Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii
Abstract
:1. Introduction
2. Results
2.1. Patient History
2.2. Susceptibility Testing
2.3. Genomic Characterization of the Isolates
2.4. Taxonomic Assignment
2.5. Antimicrobial Resistance Genes
2.6. Replicon Types of Plasmids
2.7. Construction and Comparative Analysis of the Plasmids Harboring blaNDM-1
3. Discussion
4. Materials and Methods
4.1. Hospital Setting and Patient Data
4.2. Susceptibility Testing
4.3. Whole Genome Sequencing and Genomes Assembly
4.4. Functional Annotation of the Assembled Genomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L.; Walsh, T.R.; Livermore, D.M. The emerging NDM carbapenemases. Trends Microbiol. 2011, 19, 588–595. [Google Scholar] [CrossRef]
- Poirel, L.; Dortet, L.; Bernabeu, S.; Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 5403–5407. [Google Scholar] [CrossRef] [Green Version]
- Dortet, L.; Girlich, D.; Virlouvet, A.L.; Poirel, L.; Nordmann, P.; Iorga, B.I.; Naas, T. Characterization of BRPMBL, the Bleomycin Resistance Protein Associated with the Carbapenemase NDM. Antimicrob. Agents Chemother. 2017, 61, e02413–e02416. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [Green Version]
- Cantόn, R.; Akόva, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; et al. European Network on Carbapenemases. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P.; Woodford, N. Global spread of antibiotic resistance: The example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol. 2013, 62, 499–513. [Google Scholar] [CrossRef]
- Voulgari, E.; Gartzonika, C.; Vrioni, G.; Politi, L.; Priavali, E.; Levidiotou-Stefanou, S.; Tsakris, A. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J. Antimicrob. Chemother. 2014, 69, 2091–2097. [Google Scholar] [CrossRef]
- Protonotariou, E.; Meletis, G.; Pilalas, D.; Mantzana, P.; Tychala, A.; Kotzamanidis, C.; Papadopoulou, D.; Papadopoulos, T.; Polemis, M.; Metallidis, S.; et al. Polyclonal Endemicity of Carbapenemase-Producing Klebsiella pneumoniae in ICUs of a Greek Tertiary Care Hospital. Antibiotics 2022, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, E.; Mantzana, P.; Meletis, G.; Tychala, A.; Kassomenaki, A.; Vasilaki, O.; Kagkalou, G.; Gkeka, I.; Archonti, M.; Kati, S.; et al. Microbiological characteristics of bacteremias among COVID-19 hospitalized patients in a tertiary referral hospital in Northern Greece during the second epidemic wave. FEMS Microbes. 2021, 2, xtab021. [Google Scholar] [CrossRef] [PubMed]
- Meletis, G.; Tychala, A.; Ntritsos, G.; Verrou, E.; Savvidou, F.; Dermitzakis, I.; Chatzidimitriou, A.; Gkeka, I.; Fyntanidou, B.; Gkarmiri, S.; et al. Variant-Related Differences in Laboratory Biomarkers among Patients Affected with Alpha, Delta and Omicron: A Retrospective Whole Viral Genome Sequencing and Hospital-Setting Cohort Study. Biomedicines 2023, 11, 1143. [Google Scholar] [CrossRef] [PubMed]
- Shintani, M.; Sanchez, Z.K.; Kimbara, K. Genomics of microbial plasmids: Classification and identification based on replication and transfer systems and host taxonomy. Front. Microbiol. 2015, 6, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Alcántar-Curiel, M.D.; Fernández-Vázquez, J.L.; Toledano-Tableros, J.E.; Gayosso-Vázquez, C.; Jarillo-Quijada, M.D.; López-Álvarez, M.D.R.; Giono-Cerezo, S.; Santos-Preciado, J.I. Emergence of IncFIA Plasmid-Carrying blaNDM-1 Among Klebsiella pneumoniae and Enterobacter cloacae Isolates in a Tertiary Referral Hospital in Mexico. Microb. Drug Resist. 2019, 25, 830–838. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef]
- Arend, L.N.V.S.; Bergamo, R.; Rocha, F.B.; Bail, L.; Ito, C.; Baura, V.A.; Balsanelli, E.; Pothier, J.F.; Rezzonico, F.; Pilonetto, M.; et al. Dissemination of NDM-producing bacteria in Southern Brazil. Diagn. Microbiol. Infect. Dis. 2023, 106, 115930. [Google Scholar] [CrossRef]
