Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going
Abstract
:1. Introduction
2. Characteristics of an Ideal Biomarker of Neonatal Sepsis
3. Biomarkers Presently Used in Clinical Practice
3.1. Hematological Biomarkers
3.1.1. Blood Culture
3.1.2. White Blood Cell Count, Absolute Neutrophil Count, Immature-to-Total Neutrophil Ratio and Platelet Count
3.2. Inflammatory Biomarkers
3.2.1. C-Reactive Protein
3.2.2. Procalcitonin
3.2.3. Serum Amyloid A
3.2.4. Proadrenomedullin
3.2.5. Other Inflammatory Markers
3.2.6. Cytokines
Interleukin 6
Interleukin-8
Tumor Necrosis Factor
3.3. Cell Adhesion Molecules
3.3.1. Presepsin
3.3.2. Soluble Triggering Receptor
3.3.3. Cluster Differentiation Molecule-64
4. Future Biomarkers: Omics Technologies and Personalized Medicine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weston, E.J.; Pondo, T.M.; Lewis, M.M.; Martell-Cleary, P.M.; Morin, C.; Jewell, B.; Daily, P.; Apostol, M.; Petit, S.; Farley, M.; et al. The Burden of Invasive Early-onset Neonatal Sepsis in the United States, 2005–2008. Pediatr. Infect. Dis. J. 2011, 30, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Oza, S.; Lawn, J.E.; Hogan, D.R.; Mathers, C.; Cousens, S.N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull. World Health Organ. 2015, 93, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D.; National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and Growth Impairment Among Extremely Low-Birth-Weight Infants with Neonatal Infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, J.L. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Boghossian, N.S.; Page, G.P.; Bell, E.F.; Stoll, B.J.; Murray, J.C.; Cotten, C.M.; Shankaran, S.; Walsh, M.C.; Laptook, A.R.; Newman, N.S.; et al. Late-Onset Sepsis in Very Low Birth Weight Infants from Singleton and Multiple-Gestation Births. J. Pediatr. 2013, 162, 1120–1124.e1. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.J.; Hansen, N.I.; Sanchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., III; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of groupB Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Eichenwald, E.C.; Puopolo, K.M. Neonatal early-onset sepsis evaluations among well-appearing infants: Projected impact of changes in CDC GBS guidelines. J. Perinatol. 2013, 33, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kuzniewicz, M.W.; Walsh, E.M.; Li, S.; Fischer, A.; Escobar, G.J. Development and Implementation of an Early-Onset Sepsis Calculator to Guide Antibiotic Management in Late Preterm and Term Neonates. Jt. Comm. J. Qual. Patient Saf. 2016, 42, 232–239. [Google Scholar] [CrossRef]
- Amare, D.; Mela, M.; Dessie, G. Unfinished agenda of the neonates in developing countries: Magnitude of neonatal sepsis: Sys-tematic review and meta-analysis. Heliyon 2019, 5, e02519. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Hsu, J.-F.; Chu, S.-M.; Lien, R.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lee, C.-W.; Huang, Y.-C. Incidence, Clinical Characteristics and Risk Factors for Adverse Outcome in Neonates with Late-onset Sepsis. Pediatr. Infect. Dis. J. 2014, 33, e7–e13. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Hofer, N.; Zacharias, E.; Müller, W.; Resch, B. Performance of the definitions of the systemic inflammatory response syndrome and sepsis in neonates. J. Perinat. Med. 2012, 40, 587–590. [Google Scholar] [CrossRef]
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a Neonatal-Specific Consensus Definition for Sepsis. Pediatr. Crit. Care Med. 2014, 15, 523–528. [Google Scholar] [CrossRef] [Green Version]
- PrabhuDas, M.; Adkins, B.; Gans, H.; King, C.; Levy, O.; Ramilo, O.; Siegrist, C.-A. Challenges in infant immunity: Implications for responses to infection and vaccines. Nat. Immunol. 2011, 12, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, E.; Hofer, N.; Resch, B. Cord blood procalcitonin and Interleukin-6 are highly sensitive and specific in the prediction of early-onset sepsis in preterm infants. Scand. J. Clin. Lab. Investig. 2014, 74, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Pellegrini, G.; Panero, A.; Osborn, J.F.; Signore, F.; Assumma, M.; Pacifico, L. C-Reactive Protein, Interleukin-6, and Procalcitonin in the Immediate Postnatal Period: Influence of Illness Severity, Risk Status, Antenatal and Perinatal Complications, and Infection. Clin. Chem. 2003, 49, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, R.; Jones, S.; Banerjee, S.; Collinson, A.; Hagan, H.; Walsh, H.; Thornton, G.; Barnard, I.; Warren, C.; Reid, J.; et al. Comparison of the management recommendations of the Kaiser Permanente neonatal early-onset sepsis risk calculator (SRC) with NICE guideline CG149 in infants ≥34 weeks’ gestation who developed early-onset sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 581–586. [Google Scholar] [CrossRef]
- Hershkovich–Shporen, C.; Guri, A.; Gluskina, T.; Flidel-Rimon, O. Centers for disease control and prevention guidelines identified more neonates at risk of early-onset sepsis than the Kaiser-Permanente calculator. Acta Paediatr. 2022, 111, 767–771. [Google Scholar] [CrossRef]
- Bakhuizen, S.E.; de Haan, T.R.; Teune, M.J.; van Wassenaer-Leemhuis, A.G.; van der Heyden, J.L.; van der Ham, D.P.; Mol, B.W.J. Meta-analysis shows that infants who have suffered neonatal sepsis face an increased risk of mortality and severe complications. Acta Pediatr. 2014, 103, 1211–1218. [Google Scholar] [CrossRef]
