Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Identification
2.2. Antimicrobial Resistance Profile
2.3. Molecular Characterization of K. pneumoniae Isolates
2.3.1. DNA Extraction
2.3.2. Detection by PCR of Resistance Genes
2.4. Biofilm Formation and Biomass Quantification
3. Results
3.1. Bacterial Isolates and Identification
3.2. Antimicrobial Resistance Profile
3.3. Detection of Resistance Genes
3.4. Detection of Biofilm
3.5. Biofilm Production among Clinical Specimen
3.6. Biofilm Production among ESBL-, KPC- and Non-β-Lactamase-Producing Klebsiella pneumoniae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, M.; Li, X. Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular Medical Microbiology; Academic Press: Cambridge, MA, USA, 2015; pp. 1547–1564. ISBN 9780123971692. [Google Scholar]
- Kunz Coyne, A.J.; Casapao, A.M.; Isache, C.; Morales, J.; McCarter, Y.S.; Jankowski, C.A. Influence of Antimicrobial Stewardship and Molecular Rapid Diagnostic Tests on Antimicrobial Prescribing for Extended-Spectrum Beta-Lactamase- and Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae in Bloodstream Infection. Microbiol. Spectr. 2021, 9, e00464-21. [Google Scholar] [CrossRef] [PubMed]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.C.; Burgess, D.S. Treatment of Klebsiella Pneumoniae Carbapenemase (KPC) infections: A review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Guerra, M.E.S.; Destro, G.; Vieira, B.; Lima, A.S.; Ferraz, L.F.C.; Hakansson, A.P.; Darrieux, M.; Converso, T.R. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 555. [Google Scholar] [CrossRef]
- Stahlhut, S.G.; Struve, C.; Krogfelt, K.A.; Reisner, A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol. Med. Microbiol. 2012, 65, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Vuotto, C.; Longo, F.; Balice, M.P.; Donelli, G.; Varaldo, P.E. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae. Pathogens 2014, 3, 743–758. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhang, Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases. J. Hosp. Infect. 2008, 68, 369–371. [Google Scholar] [CrossRef]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 2020, 96, 31. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Kuinkel, S.; Acharya, J.; Dhungel, B.; Adhikari, S.; Adhikari, N.; Shrestha, U.T.; Banjara, M.R.; Rijal, K.R.; Ghimire, P.; Kourkoutas, Y.; et al. Biofilm Formation and Phenotypic Detection of ESBL, MBL, KPC and AmpC Enzymes and Their Coexistence in Klebsiella spp. Isolated at the National Reference Laboratory, Kathmandu, Nepal. Microbiol. Res. 2021, 12, 49. [Google Scholar] [CrossRef]
- Cruz-Córdova, A.; Esteban-Kenel, V.; Espinosa-Mazariego, K.; Ochoa, S.A.; Moreno Espinosa, S.; de la Garza Elhain, A.; Fernández Rendón, E.; López Villegas, E.O.; Xicohtencatl-Cortes, J. Pathogenic determinants of clinical Klebsiella pneumoniae strains associated with their persistence in the hospital environment. Bol. Med. Hosp. Infant. Mex. 2014, 71, 15–24. [Google Scholar]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar]
- Pacheco, T.; Gomes, A.É.I.; Siqueira, N.M.G.; Assoni, L.; Darrieux, M.; Venter, H.; Ferraz, L.F.C. SdiA, a Quorum-Sensing Regulator, Suppresses Fimbriae Expression, Biofilm Formation, and Quorum-Sensing Signaling Molecules Production in Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 1229. [Google Scholar] [CrossRef]
- Al-Bayati, M.; Samarasinghe, S. Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. Int. J. Environ. Res. Public Health 2022, 19, 4788. [Google Scholar] [CrossRef]
