paediatr. Child Health 2021, 57, 227–233. [Google Scholar] [CrossRef]
- Botting, A.M.; McIntosh, D.; Mahadevan, M. Paediatric pre- and post-septal peri-orbital infections are different diseases. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 377–383. [Google Scholar] [CrossRef]
- Lee, S.; Yen, M.T. Management of preseptal and orbital cellulitis. Saudi J. Ophthalmol. 2011, 25, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Okonkwo, A.C.O.; Powell, S.; Carrie, S.; Ball, S.L. A review of periorbital cellulitis guidelines in Fifty-One Acute Admitting Units in the United Kingdom. Clin. Otolaryngol. 2018, 43, 718–721. [Google Scholar] [CrossRef] [Green Version]
- Al-Nammari, S.; Roberton, B.; Ferguson, C. Should a child with preseptal periorbital cellulitis be treated with intravenous or oral antibiotics? Emerg. Med. J. 2007, 24, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.; Menezes, C.; Machado, R.; Ribeiro, I.; Lemos, J.A. Periorbital cellulitis in children: Analysis of outcome of intravenous antibiotic therapy. Orbit 2016, 35, 175–180. [Google Scholar] [CrossRef] [PubMed]
- McMullan, B.J.; Andresen, D.; Blyth, C.C.; Avent, M.L.; Bowen, A.C.; Britton, P.N.; Clark, J.E.; Cooper, C.M.; Curtis, N.; Goeman, E.; et al. Antibiotic duration and timing of the switch from intravenous to oral route for bacterial infections in children: Systematic review and guidelines. Lancet Infect. Dis. 2016, 16, e139–e152. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, L.F.; Hopper, S.M.; Orsini, F.; Daley, A.J.; Babl, F.E.; Bryant, P.A. Efficacy and safety of intravenous ceftriaxone at home versus intravenous flucloxacillin in hospital for children with cellulitis (CHOICE): A single-centre, open-label, randomised, controlled, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.C.; O’Brien, K.; Pickles, T.; Hood, K.; Wootton, M.; Howe, R.; Waldron, C.-A.; Thomas-Jones, E.; Hollingworth, W.; Little, P.; et al. Childhood urinary tract infection in primary care: A prospective observational study of prevalence, diagnosis, treatment, and recovery. Br. J. Gen. Pract. 2015, 65, e217–e223. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, X.; Wei, Y.; Yu, C.; Zhao, J.; Wang, L.; Hu, Y.; Wei, G.; Wu, S. Clinical and Microbial Etiology Characteristics in Pediatric Urinary Tract Infection. Front. Pediatr. 2022, 10, 844797. [Google Scholar] [CrossRef]
- Mattoo, T.K.; Shaikh, N.; Nelson, C.P. Contemporary Management of Urinary Tract Infection in Children. Pediatrics 2021, 147, e2020012138. [Google Scholar] [CrossRef] [PubMed]
- Lashkar, M.O.; Nahata, M.C. Antimicrobial Pharmacotherapy Management of Urinary Tract Infections in Pediatric Patients. J. Pharm. Technol. JPT Off. Publ. Assoc. Pharm. Tech. 2018, 34, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Autore, G.; Bernardi, L.; La Scola, C.; Ghidini, F.; Marchetti, F.; Pasini, A.; Pierantoni, L.; Castellini, C.; Gatti, C.; Malaventura, C.; et al. Management of Pediatric Urinary Tract Infections: A Delphi Study. Antibiotics 2022, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.R.; Sánchez, P.J.; Spencer, J.D.; Cohen, D.M.; Hains, D.S. Urinary Tract Infection and Antimicrobial Stewardship in the Emergency Department. Pediatr. Emerg. Care 2018, 34, 93–95. [Google Scholar] [CrossRef]
- Al-Sayyed, B.; Le, J.; Al-Tabbaa, M.M.; Barnacle, B.; Ren, J.; Tapping, R.; Aiyer, M. Uncomplicated Urinary Tract Infection in Ambulatory Primary Care Pediatrics: Are We Using Antibiotics Appropriately? J. Pediatr. Pharmacol. Ther. 2019, 24, 39–44. [Google Scholar] [CrossRef]
- Alghounaim, M.; Ostrow, O.; Timberlake, K.; Richardson, S.E.; Koyle, M.; Science, M. Antibiotic Prescription Practice for Pediatric Urinary Tract Infection in a Tertiary Center. Pediatr. Emerg. Care, 2019; publish ahead of print. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, N.; Mattoo, T.K.; Keren, R.; Ivanova, A.; Cui, G.; Moxey-Mims, M.; Majd, M.; Ziessman, H.A.; Hoberman, A. Early Antibiotic Treatment for Pediatric Febrile Urinary Tract Infection and Renal Scarring. JAMA Pediatr. 2016, 170, 848. [Google Scholar] [CrossRef] [Green Version]
- Urinary Tract Infection in under 16s: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/cg54 (accessed on 28 December 2022).