- Porta, A.; Esposito, S.; Menson, E.; Spyridis, N.; Tsolia, M.; Sharland, M.; Principi, N. Off-label antibiotic use in children in three European countries. Eur. J. Clin. Pharmacol. 2010, 66, 919–927. [Google Scholar] [CrossRef]
- Chakkarapani, A.A.; Russell, A.B. Antibiotic stewardship in the neonatal intensive care unit. Paediatr. Child Health 2019, 29, 269–273. [Google Scholar] [CrossRef]
- Lee, K.R.; Bagga, B.; Arnold, S.R. Reduction of Broad-Spectrum Antimicrobial Use in a Tertiary Children’s Hospital Post Antimicrobial Stewardship Program Guideline Implementation. Pediatr. Crit. Care Med. 2016, 17, 187–193. [Google Scholar] [CrossRef]
- Jong, N.B.-D.; Van Gemert-Pijnen, L.; Wentzel, J.; Hendrix, R.; Siemons, L. Technology to Support Integrated Antimicrobial Stewardship Programs: A User Centered and Stakeholder Driven Development Approach. Infect. Dis. Rep. 2017, 9, 36–41. [Google Scholar] [CrossRef]
- Ho, T.; Buus-Frank, M.E.; Edwards, E.M.; Morrow, K.A.; Ferrelli, K.; Srinivasan, A.; Pollock, D.A.; Dukhovny, D.; Zupancic, J.A.; Pursley, D.M.; et al. Adherence of Newborn-Specific Antibiotic Stewardship Programs to CDC Recommendations. Pediatrics 2018, 142, e20174322. [Google Scholar] [CrossRef] [Green Version]
- Schulman, J.; Dimand, R.J.; Lee, H.C.; Duenas, G.V.; Bennett, M.V.; Gould, J.B. Neonatal Intensive Care Unit Antibiotic Use. Pediatrics 2015, 135, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotten, C.M. Adverse consequences of neonatal antibiotic exposure. Curr. Opin. Pediatr. 2016, 28, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern. Fetal Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, J.A.; Ferrentino, F.L.; Goodstein, M.H.; Liss, J.; Shapiro, S.L.; Bankert, D.A. Frequency of low level bacteremia in infants from birth to two months of age. Pediatr. Infect. Dis. J. 1997, 16, 381–385. [Google Scholar] [CrossRef]
- Woodford, E.C.; Dhudasia, M.B.; Puopolo, K.M.; Skerritt, L.A.; Bhavsar, M.; DeLuca, J.; Mukhopadhyay, S. Neonatal blood culture inoculant volume: Feasibility and challenges. Pediatr. Res. 2021, 90, 1086–1092. [Google Scholar] [CrossRef]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef]
- Pammi, M.; Flores, A.; Leeflang, M.; Versalovic, J. Molecular Assays in the Diagnosis of Neonatal Sepsis: A Systematic Review and Meta-analysis. Pediatrics 2011, 128, e973–e985. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, O.; Ohlsson, A.; Kenyon, C. Accuracy of leukocyte indices and C-reactive protein for diagnosis of neonatal sepsis: A critical review. Pediatr. Infect. Dis. J. 1995, 14, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.N.; Yoder, B.A. Changes in the differential white blood cell count in screening for group B streptococcal sepsis. Pediatr. Infect. Dis. J. 1990, 9, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Zukin, T.; Usatin, M.S. Early discontinuation of antibiotic treatment in newborns admitted to rule out sepsis: A decision rule. Pediatr. Infect. Dis. J. 1994, 13, 860–866. [Google Scholar] [CrossRef]
- Escobar, G.J.; Li, D.K.; Armstrong, M.A.; Gardener, M.N.; Flock, B.F.; Verdi, J.E.; Xiong, B.; Bergen, R. Neonatal sepsis workups in infants >/=2000 grams at birth: A population-based study. Pediatrics 2000, 106, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Newman, T.B.; Puopolo, K.M.; Wi, S.; Draper, D.; Escobar, G.J. Interpreting Complete Blood Counts Soon After Birth in Newborns at Risk for Sepsis. Pediatrics 2010, 126, 903–909. [Google Scholar] [CrossRef]
- Hornik, C.P.; Becker, K.C.B.; Benjamin, D.K.J.; Li, J.M.; Clark, R.H.; Cohen-Wolkowiez, M.; Smith, P.B.M. Use of the Complete Blood Cell Count in Early-onset Neonatal Sepsis. Pediatr. Infect. Dis. J. 2012, 31, 799–802. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.; Weiner, J. Use of Leukocyte Counts in Evaluation of Early-onset Neonatal Sepsis. Pediatr. Infect. Dis. J. 2012, 31, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Jethani, S.; Bhutani, N.; Yadav, A. Diagnostic utility of combined immature and total neutrophil counts along with C-reactive protein in early detection of neonatal sepsis: A cross-sectional study. Ann. Med. Surg. 2022, 77, 103589. [Google Scholar] [CrossRef]
- van der Meer, W.; van Gelder, W.; de Keijzer, R.; Willems, H. Does the band cell survive the 21st century? Eur. J. Haematol. 2006, 76, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Black, S.; Kushner, I.; Samols, D. C-reactive Protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phospho-choline. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kutty, C.V.K.; Sabharwal, U.; Rathee, S.; Mohan, H. Evaluation of sepsis screen for diagnosis of neonatal septicemia. Indian J. Pediatr. 1993, 60, 559–563. [Google Scholar] [CrossRef]
- Ng, P.C.; Cheng, S.H.; Chui, K.M.; Fok, T.F.; Wong, M.Y.; Wong, W.; Wong, R.P.O.; Cheung, K.L. Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F221–F227. [Google Scholar] [CrossRef] [Green Version]
- Benitz, W.E.; Han, M.Y.; Madan, A.; Ramachandra, P. Serial Serum C-Reactive Protein Levels in the Diagnosis of Neonatal Infection. Pediatrics 1998, 102, e41. [Google Scholar] [CrossRef] [Green Version]