- Chung, P.Y. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 2016, 363, fnw219. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0; The European Committee on Antimicrobial Susceptibility Testing: Stockholm, Sweden, 2022. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; ISBN 9781684401048. [Google Scholar]
- Solberg, O.D.; Ajiboye, R.M.; Riley, L.W. Origin of Class 1 and 2 Integrons and Gene Cassettes in a Population-Based Sample of Uropathogenic Escherichia coli. J. Clin. Microbiol. 2006, 44, 1347–1351. [Google Scholar] [CrossRef] [Green Version]
- Machado, E.; Cantón, R.; Baquero, F.; Galán, J.C.; Rollán, A.; Peixe, L.; Coque, T.M. Integron Content of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain. Antimicrob. Agents Chemother. 2005, 49, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar] [CrossRef] [Green Version]
- Weldhagen, G.F.; Poirel, L.; Nordmann, P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: Novel developments and clinical impact. Antimicrob. Agents Chemother. 2003, 47, 2385–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellington, M.J.; Kistler, J.; Livermore, D.M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J. Antimicrob. Chemother. 2007, 59, 321–322. [Google Scholar] [CrossRef] [Green Version]
- Franco, M.R.G.; Caiaffa-Filho, H.H.; Burattini, M.N.; Rossi, F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics 2010, 65, 825–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanthi Amudhan, M.; Sekar, U.; Kamalanathan, A.; Balaraman, S. bla(IMP) and bla(VIM) mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J. Infect. Dev. Ctries. 2012, 6, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyestanaki, D.K.; Mirsalehian, A.; Rezagholizadeh, F.; Jabalameli, F.; Taherikalani, M.; Emaneini, M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014, 40, 1556–1561. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Nirwati, H.; Sinanjung, K.; Fahrunissa, F.; Wijaya, F.; Napitupulu, S.; Hati, V.P.; Hakim, M.S.; Meliala, A.; Aman, A.T.; Nuryastuti, T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yang, W.; Zhao, X.; Wang, N.; Ren, H. Klebsiella pneumoniae presents antimicrobial drug resistance for β-lactam through the ESBL/PBP signaling pathway. Exp. Ther. Med. 2020, 19, 2449–2456. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.I.; Aqib, A.I.; Seleem, M.N.; Shabbir, M.A.; Hao, H.; Iqbal, Z.; Kulyar, M.F.e.A.; Zaheer, T.; Li, K. Genetic Basis of Molecular Mechanisms in β-lactam Resistant Gram-negative Bacteria. Microb. Pathog. 2021, 158, 105040. [Google Scholar] [CrossRef]
- Seifi, K.; Kazemian, H.; Heidari, H.; Rezagholizadeh, F.; Saee, Y.; Shirvani, F.; Houri, H. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J. Microbiol. 2016, 9, e30682. [Google Scholar] [CrossRef] [Green Version]
- Lagha, R.; Ben Abdallah, F.; ALKhammash, A.A.H.; Amor, N.; Hassan, M.M.; Mabrouk, I.; Alhomrani, M.; Gaber, A. Molecular characterization of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from King Abdulaziz Specialist Hospital at Taif City, Saudi Arabia. J. Infect. Public Health 2021, 14, 143–151. [Google Scholar] [CrossRef]
- Shadkam, S.; Goli, H.R.; Mirzaei, B.; Gholami, M.; Ahanjan, M. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 13. [Google Scholar] [CrossRef]
- Heidary, M.; Nasir, M.J.; Dabiri, H.; Tarashi, S. Prevalence of drug-resistant Klebsiella pneumoniae in Iran: A review article. Iran. J. Public Health 2018, 47, 317–326. [Google Scholar]
- Pishtiwan, A.H.; Khadija, K.M. Prevalence of blaTEM, blaSHV, and blaCTX-M Genes among ESBL-Producing Klebsiella pneumoniae and Escherichia coli Isolated from Thalassemia Patients in Erbil, Iraq. Mediterr. J. Hematol. Infect. Dis. 2019, 11, 2019041. [Google Scholar]
