Drug Utilization Evaluation and Impact of Pharmacist Interventions on Optimization of Piperacillin/Tazobactam Use: A Retrospective Analysis and Prospective Audit
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Inappropriate Use: The Spectrum of Activity Was Too Broad
3.2. Dosage Is Appropriate Based on Indication and Renal Function
3.3. Culture/Sensitivity/De-Escalation
3.4. Extended Infusion
4. Methodology
4.1. Study Setting and Design
4.2. Data Collection
4.3. Inclusion and Exclusion Criteria
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korai, U.; Naqvi, G.R.; Zafar, F.; Ali, H.; Naeem, S.; Alam, N.; Saeed, R.; Farooqi, S.; Hussain, T. Drug utilization evaluation of Piperacillin/Tazobactam: A prospective and cross sectional investigation in tertiary care setup. Pak. J. Pharm. Sci. 2019, 32, 1861–1867. [Google Scholar] [PubMed]
- Samilski, J.A.E.; Lau, T.T.Y.; Elbe, D.H.T.; Aulakh, A.K.; Lun, E.M.C. Drug use evaluation of moxifloxacin (avelox) using a hand-held electronic device at a canadian teaching hospital. Pharm. Ther. 2012, 37, 291–299. [Google Scholar]
- Lieberman, J.M. Appropriate antibiotic use and why it is important: The challenges of bacterial resistance. Pediatr. Infect. Dis. J. 2003, 22, 1143–1151. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.B.; Espinal, M.; Ramón-Pardo, P. Antimicrobial resistance: Time for action. Rev. Panam. Salud. Publica 2020, 44, e131. [Google Scholar] [CrossRef]
- Raveh, D.; Muallem-Zilcha, E.; Greenberg, A.; Wiener-Well, Y.; Schlesinger, Y.; Yinnon, A.M. Prospective drug utilization evaluation of three broad-spectrum antimicrobials: Cefepime, piperacillin-tazobactam and meropenem. QJM Int. J. Med. 2006, 99, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, N.A.; Al-Omar, H.A.; Mayet, A.Y.; Mullen, A.B. Evaluating the appropriateness of carbapenem and piperacillin-tazobactam prescribing in a tertiary care hospital in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.; Snyder, G.M.; Finlayson, S.; Mahoney, M.V.; Celi, L.A. Potential Adverse Effects of Broad-Spectrum Antimicrobial Exposure in the Intensive Care Unit. Open Forum Infect. Dis. 2018, 5, ofx270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryson, H.M.; Brogden, R.N. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1994, 47, 506–535. [Google Scholar] [CrossRef]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Mazuski, J.E.; Tessier, J.M.; May, A.K.; Sawyer, R.G.; Nadler, E.P.; Rosengart, M.R.; Chang, P.K.; O’Neill, P.J.; Mollen, K.P.; Huston, J.M.; et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg. Infect. 2017, 18, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.R.; Haste, N.M.; Gluckstein, D.P. The Role of Antibiotic Stewardship in Promoting Appropriate Antibiotic Use. Am. J. Lifestyle Med. 2019, 13, 376–383. [Google Scholar] [CrossRef]
- Busse, R.; Klazinga, N.; Panteli, D.; Quentin, W. (Eds.) Improving Healthcare Quality in Europe: Characteristics, Effectiveness and Implementation of Different Strategies; European Observatory on Health Systems and Policies: Copenhagen, Denmark, 2019. [Google Scholar]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Fishman, N. Antimicrobial stewardship. Am. J. Infect. Control 2006, 34, S55–S63; discussion S64–S73. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kruger, P.; Paterson, D.L.; Lipman, J. Antibiotic resistance—What’s dosing got to do with it? Crit. Care Med. 2008, 36, 2433–2440. [Google Scholar] [CrossRef]