- ‘t Hoen, L.A.; Bogaert, G.; Radmayr, C.; Dogan, H.S.; Nijman, R.J.M.; Quaedackers, J.; Rawashdeh, Y.F.; Silay, M.S.; Tekgul, S.; Bhatt, N.R.; et al. Update of the EAU/ESPU guidelines on urinary tract infections in children. J. Pediatr. Urol. 2021, 17, 200–207. [Google Scholar] [CrossRef]
- Roberts, K.B. Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management Urinary Tract Infection: Clinical Practice Guideline for the Diagnosis and Management of the Initial UTI in Febrile Infants and Children 2 to 24 Months. Pediatrics 2011, 128, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Hay, A.D.; Birnie, K.; Busby, J.; Delaney, B.; Downing, H.; Dudley, J.; Durbaba, S.; Fletcher, M.; Harman, K.; Hollingworth, W.; et al. The Diagnosis of Urinary Tract infection in Young children (DUTY): A diagnostic prospective observational study to derive and validate a clinical algorithm for the diagnosis of urinary tract infection in children presenting to primary care with an acute illness. Health Technol. Assess. 2016, 20, 1–294. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, N.; Hoberman, A.; Hum, S.W.; Alberty, A.; Muniz, G.; Kurs-Lasky, M.; Landsittel, D.; Shope, T. Development and Validation of a Calculator for Estimating the Probability of Urinary Tract Infection in Young Febrile Children. JAMA Pediatr. 2018, 172, 550–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, M.H.; Shaw, K.N. Clinical Decision Rule to Identify Febrile Young Girls at Risk for Urinary Tract Infection. Arch. Pediatr. Adolesc. Med. 2000, 154, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boon, H.A.; Verbakel, J.Y.; De Burghgraeve, T.; Van den Bruel, A. Clinical prediction rules for childhood urinary tract infections: A cross-sectional study in ambulatory care. BJGP Open 2022, 6, BJGPO.2021.0171. [Google Scholar] [CrossRef]
- Diviney, J.; Jaswon, M.S. Urine collection methods and dipstick testing in non-toilet-trained children. Pediatr. Nephrol. 2021, 36, 1697–1708. [Google Scholar] [CrossRef] [PubMed]
- Tosif, S.; Kaufman, J.; Fitzpatrick, P.; Hopper, S.M.; Hoq, M.; Donath, S.; Babl, F.E. Clean catch urine collection: Time taken and diagnostic implication. A prospective observational study: Clean catch urine outcomes in young children. J. Paediatr. Child Health 2017, 53, 970–975. [Google Scholar] [CrossRef]
- Kaufman, J.; Fitzpatrick, P.; Tosif, S.; Hopper, S.M.; Donath, S.M.; Bryant, P.A.; Babl, F.E. Faster clean catch urine collection (Quick-Wee method) from infants: Randomised controlled trial. BMJ 2017, 357, j1341. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.J.; Macaskill, P.; Chan, S.F.; Turner, R.M.; Hodson, E.; Craig, J.C. Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: A meta-analysis. Lancet Infect. Dis. 2010, 10, 240–250. [Google Scholar] [CrossRef]
- Riddick, L. Urine Dipsticks. Dont Forget Bubbles. 9 May 2021. Available online: https://dontforgetthebubbles.com/urine-dipsticks/ (accessed on 11 March 2023).