- Jafari-Sales, A.; Soleimani, H.; Moradi, L. Antibiotic resistance pattern in Klebsiella pneumoniae strains isolated from children with urinary tract infections from Tabriz hospitals. Heal. Biotechnol. Biopharma 2021, 4, 38–45. [Google Scholar]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci. Reports 2020, 10, 1232. [Google Scholar] [CrossRef] [Green Version]
- Ugbo, E.N.; Anyamene, C.O.; Moses, I.B.; Iroha, I.R.; Babalola, O.O.; Ukpai, E.G.; Chukwunwejim, C.R.; Egbule, C.U.; Emioye, A.A.; Okata-Nwali, O.D.; et al. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae of clinical origin. Gene Rep. 2020, 21, 100909. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Khairy, R.M.M.; Abdelrahim, S.S. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt. Antimicrob. Resist. Infect. Control 2020, 9, 198. [Google Scholar] [CrossRef]
- Tracz, D.M.; Boyd, D.A.; Hizon, R.; Bryce, E.; McGeer, A.; Ofner-Agostini, M.; Simor, A.E.; Paton, S.; Mulvey, M.R.; Conly, J.; et al. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol. Lett. 2007, 270, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Maurya, N.; Jangra, M.; Tambat, R.; Nandanwar, H. Alliance of Efflux Pumps with β-Lactamases in Multidrug-Resistant Klebsiella pneumoniae Isolates. Microb. Drug Resist. 2019, 25, 1155–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethuvel, D.P.M.; Bakthavatchalam, Y.D.; Karthik, M.; Irulappan, M.; Shrivastava, R.; Periasamy, H.; Veeraraghavan, B. β-Lactam Resistance in ESKAPE Pathogens Mediated Through Modifications in Penicillin-Binding Proteins: An Overview. Infect. Dis. Ther. 2023, 12, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Firmo, E.F.; Beltrão, E.M.B.; da Silva, F.R.F.; Alves, L.C.; Brayner, F.A.; Veras, D.L.; Lopes, A.C.S. Association of blaNDM-1 with blaKPC-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J. Glob. Antimicrob. Resist. 2020, 21, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, G.; Peymani, A.; Farivar, T.N.; Hosseini, P. Molecular epidemiology of aminoglycoside resistance in clinical isolates of Klebsiella pneumoniae collected from Qazvin and Tehran provinces, Iran. Infect. Genet. Evol. 2018, 64, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside Revival: Review of a Historically Important Class of Antimicrobials Undergoing Rejuvenation. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokaeian, M.; Saeidi, S.; Shahi, Z.; Kadaei, V. tetA and tetB Genes in Klebsiella pneumoniae Isolated From Clinical Samples. Gene Cell Tissue 2014, 1, 18152. [Google Scholar] [CrossRef]
- Kashefieh, M.; Hosainzadegan, H.; Baghbanijavid, S.; Ghotaslou, R. The Molecular Epidemiology of Resistance to Antibiotics among Klebsiella pneumoniae Isolates in Azerbaijan, Iran. J. Trop. Med. 2021, 2021, 9195184. [Google Scholar] [CrossRef]
- Asghari, B.; Goodarzi, R.; Mohammadi, M.; Nouri, F.; Taheri, M. Detection of mobile genetic elements in multidrug-resistant Klebsiella pneumoniae isolated from different infection sites in Hamadan, west of Iran. BMC Res. Notes 2021, 14, 330. [Google Scholar] [CrossRef]
- Skočková, A.; Cupáková, Š.; Karpíšková, R.; Janštová, B.; Skočková, A.; Cupáková, Š.; Karpíšková, R.; Janštová, B. Detection of Tetracycline Resistance Genes in Escherichia coli from Raw Cow’s Milk. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 777–784. [Google Scholar]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.T.; Musicha, P.; Feasey, N.A.; Adams, E.R.; Edwards, T. ChloS-HRM, a novel assay to identify chloramphenicol-susceptible Escherichia coli and Klebsiella pneumoniae in Malawi. J. Antimicrob. Chemother. 2019, 74, 1212–1217. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, J.; Li, Y.; Shen, Q.; Jiang, W.; Zhao, K.; He, Y.; Dai, P.; Nie, Z.; Xu, X.; et al. Diversity and frequency of resistance and virulence genes in blaKPC and blaNDM co-producing Klebsiella pneumoniae strains from China. Infect. Drug Resist. 2019, 12, 2819–2826. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.C.; Schwarz, S. Tetracycline and Chloramphenicol Resistance Mechanisms. Antimicrob. Drug Resist. 2017, 1, 231–243. [Google Scholar]
- Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 2001, 32, 1608–1614. [Google Scholar]
- Razavi, M.; Marathe, N.P.; Gillings, M.R.; Flach, C.F.; Kristiansson, E.; Joakim Larsson, D.G. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome 2017, 5, 160. [Google Scholar] [CrossRef] [Green Version]
- Heidarzadeh, S.; Pourmand, M.R.; Hasanvand, S.; Pirjani, R.; Afshar, D.; Noori, M.; Soltan Dallal, M.M. Antimicrobial Susceptibility, Serotyping, and Molecular Characterization of Antibiotic Resistance Genes in Listeria monocytogenes Isolated from Pregnant Women with a History of Abortion. Iran. J. Public Health 2021, 50, 170–179. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Simón, C.; Ceballos, S.; Ortega, C.; Zarazaga, M.; Torres, C.; Gómez-Sanz, E.S. S. pseudintermedius and S. aureus lineages with transmission ability circulate as causative agents of infections in pets for years. BMC Vet. Res. 2021, 17, 42. [Google Scholar] [CrossRef]
- Ghasemnejad, A.; Doudi, M.; Amirmozafari, N. The role of the blaKPC gene in antimicrobial resistance of Klebsiella pneumoniae. Iran. J. Microbiol. 2019, 11, 288. [Google Scholar]
- Gaibani, P.; Re, M.C.; Campoli, C.; Viale, P.L.; Ambretti, S. Bloodstream infection caused by KPC-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam: Epidemiology and genomic characterization. Clin. Microbiol. Infect. 2020, 26, e1–e516. [Google Scholar] [CrossRef]
- Migliorini, L.B.; de Sales, R.O.; Koga, P.C.M.; Doi, A.M.; Poehlein, A.; Toniolo, A.R.; Menezes, F.G.; Martino, M.D.V.; Gales, A.C.; Brüggemann, H.; et al. Prevalence of blaKPC-2, blaKPC-3 and blaKPC-30—Carrying Plasmids in Klebsiella pneumoniae Isolated in a Brazilian Hospital. Pathogens 2021, 10, 332. [Google Scholar] [CrossRef]
- Amiri, A.; Firoozeh, F.; Moniri, R.; Zibaei, M. Prevalence of CTX-M-Type and PER Extended-Spectrum β-Lactamases Among Klebsiella spp. Isolated From Clinical Specimens in the Teaching Hospital of Kashan, Iran. Iran. Red Crescent Med. J. 2016, 18, 22260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedighi, M.; Halajzadeh, M.; Ramazanzadeh, R.; Amirmozafari, N.; Heidary, M.; Pirouzi, S. Molecular detection of β-lactamase and integron genes in clinical strains of Klebsiella pneumoniae by multiplex polymerase chain reaction. Rev. Soc. Bras. Med. Trop. 2017, 50, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkel, İ.; Yıldırım, T.; Yazgan, B.; Bilgin, M.; Başbulut, E. Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum β-lactamase producing Klebsiella pneumoniae. J. Chemother. 2018, 30, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.J.; Mende, K.; Beckius, M.L.; Akers, K.S.; Romano, D.R.; Wenke, J.C.; Murray, C.K. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 2013, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Rahdar, H.A.; Malekabad, E.S.; Dadashi, A.R.; Takei, E.; Keikha, M.; Kazemian, H.; Karami-Zarandi, M. Correlation between biofilm formation and carbapenem resistance among clinical isolates of Klebsiella pneumoniae. Ethiop. J. Health Sci. 2019, 29, 745–750. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Natarajan, V.; Sevanan, M. Antimicrobial Susceptibility Pattern of ESBL and Non-ESBL Producing Uropathogenic Escherichia coli (UPEC) and Their Correlation with Biofilm Formation. Asian Pac. J. Trop. Med. 2012, 5, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.E.; Shahriar, A.; Shams, F.; Nath, A.K.; Emran, T. Bin Correlation between biofilm formation and antimicrobial susceptibility pattern toward extended spectrum β-lactamase (ESBL)- and non-ESBL-producing uropathogenic bacteria. J. Basic Clin. Physiol. Pharmacol. 2020, 32, 20190296. [Google Scholar] [CrossRef]