- Doellner, H.; Arntzen, K.J.; Haereid, P.E.; Aag, S.; Austgulen, R. Interleukin-6 concentrations in neonates evaluated for sepsis. J. Pediatr. 1998, 132, 295–299. [Google Scholar] [CrossRef]
- Enguix, A.; Rey, C.; Concha, A.; Medina, A.; Coto, D.; Diéguez, M.A. Comparison of procalcitonin with C-reactive protein and serum amyloid for the early diagnosis of bacterial sepsis in critically ill neonates and children. Intensive Care Med. 2001, 27, 211–215. [Google Scholar] [CrossRef]
- Manucha, V.; Rusia, U.; Sikka, M.; Faridi, M.; Madan, N. Utility of haematological parameters and C-reactive protein in the detection of neonatal sepsis. J. Paediatr. Child Health 2002, 38, 459–464. [Google Scholar] [CrossRef]
- Blommendahl, J.; Janas, M.; Laine, S.; Miettinen, A.; Ashorn, P. Comparison of procalcitonin with CRP and differential white blood cell count for diagnosis of culture-proven neonatal sepsis. Scand. J. Infect. Dis. 2002, 34, 620–622. [Google Scholar] [CrossRef]
- Guibourdenche, J.; Bedu, A.; Petzold, L.; Marchand, M.; Mariani-Kurdjian, P.; Hurtaud-Roux, M.-F.; Aujard, Y.; Porquet, D. Biochemical markers of neonatal sepsis: Value of procalcitonin in the emergency setting. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2002, 39, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Reyes, C.S.; García-Muñoz, F.; Reyes, D.; González, G.; Dominguez, C.; Domenech, E. Role of cytokines (interleukin-1β, 6, 8, tumour necrosis factor-α, and soluble receptor of interleukin-2) and C-reactive protein in the diagnosis of neonatal sepsis. Acta Paediatr. 2003, 92, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Vazzalwar, R.; Pina-Rodrigues, E.; Puppala, B.L.; Angst, D.B.; Schweig, L. Procalcitonin as a Screening Test for Late-Onset Sepsis in Preterm Very Low Birth Weight Infants. J. Perinatol. 2005, 25, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnon, S.; Litmanovitz, I.; Regev, R.; Bauer, S.; Lis, M.; Shainkin-Kestenbaum, R.; Dolfin, T. Serum Amyloid A Protein Is a Useful In-flammatory Marker during Late-Onset Sepsis in Preterm Infants. Bio. Neonate. 2005, 87, 105–110. [Google Scholar] [CrossRef]
- Verboon-Maciolek, M.A.; Thijsen, S.F.T.; Hemels, M.A.C.; Menses, M.; van Loon, A.M.; Krediet, T.G.; Gerards, L.J.; Fleer, A.; Voorbij, H.A.M.; Rijkers, G.T. Inflammatory Mediators for the Diagnosis and Treatment of Sepsis in Early Infancy. Pediatr. Res. 2006, 59, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.; Hammerman, C.; Rudensky, B.; Schlesinger, Y.; Schimmel, M. The role of procalcitonin as a predictor of nosocomial sepsis in preterm infants. Acta Paediatr. 2006, 95, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Resch, B.; Gusenleitner, W.; Müller, W. Procalcitonin and interleukin-6 in the diagnosis of early-onset sepsis of the neonate. Acta Paediatr. 2007, 92, 243–245. [Google Scholar] [CrossRef]
- Arnon, S.; Litmanovitz, I.; Regev, R.H.; Bauer, S.; Shainkin-Kestenbaum, R.; Dolfin, T. Serum amyloid A: An early and accurate marker of neonatal early-onset sepsis. J. Perinatol. 2007, 27, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Ucar, B.; Yildiz, B.; Aksit, M.A.; Yarar, C.; Colak, O.; Akbay, Y.; Colak, E. Serum Amyloid A, Procalcitonin, Tumor Necrosis Factor- α, and Interleukin-1 β Levels in Neonatal Late-Onset Sepsis. Mediat. Inflamm. 2008, 2008, 737141. [Google Scholar] [CrossRef] [Green Version]
- Fendler, W.M.; Piotrowski, A.J. Procalcitonin in the early diagnosis of nosocomial sepsis in preterm neonates. J. Paediatr. Child Health 2008, 44, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Schrama, A.J.J.; de Beaufort, A.J.; Poorthuis, B.J.H.M.; Berger, H.M.; Walther, F.J. Secretory phospholipase A2 in newborn infants with sepsis. J. Perinatol. 2008, 28, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boo, N.Y.; Azlina, A.A.N.; Rohana, J. Usefulness of a semi-quantitative procalcitonin test kit for early diagnosis of neonatal sepsis. Singap. Med. J. 2008, 49, 204. [Google Scholar]
- Sherwin, C.; Broadbent, R.; Young, S.; Worth, J.; McCaffrey, F.; Medlicott, N.J.; Reith, D. Utility of Interleukin-12 and Interleukin-10 in Comparison with Other Cytokines and Acute-Phase Reactants in the Diagnosis of Neonatal Sepsis. Am. J. Perinatol. 2008, 25, 629–636. [Google Scholar] [CrossRef]
- Jacquot, A.; Labaune, J.-M.; Baum, T.-P.; Putet, G.; Picaud, J.-C. Rapid quantitative procalcitonin measurement to diagnose nosocomial infections in newborn infants. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F345–F348. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.; el-Sayed, H. Evaluation of microbiologic and hematologic parameters and E-selectin as early predictors for outcome of neonatal sepsis. Arch. Pathol. Lab. Med. 2009, 133, 1291–1296. [Google Scholar] [CrossRef]
- Çetinkaya, M.; Özkan, H.; Köksal, N.; Çelebi, S.; Hacımustafaoğlu, M. Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. J. Perinatol. 2009, 29, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groselj-Grenc, M.; Ihan, A.; Pavcnik-Arnol, M.; Kopitar, A.N.; Gmeiner-Stopar, T.; Derganc, M. Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensiv. Care Med. 2009, 35, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Rego, M.A.C.; Martinez, F.E.; Elias, J.; Mussi-Pinhata, M.M. Diagnostic value of interleukin-6 and C-reactive protein on early onset bacterial infection in preterm neonates with respiratory distress. J. Perinat. Med. 2010, 38, 527–533. [Google Scholar] [CrossRef]