- Waterfield, T.; Foster, S.; Platt, R.; Barrett, M.J.; Durnin, S.; Maney, J.-A.; Roland, D.; McFetridge, L.; Mitchell, H.; Umana, E.; et al. Diagnostic test accuracy of dipstick urinalysis for diagnosing urinary tract infection in febrile infants attending the emergency department. Arch. Dis. Child. 2022, 107, 1095–1099. [Google Scholar] [CrossRef]
- Boon, H.A.; Struyf, T.; Bullens, D.; Van den Bruel, A.; Verbakel, J.Y. Diagnostic value of biomarkers for paediatric urinary tract infections in primary care: Systematic review and meta-analysis. BMC Fam. Pract. 2021, 22, 193. [Google Scholar] [CrossRef]
- Michael, M.; Hodson, E.M.; Craig, J.C.; Martin, S.; Moyer, V.A. Short compared with standard duration of antibiotic treatment for urinary tract infection: A systematic review of randomised controlled trials. Arch. Dis. Child. 2002, 87, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Brady, P.W.; Conway, P.H.; Goudie, A. Length of Intravenous Antibiotic Therapy and Treatment Failure in Infants With Urinary Tract Infections. Pediatrics 2010, 126, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikmat, S.; Lawrence, J.; Gwee, A. Short Intravenous Antibiotic Courses for Urinary Infections in Young Infants: A Systematic Review. Pediatrics 2022, 149, e2021052466. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, S.; Danchin, M.; Ditchfield, M.; Hewitt, I.; Kausman, J.; Kennedy, S.; Trnka, P.; Williams, G. KHA-CARI guideline: Diagnosis and treatment of urinary tract infection in children: Urinary tract infection in children. Nephrology 2015, 20, 55–60. [Google Scholar] [CrossRef] [PubMed]
Tonsillitis Symptom/Parameter | Score |
---|---|
Temperature > 38 °C | 1 |
Absence of cough | 1 |
Anterior cervical adenopathy (tender) | 1 |
Tonsillar swelling or exudates | 1 |
Age 3–14 years | 1 |
Management Points | IDSA (US) [48] | NICE and SIGN (UK) [35,36] | Rheumatic Heart Disease (RHD) (Australia) [49] | ESCMID (Europe) [47] | |
---|---|---|---|---|---|
Use of clinical scoring systems | Use a clinical score (although no score is specified) to identify patients at low risk of infection, making throat culture and RADT unnecessary | FeverPAIN and Centor to identify children who will benefit more from antibiotics | Centor or Modified Centor to predict children with GAβHS infection | Centor and Modified Centor to predict children with GAβHS infection | |
Clinical score validity/utility | Acknowledges no scoring system is validated in the UK population | No clinical scoring system is validated in the Australian population | Advises Centor score has limited use in children | ||
Diagnosis and investigation | Diagnosis on clinical history and exam or clinical score plus RADT and/or throat culture Diagnostic tests not indicated in likely viral aetiology and children < 3 years | Combination of clinical diagnosis, point-of-care testing, and laboratory culture | |||
Blood tests | Antistreptococcal (ASO) antibody titres not recommended for acute diagnosis | ASO and anti-DNase B titres can be used to determine recent infection | CRP and procalcitonin not essential for assessment | ||
RADTs | Positive RADTs do not need confirmation by culture. Negative RADTs in children and adolescents should be confirmed by throat culture | RADTs in children with high FeverPAIN scores confers no benefit to using clinical score alone | RADTs not commonly used as they are not as accurate as culture | RADTs are 95% specific for GAβHS when compared to throat culture (90% sensitivity). Should be considered in children with high Centor scores to increase RADT accuracy | |
Throat culture | Selective throat culture testing to avoid identifying carriers rather than infection | Throat swabs should not be used routinely | Throat swabs in those with high Centor or McIsaac scores | Throat culture unnecessary, especially if RADT is negative | |
Antibiotic treatment | Antibiotics should only be prescribed for proven GAβHS infection | Antibiotics are more effective in children with a positive throat swab | Give antibiotic treatment for GAβHS positive swabs | Balance benefits of antibiotics in high Centor scores and positive GAβHS against effects on microbiome, resistance, side effects, and cost | |
Empirical treatment | Antibiotic prophylaxis is not endorsed for recurrent sore throat | Empirical antibiotics only in those at high risk for acute rheumatic failure, regardless of symptoms or tests | |||
Immediate antibiotic prescription | Immediate antibiotics should be used in systemic infection, serious illness, or high risk of complications | ||||
Delayed prescription | Consider delayed prescription with FeverPAIN of 4 or Centor of 3 | Delayed prescriptions can be used | |||