Isolate | β-Lactamase | Resistance Profile | Genes Detected |
---|---|---|---|
HS10 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, sul2 |
HS13 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, sul2 |
HS18 | KPC | AMP AUG FOX CAZ CTX FEP ATM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, sul2 |
HS24 | KPC | AMP AUG FOX CAZ CTX FEP ATM ERT IMP AK CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, sul2 |
HS74 | KPC | AMP AUG FOX CAZ CTX FEP ATM ERT CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrB, sul2 |
HS89 | KPC | AMP AUG CTX ATM MEM ERT IMP | blaKPC, blaCTX, blaTEM, blaSHV |
HS99 | KPC | AMP AUG CAZ CTX FEP ATM ERT IMP CN CIP NA SXT CHL | blaKPC, blaCTX-M, blaSHV, aac(3)-II, aadA1, sul2 |
HS102 | KPC | AMP AUG FOX CAZ CTX FEP ATM ERT IMP TET CIP NA SXT | blaKPC, blaOXA, blaCTX, blaTEM, blaSHV |
HS105 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aadA1, sul2 |
HS113 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrB, sul2 |
HS125 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP AK CIP NA SXT | blaKPC, blaCTX-M, blaTEM, blaSHV, gyrB, sul1 |
HS128 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CIP NA SXT | blaKPC, blaCTX-M, blaTEM, blaSHV, gyrB, sul1 |
HS151 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrB, sul2 |
HS153 | KPC | AMP AUG FOX CAZ CTX FEP ATM MEM ERT IMP CN CIP NA SXT | blaKPC, blaOXA, blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrB, sul2 |
HS160 | KPC | AMP AUG FOX CAZ CTX FEP ATM ERT IMP CN CIP NA SXT CHL | blaKPC, blaOXA, blaPER, blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrA, gyrB, sul2 |
HS16 | ESBL | AMP AUG CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrA, gyrB, sul2 |
HS38 | ESBL | AMP AUG CAZ CTX FEP ATM CN SXT | blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, sul2 |
HS72 | ESBL | AMP FOX CAZ CTX FEP ATM ERT TET CIP SXT | blaCTX-M, blaTEM, blaSHV, gyrA, gyrB |
HS85 | ESBL | AMP AUG CAZ CTX FEP ATM CIP NA SXT CHL | blaCTX-M, blaTEM, blaSHV, gyrA, gyrB, parC |
HS97 | ESBL | AMP AUG CAZ CTX FEP ATM AK CIP NA SXT CHL | blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, cmlA, catA, gyrA, gyrB, sul2, sul3 |
HS98 | ESBL | AMP AUG CAZ CTX FEP ATM CN TET CIP NA SXT | blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, gyrA, gyrB, parC, sul2 |
HS119 | ESBL | AMP AUG CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrB, parC, sul2 |
HS131 | ESBL | AMP CTX FEP ATM | blaCTX-M, blaTEM, blaSHV |
HS141 | ESBL | AMP AUG CAZ CTX FEP ATM AK CN TET CIP SXT | blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, tetA, gyrA, gyrB, parC, sul2 |
HS143 | ESBL | AMP AUG FOX CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrA, gyrB, parC, sul2 |
HS147 | ESBL | AMP AUG CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, blaSHV, aac(3)-II, aadA1, gyrA, gyrB, sul2 |
HS149 | ESBL | AMP AUG CAZ CTX FEP ATM CN TET CIP NA SXT | blaCTX-M, blaTEM, blaSHV, aac(3)-II, aadA1, gyrB, parC, sul2 |
HS154 | ESBL | AMP AUG CAZ CTX FEP ATM CIP NA SXT CHL | blaCTX-M, blaSHV, gyrB, parC, sul1, sul2 |
HS161 | ESBL | AMP AUG CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, blaSHV, aadA1, gyrB, parC, sul2 |