- Celik, I.H.; Demirel, F.G.; Uras, N.; Oguz, S.S.; Erdeve, O.; Biyikli, Z.; Dilmen, U. What are the cut-off levels for IL-6 and CRP in neonatal sepsis? J. Clin. Lab. Anal. 2010, 24, 407–412. [Google Scholar] [CrossRef]
- Edgar, J.D.M.; Gabriel, V.; Gallimore, J.R.; McMillan, S.A.; Grant, J. A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection. BMC Pediatr. 2010, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Musoke, R.; Macharia, W.M.; Revathi, G. Validation of c-reactive protein in the early diagnosis of neonatal sepsis in a tertiary care hospital in Kenya. East Afr. Med. J. 2010, 87, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Hotoura, E.; Giapros, V.; Kostoula, A.; Spirou, P.; Andronikou, S. Tracking Changes of Lymphocyte Subsets and Pre-inflammatory Mediators in Full-term Neonates with Suspected or Documented Infection. Scand. J. Immunol. 2011, 73, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, F.E.; Yiğit, S.; Korkmaz, A.; Yurdakök, M.; Tekinalp, G. Procalcitonin versus CRP as an early indicator of fetal infection in preterm premature rupture of membranes. Turk. J. Pediatr. 2011, 53, 180–186. [Google Scholar] [CrossRef]
- Altunhan, H.; Annagür, A.; Örs, R.; Mehmetoğlu, I. Procalcitonin measurement at 24 hours of age may be helpful in the prompt diagnosis of early-onset neonatal sepsis. Int. J. Infect. Dis. 2011, 15, e854–e858. [Google Scholar] [CrossRef] [Green Version]
- Naher, B.; Mannan, M.; Noor, K.; Shahidullah, M. Role of serum procalcitonin and C-Reactive Protein in the diagnosis of neonatal sepsis. Bangladesh Med. Res. Counc. Bull. 2011, 37, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Cekmez, F.; Canpolat, F.E.; Çetinkaya, M.; Aydinöz, S.; Aydemir, G.; Karademir, F.; Ipcioglu, O.M.; Sarici, S. Diagnostic value of resistin and visfatin, in comparison with C-reactive protein, procalcitonin and interleukin-6 in neonatal sepsis. Eur. Cytokine Netw. 2011, 22, 113–117. [Google Scholar] [CrossRef]
- Bohnhorst, B.; Lange, M.; Bartels, D.B.; Bejo, L.; Hoy, L.; Peter, C. Procalcitonin and valuable clinical symptoms in the early detection of neonatal late-onset bacterial infection: PCT and clinical symptoms in Neonatal bacterial infection. Acta Paediatr. 2012, 101, 19–25. [Google Scholar] [CrossRef]
- Adib, M.; Bakhshiani, Z.; Navaei, F.; Fosoul, F.S.; Fouladi, S.; Kazemzadeh, H. Procalcitonin: A Reliable Marker for the Diagnosis of Neonatal Sepsis. Iran. J. Basic Med. Sci. 2012, 15, 777–782. [Google Scholar] [CrossRef]
- Choo, Y.K.; Cho, H.-S.; Seo, I.B.; Lee, H.-S. Comparison of the accuracy of neutrophil CD64 and C-reactive protein as a single test for the early detection of neonatal sepsis. Korean J. Pediatr. 2012, 55, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, A.; Shoar, S.; Nayyeri, F.; Shariat, M. Diagnostic value of simultaneous measurement of procalcitonin, interleukin-6 and HS CRP in prediction of early-onset neonatal sepsis. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012028. [Google Scholar] [CrossRef] [PubMed]
- Ertuğrul, S.; Annagur, A.; Kurban, S.; Altunhan, H.; Ors, R. Comparison of urinary neutrophil gelatinase-associated lipocalin, C-reactive protein and procalcitonin in the diagnosis of late onset sepsis in preterm newborns. J. Matern. Fetal Neonatal Med. 2013, 26, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Park, I.H.; Lee, S.H.; Yu, S.T.; Oh, Y.K. Serum procalcitonin as a diagnostic marker of neonatal sepsis. Korean J. Pediatr. 2014, 57, 451–456. [Google Scholar] [CrossRef]
- Hisamuddin, E.; Hisam, A.; Wahid, S.; Raza, G. Validity of C-reactive protein (CRP) for diagnosis of neonatal sepsis. Pak. J. Med. Sci. 2015, 31, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Decembrino, L.; De Amici, M.; Pozzi, M.; De Silvestri, A.; Stronati, M. Serum Calprotectin: A Potential Biomarker for Neonatal Sepsis. J. Immunol. Res. 2015, 2015, 147973. [Google Scholar] [CrossRef] [Green Version]
- Kipfmueller, F.; Schneider, J.; Prusseit, J.; Dimitriou, I.; Zur, B.; Franz, A.R.; Bartmann, P.; Mueller, A. Role of Neutrophil CD64 Index as a Screening Marker for Late-Onset Sepsis in Very Low Birth Weight Infants. PLoS ONE 2015, 10, e0124634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pynn, J.M.; Parravicini, E.; Saiman, L.; Bateman, D.A.; Barasch, J.M.; Lorenz, J.M. Urinary neutrophil gelatinase-associated lipocalin: Potential biomarker for late-onset sepsis. Pediatr. Res. 2015, 78, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Zahrani, A.K.; Ghonaim, M.M.; Hussein, Y.M.; Eed, E.M.; Khalifa, A.S.; Dorgham, L.S. Evaluation of recent methods versus conven-tional methods for diagnosis of early-onset neonatal sepsis. J. Infect. Dev. Ctries. 2015, 9, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.H.; Demirel, G.; Uras, N.; Oguz, E.S.; Erdeve, O.; Dilmen, U. The role of serum interleukin-6 and C-reactive protein levels for differentiating aetiology of neonatal sepsis. Arch. Argent. Pediatr. 2015, 113, 534–537. [Google Scholar]
- Mohsen, A.H.A.; Kamel, B.A. Predictive values for procalcitonin in the diagnosis of neonatal sepsis. Electron. Physician 2015, 7, 1190–1195. [Google Scholar] [CrossRef]