- Zou, H.; Han, J.; Zhao, L.; Wang, D.; Guan, Y.; Wu, T.; Hou, X.; Han, H.; Li, X. The shared NDM-positive strains in the hospital and connecting aquatic environments. Sci. Total Environ. 2023, 860, 160404. [Google Scholar] [CrossRef]
- Sianou, E.; Kristo, I.; Petridis, M.; Apostolidis, K.; Meletis, G.; Miyakis, S.; Sofianou, D. A cautionary case of microbial solidarity: Concurrent isolation of VIM-1-producing Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae from an infected wound. J. Antimicrob. Chemother. 2012, 67, 244–246. [Google Scholar] [CrossRef] [Green Version]
- Aires-de-Sousa, M.; Ortiz de la Rosa, J.M.; Goncalves, M.L.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-producing Morganellamorganii and Proteus mirabilis in a single patient in Portugal: Probable in vivo transfer by conjugation. J. Antimicrob. Chemother. 2020, 75, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Meroni, E.; Mauri, C.; Perilli, M.; Cherubini, S.; Pompilio, A.; Luzzaro, F.; Principe, L. Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacteralesand A. baumannii Clinical Strains Colonizing a Single Italian Patient. Antibiotics 2023, 12, 439. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jin, Y.H.; Park, S.H.; Han, S.; Kim, H.S.; Yu, J.K.; Jang, J.I.; Kim, J.; Hong, C.K.; Lee, J.H.; et al. Horizontal transfer of blaNDM-1-carrying IncX3 plasmid between carbapenem-resistant Enterobacteriaceae in a single patient. J. Infect. 2020, 81, 816–846. [Google Scholar] [CrossRef]
- Yu, C.; Wei, X.; Wang, Z.; Liu, L.; Liu, Z.; Liu, J.; Wu, L.; Guo, H.; Jin, Z. Occurrence of two NDM-1-producing Raoultellaornithinolytica and Enterobacter cloacae in a single patient in China: Probable a novel antimicrobial resistance plasmid transfer in vivo by conjugation. J. Glob. Antimicrob. Resist. 2020, 22, 835–841. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [Green Version]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2093. [Google Scholar] [CrossRef] [Green Version]
- Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.; Folster, J.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al. Correlation between Phenotypic and In Silico Detection of Antimicrobial Resistance in Salmonella Enterica in Canada Using Staramr. Microorganisms 2022, 10, 292. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An Open Online Resource for Identification of Antimicrobial Resistance Genes in next-Generation Sequencing Data and Prediction of Phenotypes from Genotypes. Microb. Genom. 2022, 8, 748. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Andreopoulos, W.B.; Geller, A.M.; Lucke, M.; Balewski, J.; Clum, A.; Ivanova, N.N.; Levy, A. Deeplasmid: Deep Learning Accurately Separates Plasmids from Bacterial Chromosomes. Nucleic Acids Res. 2022, 50, e17. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Nash, J.H.E. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb.Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. MobileOG-Db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef]
- Vernikos, G.S.; Parkhill, J. Interpolated Variable Order Motifs for Identification of Horizontally Acquired DNA: Revisiting the Salmonella Pathogenicity Islands. Bioinformatics 2006, 22, 2196–2203. [Google Scholar] [CrossRef] [Green Version]
MIC (mg/L)/Interpretation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobials | K. pneumoniae | P. mirabilis | M. morganii | |||||||||
Vitek2 | BMD | Vitek2 | BMD | Vitek2 | BMD | |||||||
Amikacin | _ | _ | >32 | R | - | - | >32 | R | 8 | S | 4 | S |
Amoxicillin/clavulanic acid | ≥32 | R | ≥32 | R | ||||||||
Ampicillin | ≥32 | R | ≥32 | R | ||||||||
Aztreonam | ≥64 | R | 32 | R | ≤1 | S | ||||||