HS163 | ESBL | AMP AUG CAZ CTX FEP ATM CN CIP NA SXT CHL | blaCTX-M, aac(3)-II, aadA1, gyrB, sul2 |
HS26 | - | AMP AUG | blaSHV |
HS32 | - | AMP CN | blaTEM, blaSHV, aadA1 |
HS33 | - | AMP CN | blaTEM, blaSHV, aadA1 |
HS35 | - | AMP CN | blaTEM, blaSHV, aac(3)-II, aadA1 |
HS39 | - | AMP | - |
HS40 | - | AMP TET CIP SXT CHL | blaSHV, tetA, gyrB, sul2 |
HS41 | - | AMP CN | blaTEM, blaSHV, aac(3)-II, aadA1 |
HS43 | - | AMP TET SXT | blaTEM, blaSHV, tetA, sul1 |
HS46 | - | AMP AK | blaTEM, blaSHV, aac(3)-II, aadA1 |
HS47 | - | AMP AK CN | blaTEM, blaSHV, aac(3)-II, aadA1 |
HS49 | - | AMP CN | blaTEM, blaSHV, aadA1 |
HS53 | - | AMP AUG AK TET CIP SXT | blaTEM, blaSHV, aac(3)-II, aadA1, tetA, gyrB, sul1 |
HS60 | - | AMP CN | blaTEM, blaSHV, aac(3)-II, aadA1 |
HS62 | - | AMP CN | blaTEM, blaSHV, aac(3)-I,I aadA1 |
HS63 | - | AMP | blaTEM, blaSHV |
Antibiotics | Klebsiella pneumoniae (n = 45) | ||
---|---|---|---|
Resistant n (%) | Intermediate n (%) | Sensitive n (%) | |
Ampicillin | 45 (100.0) | 0 (0.0) | 0 (0.0) |
Trimethoprim-sulfamethoxazole | 31 (68.9) | 0 (0.0) | 14 (31.1) |
Amoxicillin-clavulanic acid | 30 (66.7) | 0 (0.0) | 15 (33.3) |
Cefotaxime | 30 (66.7) | 0 (0.0) | 15 (33.3) |
Aztreonam | 30 (66.7) | 0 (0.0) | 15 (33.3) |
Cefepime | 29 (64.4) | 0 (0.0) | 16 (35.6) |
Ciprofloxacin | 29 (64.4) | 0 (0.0) | 16 (35.6) |
Gentamicin | 29 (64.4) | 0 (0) | 16 (35.6) |
Ceftazidime | 28 (62.2) | 2 (4.4) | 15 (33.3) |
Nalidixic acid | 25 (55.6) | 1 (2.2) | 19 (42.2) |
Chloramphenicol | 20 (44.4) | 0 (0.0) | 25 (55.6) |
Ertapenem | 16 (35.6) | 0 (0.0) | 29 (64.4) |
Cefoxitin | 15 (33.3) | 0 (0.0) | 30 (66.7) |
Imipenem | 14 (31.1) | 1 (2.2) | 30 (66.7) |
Meropenem | 9 (20.0) | 5 (11.1) | 31 (68.9) |
Tetracycline | 8 (17.8) | 3 (6.7) | 34 (75.6) |
Amikacin | 7 (15.6) | 0(0.0) | 38 (84.4) |
Biofilm Producers | Non-Biofilm Producers | |||
---|---|---|---|---|
Weak n (%) | Moderate n (%) | Strong n (%) | Non-Producers n (%) | |
Klebsiella pneumoniae (n = 45) | 26 (57.8) | 9 (20.0) | 1 (2.2) | 9 (20.0) |
Clinical Specimen | ||||
Urinary infections (n = 35) | 21 (60.0) | 6 (17.1) | 1 (2.9) | 7 (20.0) |
Bacteremia episodes (n = 5) | 2 (40.0) | 2 (40.0) | 0 (0.0) | 1 (20.0) |
Pulmonary infections (n = 3) | 3 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Wounds (n = 2) | 0 (0.0) | 1 (50.0) | 0 (0.0) | 1 (50.0) |
Type of β-lactamase producer | ||||
ESBL producer (n = 15) | 6 (40.0) | 4 (26.7) | 1 (6.7) | 4 (26.7) |
KPC producer (n = 15) | 9 (60.0) | 2 (13.3) | 0 (0.0) | 4 (26.7) |
Non- β-lactamese producer (n = 15) | 11 (73.3) | 3 (20.0) | 0 (0.0) | 1 (6.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabença, C.; Costa, E.; Sousa, S.; Barros, L.; Oliveira, A.; Ramos, S.; Igrejas, G.; Torres, C.; Poeta, P. Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics 2023, 12, 1143. https://doi.org/10.3390/antibiotics12071143
Sabença C, Costa E, Sousa S, Barros L, Oliveira A, Ramos S, Igrejas G, Torres C, Poeta P. Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics. 2023; 12(7):1143. https://doi.org/10.3390/antibiotics12071143
Chicago/Turabian StyleSabença, Carolina, Eliana Costa, Sara Sousa, Lillian Barros, Ana Oliveira, Sónia Ramos, Gilberto Igrejas, Carmen Torres, and Patrícia Poeta. 2023. "Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples" Antibiotics 12, no. 7: 1143. https://doi.org/10.3390/antibiotics12071143
APA StyleSabença, C., Costa, E., Sousa, S., Barros, L., Oliveira, A., Ramos, S., Igrejas, G., Torres, C., & Poeta, P. (2023). Evaluation of the Ability to Form Biofilms in KPC-Producing and ESBL-Producing Klebsiella pneumoniae Isolated from Clinical Samples. Antibiotics, 12(7), 1143. https://doi.org/10.3390/antibiotics12071143