Antibiotic rationale | To prevent suppurative and nonsuppurative complications (acknowledges that development of poststreptococcal glomerulonephritis is unaffected by antibiotic treatment) | Antibiotics should not be used to reduce complications, or routinely decrease community cross infection | To prevent the occurrence of acute rheumatic fever | Antibiotics are not indicated to prevent complications in low-risk patients | |
First-line antibiotic | Phenoxymethylpenicillin (oral), Or amoxicillin (oral), Or benzathine benzylpenicillin G (intramuscular) | Phenoxymethylpenicillin (oral) | Benzathine benzylpenicillin G (intramuscular), Or phenoxymethylpenicillin (oral) | Phenoxymethylpenicillin (oral) Amoxicillin can be used in younger children, but not recommended in older | |
Allergy to first-line antibiotics | Cephalexin (oral), cefadroxil (oral), clindamycin (oral), azithromycin (oral), clarithromycin (oral) | Clarithromycin (oral) | Hypersensitivity: cephalexin (oral) Anaphylaxis: azithromycin (oral) | No recommended alternative | |
Duration of antibiotic | Short course | Shorter antibiotic courses of oral cephalosporins are not endorsed | Use the shortest effective course Short antibiotic courses achieve symptomatic cure | Neither long nor short antibiotic durations are mentioned | Insufficient evidence to endorse antibiotic courses shorter than 10 days |
Long course (10 days) | Long courses are needed for maximum GAβHS eradication | Long course achieves microbiological cure |
Living in an ARF endemic setting |
Previous/Recent Family history of ARF or RHD |
Prior GABHS infection (throat or skin) |
Regular travel to ARF endemic setting |
Peak age for ARF development (5–20 years) |
Limited household resources Overcrowding Cold, damp environment Bathing, laundry facilities |
Poor access to medical facilities |
Refugee or Migrant status from low- or middle-income country (RHD) |
Method | Contamination Rate | Complications |
---|---|---|
Suprapubic aspiration | 0–7% | Hematuria (3.6%) Risk of aspiration of gut lumen (1/140 procedures) Failure at first attempt 10–54% |
Urethral catheterisation | 14.3% | Microscopic hematuria (17%) Risk of septicemia in neonates (not defined) Failure at first attempt < 10% |
Clean catch | 16–38% | Time consuming Moderately high contamination rate |
Bag collected | 43.9–88% | Time consuming High contamination rate |
Guidelines | NICE (2007) [112] | AAP (2011) [114] | EUA (2021) [113] | KHA-CARI (2015) [129] |
---|---|---|---|---|
Population | 0–16 years old | 3 months–2 years old | 0–18 years old | 0–18 years old |
Diagnosis | ||||
Urine sample | CCU MSU Alternative: Collection bag SPA or BC only when other methods are not possible | BC SPA | CCU MSU BC SPA | SPA BC CCU MSU |
Two-step approach | Not mentioned | Recommended | Recommended | Recommended |
Culture confirmation | Only if dipstick is not conclusive | Always | Always | Always |
Bacterial confirmation | Not described | Positive urine culture BC: 5 × 104 CFU/mL SPA: any growth | Positive urine culture BC: >103–5 CFU/mL CCU: >104 CFU/mL + symptoms SPA: any growth | Positive urine culture BC or CCU: > 108 CFU/L SPA: any growth |
Treatment | ||||
Route | IV: <3 months, NPO or unwell Oral: all other children | IV: NPO or unwell Oral: all other children | IV: <3 months, NPO or unwell Oral: all other children | IV: <3 months, NPO or unwell Oral: all other children |
Duration | Lower UTI: 3 days Upper UTI: 7–10 days | 7–14 days | Lower UTI: at least 3–5 days Upper UTI: 7–14 days | Lower UTI: 2–4 days Upper UTI: 7–10 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karageorgos, S.; Hibberd, O.; Mullally, P.J.W.; Segura-Retana, R.; Soyer, S.; Hall, D., on behalf of the Don’t Forget the Bubbles. Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review. Antibiotics 2023, 12, 1092. https://doi.org/10.3390/antibiotics12071092
Karageorgos S, Hibberd O, Mullally PJW, Segura-Retana R, Soyer S, Hall D on behalf of the Don’t Forget the Bubbles. Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review. Antibiotics. 2023; 12(7):1092. https://doi.org/10.3390/antibiotics12071092
Chicago/Turabian StyleKarageorgos, Spyridon, Owen Hibberd, Patrick Joseph William Mullally, Roberto Segura-Retana, Shenelle Soyer, and Dani Hall on behalf of the Don’t Forget the Bubbles. 2023. "Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review" Antibiotics 12, no. 7: 1092. https://doi.org/10.3390/antibiotics12071092
APA StyleKarageorgos, S., Hibberd, O., Mullally, P. J. W., Segura-Retana, R., Soyer, S., & Hall, D., on behalf of the Don’t Forget the Bubbles. (2023). Antibiotic Use for Common Infections in Pediatric Emergency Departments: A Narrative Review. Antibiotics, 12(7), 1092. https://doi.org/10.3390/antibiotics12071092