Cefepime | ≥32 | R | 16 | R | ≥64 | R | ||||||
Cefixime | ≥4 | R | ≥4 | R | ||||||||
Cefotaxime | ≥64 | R | ≥64 | R | >2 | R | ||||||
Cefoxitin | ≥64 | R | ≥64 | R | ||||||||
Ceftolozan/tazobactam | ≥32 | R | >2 | R | ≥32 | R | >2 | R | >2 | R | ||
Ceftazidime | ≥64 | R | >128 | R | ≥64 | R | 128 | R | ≥64 | R | >128 | R |
Ceftazidime/avibactam | ≥16 | R | >4 | R | ≥16 | R | >4 | R | >4 | R | ||
Ceftriaxone | ≥64 | R | ≥64 | R | ||||||||
Cefuroximeaxetil | ≥64 | R | ≥64 | R | ||||||||
Cefuroxime | ≥64 | R | ≥64 | R | ||||||||
Colistin | ≥16 | R | >8 | R | ≥16 | R | >8 | R | ≥16 | R | 8 | R |
Ciprofloxacin | ≥4 | R | >2 | R | ≥4 | R | >2 | R | ≥4 | R | >2 | R |
Ertapenem | ≥8 | R | ≥8 | R | ||||||||
Fosfomysin | ≥256 | R | >128 | R | ≥256 | R | >128 | R | 128 | R | 128 | R |
Gentamicin | ≥16 | R | ≥16 | 2 | S | |||||||
Chloramphenicol | 32 | R | >16 | R | ≥64 | R | >16 | R | 8 | S | ||
Piperacillin | _ | _ | >16 | R | _ | _ | >16 | R | ≥128 | R | >16 | R |
Piperacillin/tazobactam | ≥128 | R | >16 | R | 64 | R | >4 | I | ≥128 | R | >16 | R |
Ticarcillin/clavulanic acid | _ | _ | _ | _ | ≥128 | R | ||||||
Ticarcillin | _ | _ | _ | _ | ≥128 | R | ||||||
Tobramycin | ≥16 | R | ≥16 | R | 8 | R | ||||||
Levofloxacin | ≥8 | R | >2 | R | ≥8 | R | >2 | R | >2 | R | ||
Trimeth/sulfamethoxazole | ≥320 | R | >4/76 | R | ≥320 | R | >4/76 | R | ≥320 | R | >4/76 | R |
Cefotaxime | ≥64 | R | >2 | R | ≥64 | R | >2 | R | ||||
Tigecycline | _ | 1 | _ | _ | _ | 2 | _ | 0.5 | ||||
Imipenem | _ | _ | >8 | R | _ | _ | >8 | R | ≥16 | R | >8 | R |
Meropenem | _ | _ | 128 | R | _ | _ | 32 | R | ≥16 | R | 32 | R |
Isolate ID | Species | Genome Length | % Bacteria Abundance | N50 | # Contigs |
---|---|---|---|---|---|
D730 | Klebsiella pneumoniae | 5,772,350 | 78 | 169,475 | 156 |
D1633 | Proteus mirabilis | 4,256,486 | 69 | 174,791 | 89 |
D1644 | Morganella morganii | 4,108,218 | 84 | 231,582 | 91 |
Species | Plasmid Types | Conf/Cluster | AMR Genes |
---|---|---|---|
M. morganii | lncN | 0.555/AA552(I) | - |
P. mirabilis | Col3 M | 0.745/AB434(C) | qnrD1 |
lncC | 1.000/AA860(C) | - | |
IncFIA(HI1) | 1.000/AB187(I) | blaNDM-1 | |
K. pneumoniae | ColRNAI | 1.000/AA941(I) | - |
lncC | 1.000/AA860(C) | - | |
IncFIA(HI1) | 0.996/AA964(I) | blaNDM-1 | |
IncFIB(K) | 0.045/AA275(I) | - |
Isolate | Conf | Cluster | OriT | Type | Neighbor | MASH Dist |
---|---|---|---|---|---|---|
K. pneumoniae | 0.996 | AA964 | MOBF | IncFIA | K. pneumoniae | 0.036 |
P. mirabilis | 1.000 | AB187 | MOBF | IncFIA | K. pneumoniae | 0.016 |
M. morganii | 0.304 | AA552 | - | - | K. pneumoniae | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meletis, G.; Malousi, A.; Tychala, A.; Kassomenaki, A.; Vlachodimou, N.; Mantzana, P.; Metallidis, S.; Skoura, L.; Protonotariou, E. Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. Antibiotics 2023, 12, 1206. https://doi.org/10.3390/antibiotics12071206
Meletis G, Malousi A, Tychala A, Kassomenaki A, Vlachodimou N, Mantzana P, Metallidis S, Skoura L, Protonotariou E. Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. Antibiotics. 2023; 12(7):1206. https://doi.org/10.3390/antibiotics12071206
Chicago/Turabian StyleMeletis, Georgios, Andigoni Malousi, Areti Tychala, Angeliki Kassomenaki, Nikoletta Vlachodimou, Paraskevi Mantzana, Simeon Metallidis, Lemonia Skoura, and Efthymia Protonotariou. 2023. "Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii" Antibiotics 12, no. 7: 1206. https://doi.org/10.3390/antibiotics12071206
APA StyleMeletis, G., Malousi, A., Tychala, A., Kassomenaki, A., Vlachodimou, N., Mantzana, P., Metallidis, S., Skoura, L., & Protonotariou, E. (2023). Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. Antibiotics, 12(7), 1206. https://doi.org/10.3390/antibiotics12071206