- Yang, A.-P.; Liu, J.; Yue, L.-H.; Wang, H.-Q.; Yang, W.-J.; Yang, G.-H. Neutrophil CD64 combined with PCT, CRP and WBC improves the sensitivity for the early diagnosis of neonatal sepsis. Clin. Chem. Lab. Med. 2016, 54, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Shanmugam, P.; Sattar, S.B.; Shankar, S.L. Evaluation of IL-6, CRP and hs-CRP as Early Markers of Neonatal Sepsis. J. Clin. Diagn. Res. 2016, 10, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Sabry, J.; Elfeky, O.; Elsadek, A.; Eldaly, A. Presepsin as an early reliable diagnostic and prognostic marker of neonatal sepsis. Int. J. Adv. Res. 2016, 4, 1538–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabl, H.A.E.-M.; Abed, N.T. Diagnostic Value of Presepsin in Neonatal Sepsis. Egypt. J. Immunol. 2016, 23, 29–37. [Google Scholar]
- Ozdemir, A.A.; Elgormus, Y. Diagnostic Value of Presepsin in Detection of Early-Onset Neonatal Sepsis. Am. J. Perinatol. 2016, 34, 550–556. [Google Scholar] [CrossRef]
- Adb Elmouttaleb, A.T.; Aly, H.A.; Bayomy, E.M.; Abdelhamed, M.R.; Esmael, N.F. Plasma Procalcitonin and Proadrenomedullin Concentrations as Predictive Markers for Early Onset Neonatal Sepsis. Am. J. Biochem. 2016, 6, 6–15. [Google Scholar]
- Ahmed, E.; Rehman, A.; Ali, M.A. Validation of serum C-reactive protein for the diagnosis and monitoring of antibiotic therapy in neonatal sepsis. Pak. J. Med. Sci. 2017, 33, 1434–1437. [Google Scholar] [CrossRef]
- He, Y.; Du, W.X.; Jiang, H.Y.; Ai, Q.; Feng, J.; Liu, Z.; Yu, J.L. Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker For Neonatal Early Onset Sepsis. Shock 2017, 47, 140–147. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, T.; Luo, Y.; Qiu, Q.; Que, R.; Huang, X.; Wu, D. Soluble CD14 subtype (sCD14-ST) is a biomarker for neonatal sepsis. Int. J. Clin. Exp. Pathol. 2017, 10, 9718–9724. [Google Scholar]
- Montaldo, P.; Rosso, R.; Santantonio, A.; Chello, G.; Giliberti, P. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatr. Res. 2017, 81, 329–334. [Google Scholar] [CrossRef]
- Beltempo, M.; Viel-Thériault, I.; Thibeault, R.; Julien, A.-S.; Piedboeuf, B. C-reactive protein for late-onset sepsis diagnosis in very low birth weight infants. BMC Pediatr. 2018, 18, 16. [Google Scholar] [CrossRef] [Green Version]
- Utkarshini; Jaspreet, S.; Surinder, P.; Kanwardeep, S.; Neki, N. Role of Procalcitonin as diagnostic marker in neonatal sepsis and its correlation with clinical, biochemical and haematological profile. Int. J. Curr. Res. Med. Sci. 2018, 4, 27–39. [Google Scholar]
- Rashwan, N.I.; Hassan, M.H.; El-Deen, Z.M.M.; Ahmed, A.E.-A. Validity of biomarkers in screening for neonatal sepsis—A single center –hospital based study. Pediatr. Neonatol. 2019, 60, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Dayal, R.; Singh, P.; Pathak, S.; Pooniya, V.; Goyal, A.; Kamal, R.; Mohanty, K.K. A Comparative Evaluation of Presepsin with Procalcitonin and CRP in Diagnosing Neonatal Sepsis. Indian J. Pediatr. 2019, 86, 177–179. [Google Scholar] [CrossRef]
- Khan, F. C-reactive Protein as a Screening Biomarker in Neonatal Sepsis. J. Coll. Physicians Surg. Pak. 2019, 29, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Hou, X.-Q.; Sun, R.-R.; Cui, X.-J. The predictive value of joint detection of serum amyloid protein A, PCT, and Hs-CRP in the diagnosis and efficacy of neonatal septicemia. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5904–5911. [Google Scholar]
- Ahmed, A.M.; Mohammed, A.T.; Bastawy, S.; Attalla, H.A.; Yousef, A.A.; Abdelrazek, M.S.; Alkomos, F.M.; Ahmed, G. Serum Biomarkers for the Early Detection of the Early-Onset Neonatal Sepsis: A Single-Center Prospective Study. Adv. Neon Care 2019, 19, E26–E32. [Google Scholar] [CrossRef]
- Stoicescu, S.M.; Mohora, R.; Luminos, M.; Merisescu, M.M.; Jugulete, G.; Nastase, L. Presepsin—New Marker of Sepsis Romanian Neonatal Intensive Care Unit Experience. Rev. Chim. 2019, 70, 3008–3013. [Google Scholar] [CrossRef]
- Değirmencioğlu, H.; Bekmez, B.O.; Derme, T.; Öncel, M.Y.; Canpolat, F.E.; Tayman, C. Presepsin and fetuin-A dyad for the diagnosis of proven sepsis in preterm neonates. BMC Infect. Dis. 2019, 19, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Madbouly, A.; El Sehemawy, A.; Eldesoky, N.; Abd Elgalil, H.M.; Ahmed, A. Utility of presepsin, soluble triggering receptor ex-pressed on myeloid cells-1, and neutrophil CD64 for early detection of neonatal sepsis. Infect. Drug Resist. 2019, 12, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Khater, E.S.; Al-Hosiny, T.M. Presepsin as a New Marker for Early Detection Neonatal Sepsis in Al-Quwayiyah General Hospital Riyadh, KSA. J. Adv. Microbiol. 2020, 20, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Hashem, H.E.; Halim, R.M.A.; El Masry, S.A.; Mokhtar, A.M.; Abdelaal, N.M. The Utility of Neutrophil CD64 and Presepsin as Diagnostic, Prognostic, and Monitoring Biomarkers in Neonatal Sepsis. Int. J. Microbiol. 2020, 2020, 8814892. [Google Scholar] [CrossRef] [PubMed]
- Morad, E.A.; Rabie, R.A.; Almalky, M.A.; Gebriel, M.G. Evaluation of Procalcitonin, C-Reactive Protein, and Interleukin-6 as Early Markers for Diagnosis of Neonatal Sepsis. Int. J. Microbiol. 2020, 2020, 8889086. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-D.; He, Y.; Xiao, S.; Ai, Q.; Yu, J.-L. Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2405–2414. [Google Scholar] [CrossRef]