- Hassan, Z.; Ali, I.; Ullah, A.R.; Ahmed, R.; Zar, A.; Ullah, I.; Rehman, S.; Khan, A.U.; Ullah, R.; Hanif, M. Assessment of Medication Dosage Adjustment in Hospitalized Patients With Chronic Kidney Disease. Cureus 2021, 13, e13449. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, F.; Emami, S.; Rashid-Farokhi, F. The Rate of Antibiotic Dosage Adjustment in Renal Dysfunction. Iran. J. Pharm. Res. IJPR 2012, 11, 157–161. [Google Scholar]
- Chahine, B. Antibiotic dosing adjustments in hospitalized patients with chronic kidney disease: A retrospective chart review. Int. Urol. Nephrol. 2022, 54, 157–163. [Google Scholar] [CrossRef]
- Morimoto, T.; Nagashima, H.; Morimoto, Y.; Tokuyama, S. Frequency of Acute Kidney Injury Caused by Tazobactam/Piperacillin in Patients with Pneumonia and Chronic Kidney Disease: A Retrospective Observational Study. Yakugaku Zasshi 2017, 137, 1129–1136. [Google Scholar] [CrossRef]
- Kadomura, S.; Takekuma, Y.; Sato, Y.; Sumi, M.; Kawamoto, K.; Itoh, T.; Sugawara, M. Higher incidence of acute kidney injury in patients treated with piperacillin/tazobactam than in patients treated with cefepime: A single-center retrospective cohort study. J. Pharm. Health Care Sci. 2019, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Campion, M.; Scully, G. Antibiotic Use in the Intensive Care Unit: Optimization and De-Escalation. J. Intensive Care Med. 2018, 33, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.N.G.; Andriolo, R.B.; Atallah, A.N.; Salomão, R. De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst. Rev. 2013, 2013, CD007934. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Leone, M.; Bechis, C.; Baumstarck, K.; Lefrant, J.-Y.; Albanèse, J.; Jaber, S.; Lepape, A.; Constantin, J.-M.; Papazian, L.; Bruder, N.; et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: A multicenter non-blinded randomized noninferiority trial. Intensive Care Med. 2014, 40, 1399–1408. [Google Scholar] [CrossRef]
- Masterton, R.G. Antibiotic de-escalation. Crit. Care Clin. 2011, 27, 149–162. [Google Scholar] [CrossRef]
- Alvarez-Lerma, F.; Alvarez, B.; Luque, P.; Ruiz, F.; Dominguez-Roldan, J.-M.; Quintana, E.; Sanz-Rodriguez, C. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: A prospective observational study. Crit. Care 2006, 10, R78. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Ravyts, M.; Depuydt, P.; Blot, S.I.; Decruyenaere, J.; Vogelaers, D. De-escalation after empirical meropenem treatment in the intensive care unit: Fiction or reality? J. Crit. Care 2010, 25, 641–646. [Google Scholar] [CrossRef]
- Donaldson, A.D.; Barkham, T. De-escalation for amoxicillin-susceptible Escherichia coli: Easier said than done. J. Hosp. Infect. 2010, 74, 304–305. [Google Scholar] [CrossRef]
- Rello, J.; Vidaur, L.; Sandiumenge, A.; Rodríguez, A.; Gualis, B.; Boque, C.; Diaz, E. De-escalation therapy in ventilator-associated pneumonia. Crit. Care Med. 2004, 32, 2183–2190. [Google Scholar] [CrossRef]
- Morel, J.; Casoetto, J.; Jospé, R.; Aubert, G.; Terrana, R.; Dumont, A.; Molliex, S.; Auboyer, C. De-escalation as part of a global strategy of empiric antibiotherapy management. A retrospective study in a medico-surgical intensive care unit. Crit. Care 2010, 14, R225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaese, S.A.M.; Hoste, E.A.; De Waele, J.J. Why We May Need Higher Doses of Beta-Lactam Antibiotics: Introducing the ‘Maximum Tolerable Dose’. Antibiotics 2022, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Dulhunty, J.M.; Bellomo, R.; Lipman, J.; Roberts, J.A. Continuous beta-lactam infusion in critically ill patients: The clinical evidence. Ann. Intensive Care 2012, 2, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawaz, S.; Barton, S.; Nabhani-Gebara, S. Comparing clinical outcomes of piperacillin-tazobactam administration and dosage strategies in critically ill adult patients: A systematic review and meta-analysis. BMC Infect Dis. 2020, 20, 430. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.J.; Lebovic, G.; Wan, M.; Chen, Y.; Leung, E.; Langford, B.J.; Seah, J.; Taggart, L.R.; Downing, M. Impact of extended-infusion piperacillin-tazobactam in a Canadian community hospital. Infect. Med. 2023, 2, 31–35. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Naiim, C.M.; Elmazar, M.M.; Sabri, N.A.; Bazan, N.S. Extended infusion of piperacillin-tazobactam versus intermittent infusion in critically ill egyptian patients: A cost-effectiveness study. Sci. Rep. 2022, 12, 10882. [Google Scholar] [CrossRef]
Parameters | Cycle A (n = 100) | Cycle B (n = 100) | |
---|---|---|---|
Age and gender | Mean age with standard deviation # | 66.28 ± 16.15 | 67.35 ± 17.98 |
Men to women proportion > | 49:51 | 61:39 | |
Creatinine | Mean and SD of serum creatinine | 1.34 mg/dL SD: 1.44 mg/dL | 1.083 mg/dL SD: 0.95 mg/dL |
Mean and SD of creatinine clearance | 67.04 mL/min SD: 41.83 mL/min | 71.8 mL/min SD: 52.69 mg/dL | |
Indications (in numbers) | Bacterial pneumonia | 47% | 50% |
Cholecystitis | 3% | 1% | |
Diabetic foot infection | 5% | 6% | |
Febrile neutropenia | 4% | 0% | |
Fever | 3% | 1% | |
Intra-abdominal abscess | 2% | 4% | |
Peritonitis | 1% | 4% | |
Sepsis | 9% | 9% | |
Skin and skin structure infection | 17% | 9% | |
Urinary tract infection | 3% | 3% | |
Others * | 6% | 13% |
Variables | Percentage of Patients in Each Cycle (n = 100) | Value | Significance | |
---|---|---|---|---|
Cycle A | Cycle B | |||
Chronic kidney disease | 27 | 23 | 1.399 | 0.237 |
Hypertension | 66 | 47 | 0.701 | 0.402 |
Coronary artery disease | 17 | 14 | 1.121 | 0.29 |
Chronic obstructive pulmonary disease | 19 | 10 | 0.007 | 0.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arain, S.; Khalawi, F.; Parakkal, S.A.; AlHamad, H.S.; Thorakkattil, S.A.; Alghashmari, F.F.J.; AlHarbi, B.; Bakhashwain, N.; Alzawad, W.M.; AlHomoud, A. Drug Utilization Evaluation and Impact of Pharmacist Interventions on Optimization of Piperacillin/Tazobactam Use: A Retrospective Analysis and Prospective Audit. Antibiotics 2023, 12, 1192. https://doi.org/10.3390/antibiotics12071192
Arain S, Khalawi F, Parakkal SA, AlHamad HS, Thorakkattil SA, Alghashmari FFJ, AlHarbi B, Bakhashwain N, Alzawad WM, AlHomoud A. Drug Utilization Evaluation and Impact of Pharmacist Interventions on Optimization of Piperacillin/Tazobactam Use: A Retrospective Analysis and Prospective Audit. Antibiotics. 2023; 12(7):1192. https://doi.org/10.3390/antibiotics12071192
Chicago/Turabian StyleArain, Savera, Fahad Khalawi, Sainul Abideen Parakkal, Hassan S. AlHamad, Shabeer Ali Thorakkattil, Faisal Fahad J. Alghashmari, Bader AlHarbi, Nujud Bakhashwain, Weaam Mustafa Alzawad, and Ali AlHomoud. 2023. "Drug Utilization Evaluation and Impact of Pharmacist Interventions on Optimization of Piperacillin/Tazobactam Use: A Retrospective Analysis and Prospective Audit" Antibiotics 12, no. 7: 1192. https://doi.org/10.3390/antibiotics12071192
APA StyleArain, S., Khalawi, F., Parakkal, S. A., AlHamad, H. S., Thorakkattil, S. A., Alghashmari, F. F. J., AlHarbi, B., Bakhashwain, N., Alzawad, W. M., & AlHomoud, A. (2023). Drug Utilization Evaluation and Impact of Pharmacist Interventions on Optimization of Piperacillin/Tazobactam Use: A Retrospective Analysis and Prospective Audit. Antibiotics, 12(7), 1192. https://doi.org/10.3390/antibiotics12071192