- Tang, Y.-H.; Jeng, M.-J.; Wang, H.-H.; Tsao, P.-C.; Chen, W.-Y.; Lee, Y.-S. Risk factors and predictive markers for early and late-onset neonatal bacteremic sepsis in preterm and term infants. J. Chin. Med. Assoc. 2022, 85, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Tiwari, S.; Jain, U. Potential biomarkers for effective screening of neonatal sepsis infections: An overview. Microb. Pathog. 2017, 107, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Lotti, F.; Longini, M.; Rossetti, A.; Bindi, I.; Bazzini, F.; Belvisi, E.; Sarnacchiaro, P.; Scapellato, C.; Buonocore, G. C reactive protein in healthy term newborns during the first 48 hours of life. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F163–F166. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [Green Version]
- Bomela, H.N.; Ballot, D.E.; Cory, B.J.; Cooper, P.A. Use of C-reactive protein to guide duration of empiric antibiotic therapy in suspected early neonatal sepsis. Pediatr. Infect. Dis. J. 2000, 19, 531–535. [Google Scholar] [CrossRef]
- Hofer, N.; Zacharias, E.; Müller, W.; Resch, B. An Update on the Use of C-Reactive Protein in Early-Onset Neonatal Sepsis: Current Insights and New Tasks. Neonatology 2012, 102, 25–36. [Google Scholar] [CrossRef]
- Whicher, J.; Bienvenu, J.; Monneret, G. Procalcitonin as an acute phase marker. Ann. Clin. Biochem. 2001, 38, 483–493. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Müller, B. Procalcitonin in bacterial infections—Hype, hope, more or less? Swiss Med. Wkly. 2005, 135, 451–460. [Google Scholar] [CrossRef]
- Esposito, S.; Tagliabue, C.; Picciolli, I.; Semino, M.; Sabatini, C.; Consolo, S.; Bosis, S.; Pinzani, R.; Principi, N. Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir. Med. 2011, 105, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- Oberhoffer, M.; Stonans, I.; Russwurm, S.; Stonane, E.; Vogelsang, H.; Junker, U.; Jäger, L.; Reinhart, K. Procalcitonin expression in human peripheral blood mononuclear cells and its modulation by lipopolysaccharides and sepsis-related cytokines in vitro. J. Lab. Clin. Med. 1999, 134, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Panero, A.; Rossi, N.; Stegagno, M.; De Giusti, M.; Osborn, J.F.; Pacifico, L. Reliability of procalcitonin concentrations for the diagnosis of sepsis in critically ill neonates. Clin. Infect. Dis. 1998, 6, 664–672. [Google Scholar] [CrossRef]
- Chiesa, C.; Natale, F.; Pascone, R.; Osborn, J.F.; Pacifico, L.; Bonci, E.; De Curtis, M. C reactive protein and procalcitonin: Reference intervals for preterm and term newborns during the early neonatal period. Clin. Chim. Acta 2011, 412, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Hammerman, C.; Rudensky, B.; Schlesinger, Y.; Goia, C.; Schimmel, M.S. Procalcitonin in preterm infants during the first few days of life: Introducing an age related nomogram. Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F283–F286. [Google Scholar] [CrossRef] [Green Version]
- Lapillonne, A.; Basson, E.; Monneret, G.; Bienvenu, J.; Salle, B.L. Lack of specificity of procalcitonin for sepsis diagnosis in premature infants. Lancet 1998, 351, 1211–1212. [Google Scholar] [CrossRef]
- Monneret, G.; Labaune, J.M.; Isaac, C.; Bienvenu, F.; Putet, G.; Bienvenu, J. Increased serum procalcitonin levels are not specific to sepsis in neonates. Clin. Infect. Dis. 1998, 27, 1559–1561. [Google Scholar] [CrossRef] [Green Version]
- Auriti, C.; Fiscarelli, E.; Ronchetti, M.P.; Argentieri, M.; Marrocco, G.; Quondamcarlo, A.; Seganti, G.; Bagnoli, F.; Buonocore, G.; Serra, G.; et al. Procalcitonin in detecting neonatal nosocomial sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F368–F370. [Google Scholar] [CrossRef] [PubMed]
- Frerot, A.; Baud, O.; Colella, M.; Taibi, L.; Bonacorsi, S.; Alberti, C.; Mohamed, D.; Biran, V. Cord blood procalcitonin level and early-onset sepsis in extremely preterm infants. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1651–1657. [Google Scholar] [CrossRef]
- Iskandar, A.; Arthamin, M.Z.; Indriana, K.; Anshory, M.; Hur, M.; Di Somma, S. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J. Matern. Fetal Neonatal Med. 2019, 32, 3903–3908. [Google Scholar] [CrossRef] [PubMed]
- Stocker, M.; van Herk, W.; el Helou, S.; Dutta, S.; Schuerman, F.A.B.A.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; Moonen, R.; et al. C-Reactive Protein, Procalcitonin, and White Blood Count to Rule out Neonatal Early-onset Sepsis within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study. Clin. Infect. Dis. 2021, 73, e383–e390. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Raza, S.; Ali, U.; Zubairi, A.M.; Salim, E. Diagnostic Accuracy of Serum Procalcitonin (PCT) as an Early Biomarker of Neonatal Sepsis using Blood Culture as Gold Standard. J. Coll. Physicians Surg. Pak. 2021, 31, 383–387. [Google Scholar] [CrossRef]
- Sastre, J.B.L.; Solís, D.P.; Serradilla, V.R.; Colomer, B.F.; Cotallo, G.D.C.; Grupo de Hospitales Castrillo. Evaluation of procalcitonin for diagnosis of neonatal sepsis of vertical transmission. BMC Pediatr. 2007, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Eschborn, S.; Weitkamp, J.-H. Procalcitonin versus C-reactive protein: Review of kinetics and performance for diagnosis of neonatal sepsis. J. Perinatol. 2019, 39, 893–903. [Google Scholar] [CrossRef]
- Sack, G.H. Serum amyloid A—A review. Mol. Med. 2018, 24, 46. [Google Scholar] [CrossRef] [Green Version]
- Lannergård, A.; Friman, G.; Ewald, U.; Lind, L.; Larsson, A. Serum amyloid A (SAA) protein and high-sensitivity C-reactive protein (hsCRP) in healthy newborn infants and healthy young through elderly adults. Acta Paediatr. 2007, 94, 1198–1202. [Google Scholar] [CrossRef]
- Bengnér, J.; Quttineh, M.; Gäddlin, P.-O.; Salomonsson, K.; Faresjö, M. Serum amyloid A—A prime candidate for identification of neonatal sepsis. Clin. Immunol. 2021, 229, 108787. [Google Scholar] [CrossRef]
- Bourika, V.; Hantzi, E.; Michos, A.; Margeli, A.; Papassotiriou, I.; Siahanidou, T. Clinical Value of Serum Amyloid-A Protein, High-density Lipoprotein Cholesterol and Apolipoprotein-A1 in the Diagnosis and Follow-up of Neonatal Sepsis. Pediatr. Infect. Dis. J. 2020, 39, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Shang, Y.; Fang, C.; He, Q.; Xie, L. Clinical values of common biomarkers for efficacy monitoring of antibiotics in early-onset neonatal sepsis. Transl. Pediatr. 2020, 9, 669. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Huang, J.; Lv, B.; Yan, W.; Hu, G.; Wang, J.; Shen, B. Diagnosis value of the serum amyloid A test in neonatal sepsis: A meta-analysis. Biomed Res. Int. 2013, 2013, 520294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zudaire, E.; Portal-Núñez, S.; Cuttitta, F. The central role of adrenomedullin in host defense. J. Leukoc. Biol. 2006, 80, 237–244. [Google Scholar] [CrossRef]
- Fahmey, S.S.; Mostafa, H.; Elhafeez, N.A.; Hussain, H. Diagnostic and prognostic value of proadrenomedullin in neonatal sepsis. Korean J. Pediatr. 2018, 61, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.; Rao, S.S.; Mithra, P.; Dhanashree, B.; Baliga, S.; Bhat, K.G. Diagnostic and Prognostic Validity of Proadrenomedullin among Neonates with Sepsis in Tertiary Care Hospitals of Southern India. Int. J. Pediatr. 2018, 2018, 7908148. [Google Scholar] [CrossRef] [Green Version]
- Oncel, M.Y.; Dilmen, U.; Erdeve, O.; Ozdemir, R.; Calisici, E.; Yurttutan, S.; Canpolat, F.E.; Oguz, S.S.; Uras, N. Proadrenomedullin as a prognostic marker in neonatal sepsis. Pediatr. Res. 2012, 72, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-W.; Tabangin, M.; Kusano, R.; Ma, Y.; Ridsdale, R.; Akinbi, H. The Utility of Serum Hepcidin as a Biomarker for Late-Onset Neonatal Sepsis. J. Pediatr. 2013, 162, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Song, Z.; Yu, X.; Tu, Q.; He, Y.; Luo, Y.; Yin, Y.; Chen, D. Progranulin as a novel biomarker in diagnosis of early-onset neonatal sepsis. Cytokine 2020, 128, 155000. [Google Scholar] [CrossRef]
- Badr, H.S.; El-Gendy, F.M.; Helwa, M.A. Serum stromal-derived-factor-1 (CXCL12) and its alpha chemokine receptor (CXCR4) as biomarkers in neonatal sepsis. J. Matern. Fetal Neonatal Med. 2018, 31, 2209–2215. [Google Scholar] [CrossRef]
- Zonda, G.I.; Zonda, R.; Cernomaz, T.A.; Paduraru, L.; Avasiloaiei, A.L.; Grigoriu, B.D. Endocan—A potential diagnostic marker for early onset sepsis in neonates. J. Infect. Dev. Ctries. 2019, 13, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Fahmey, S.; Mostafa, N. Pentraxin 3 as a novel diagnostic marker in neonatal sepsis. J. Neonatal-Perinatal Med. 2019, 12, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, J.; Ping, L.; Zhang, X.; Zhai, L.; Li, Y.; Zhang, R. Diagnostic Value of Inflammatory Markers and Cytokines in Neonatal Sepsis. Evid. Based Complement. Altern. Med. 2022, 2022, 4143101. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, C.; Lin, X.; Yang, Y. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. View 2021, 2, 20210003. [Google Scholar] [CrossRef]
- Küster, H.; Weiss, M.; Willeitner, A.E.; Detlefsen, S.; Jeremias, I.; Zbojan, J.; Geiger, R.; Lipowsky, G.; Simbruner, G. Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 1998, 352, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Lam, H.S. Biomarkers for Late-Onset Neonatal Sepsis: Cytokines and Beyond. Clin. Perinatol. 2010, 37, 599–610. [Google Scholar] [CrossRef]
- Eichberger, J.; Resch, B. Reliability of Interleukin-6 Alone and in Combination for Diagnosis of Early Onset Neonatal Sepsis: Systematic Review. Front. Pediatr. 2022, 10, 840778. [Google Scholar] [CrossRef]
- Messer, J.; Eyer, D.; Donato, L.; Gallati, H.; Matis, J.; Simeoni, U. Evaluation of interleukin-6 and soluble receptors of tumor necrosis factor for early diagnosis of neonatal infection. J. Pediatr. 1996, 129, 574–580. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Schrod, L.; Rutsch, P.; Roos, T.; Martius, J.; von Stockhausena, H.-B. Immunologic Parameters in Cord Blood Indicating Early-Onset Sepsis. Neonatology 1996, 70, 206–212. [Google Scholar] [CrossRef]
- Smulian, J.C.; Bhandari, V.; Campbell, W.A.; Rodis, J.F.; Vintzileos, A.M. Value of umbilical artery and vein levels of interleukin-6 and soluble intracellular adhesion molecule-1 as predictors of neonatal hematologic indices and suspected early sepsis. J. Matern. Fetal. Med. 1997, 6, 254–259. [Google Scholar] [CrossRef]
- Panero, A.; Pacifico, L.; Rossi, N.; Mancuso, G.; Stegagno, M.; Chiesa, C. Interleukin 6 in neonates with early and late onset infection. Pediatr. Infect. Dis. J. 1997, 16, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.; Niemeyer, C.M.; Leititis, J.U.; Funke, A.; Schwab, C.; Rau, U.; Richter, K.; Tawfeek, M.S.K.; Clad, A.; Brandis, M. Plasma Levels and Gene Expression of Granulocyte Colony-Stimulating Factor, Tumor Necrosis Factor-α, Interleukin (IL)-1β, IL-6, IL-8, and Soluble Intercellular Adhesion Molecule-1 in Neonatal Early Onset Sepsis. Pediatr. Res. 1998, 44, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulian, J.C.; Vintzileos, A.M.; Lai, Y.L.; Santiago, J.; Shen-Schwarz, S.; Campbell, W.A. Maternal chorioamnionitis and umbilical vein interleukin-6 levels for identifying early neonatal sepsis. J. Matern. Fetal. Med. 1999, 8, 88–94. [Google Scholar] [CrossRef]
- Silveira, R.; Procianoy, R. Evaluation of interleukin-6, tumour necrosis factor-a and interleukin-1ß for early diagnosis of neonatal sepsis. Acta Paediatr. 1999, 88, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Kashlan, F.; Smulian, J.; Shen-Schwarz, S.; Anwar, M.; Hiatt, M.; Hegyi, T. Umbilical vein interleukin 6 and tumor necrosis factor alpha plasma concentrations in the very preterm infant. Pediatr. Infect. Dis. J. 2000, 19, 238–243. [Google Scholar] [CrossRef]
- Døllner, H.; Vatten, L.; Linnebo, I.; Zanussi, G.F.; Lærdal, A.; Austgulen, R. Inflammatory Mediators in Umbilical Plasma from Neonates Who Develop Early-Onset Sepsis. Neonatology 2001, 80, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.; Nauck, M.S.; Sang, S.; Hentschel, R.; Wieland, H.; Berner, R. Cord Blood Levels of Interleukin-6 and Interleukin-8 for the Immediate Diagnosis of Early-Onset Infection in Premature Infants. Neonatology 2001, 80, 118–123. [Google Scholar] [CrossRef]
- Santana, C.; Guindeo, M.; González, G.; Doménech, E.; Saavedra, P.; Oz, F.G.-M. Cord blood levels of cytokines as predictors of early neonatal sepsis. Acta Paediatr. 2001, 90, 1176–1181. [Google Scholar] [CrossRef]
- Martin, H.; Olander, B.; Norman, M. Reactive Hyperemia and Interleukin 6, Interleukin 8, and Tumor Necrosis Factor-α in the Diagnosis of Early-Onset Neonatal Sepsis. Pediatrics 2001, 108, e61. [Google Scholar] [CrossRef] [Green Version]
- Hatzidaki, E.; Gourgiotis, D.; Manoura, A.; Korakaki, E.; Bossios, A.; Galanakis, E.; Giannakopoulou, C. Interleukin-6 in preterm premature rupture of membranes as an indicator of neonatal outcome. Acta Obstet. Gynecol. Scand. 2005, 84, 632–638. [Google Scholar] [CrossRef]
- Gharehbaghi, M.M.; Peirovifar, A.; Gharehbaghi, P.M. Comparison of umbilical cord interleukin-6 in preterm infants with prem-ature rupture of membranes and intact membranes. Saudi Med. J. 2008, 29, 224–228. [Google Scholar]
- Bender, L.; Thaarup, J.; Varming, K.; Krarup, H.; Ellermann-Eriksen, S.; Ebbesen, F. Early and late markers for the detection of ear-ly-onset neonatal sepsis. Dan. Med. Bull. 2008, 55, 219–223. [Google Scholar] [PubMed]
- Labenne, M.; Lizard, G.; Ferdynus, C.; Montange, T.; Iacobelli, S.; Bonsante, F.; Gouyon, J.-B. A clinic-biological score for diagnosing early-onset neonatal infection in critically ill preterm infants. Pediatr. Crit. Care Med. 2011, 12, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Cernada, M.; Badía, N.; Modesto, V.; Alonso, R.; Mejías, A.; Golombek, S.; Vento, M. Cord blood interleukin-6 as a predictor of early-onset neonatal sepsis. Acta Paediatr. 2012, 101, e203–e207. [Google Scholar] [CrossRef] [PubMed]
- Cobo, T.; Kacerovsky, M.; Andrys, C.; Drahosova, M.; Musilova, I.; Hornychova, H.; Jacobsson, B. Umbilical Cord Blood IL-6 as Predictor of Early-Onset Neonatal Sepsis in Women with Preterm Prelabour Rupture of Membranes. PLoS ONE 2013, 8, e69341. [Google Scholar] [CrossRef] [PubMed]
- Hofer, N.; Kothari, R.; Morris, N.; Müller, W.; Resch, B. The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am. J. Obstet. Gynecol. 2013, 209, 542.e1–542.e11. [Google Scholar] [CrossRef]
- Cetin, O.; Cetin, I.D.; Uludag, S.; Sen, C.; Verit, F.F.; Guralp, O. Serial Ultrasonographic Examination of the Fetal Thymus in the Prediction of Early Neonatal Sepsis in Preterm Premature Rupture of Membranes. Gynecol. Obstet. Investig. 2014, 78, 201–207. [Google Scholar] [CrossRef]
- Ebenebe, C.U.; Hesse, F.; Blohm, M.E.; Jung, R.; Kunzmann, S.; Singer, D. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates. J. Matern. Fetal Neonatal Med. 2021, 34, 253–258. [Google Scholar] [CrossRef]
- Berka, I.; Korček, P.; Straňák, Z. Serial Measurement of Interleukin-6 Enhances Chance to Exclude Early-Onset Sepsis in Very Preterm Infants. Clin. Pediatr. 2022, 62, 288–294. [Google Scholar] [CrossRef]
- Berka, I.; Korček, P.; Straňák, Z. C-Reactive Protein, Interleukin-6, and Procalcitonin in Diagnosis of Late-Onset Bloodstream Infection in Very Preterm Infants. J. Pediatr. Infect. Dis. Soc. 2021, 10, 1004–1008. [Google Scholar] [CrossRef]
- Raynor, L.L.; Saucerman, J.J.; Akinola, M.O.; Lake, D.E.; Moorman, J.R.; Fairchild, K.D. Cytokine screening identifies NICU patients with Gram-negative bacteremia. Pediatr. Res. 2012, 71, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Cheng, S.; Yu, J.; Lu, Q. Interleukin-8 for Diagnosis of Neonatal Sepsis: A Meta-Analysis. PLoS ONE 2015, 10, e0127170. [Google Scholar] [CrossRef] [Green Version]
- Dillenseger, L.; Langlet, C.; Iacobelli, S.; Lavaux, T.; Ratomponirina, C.; Labenne, M.; Astruc, D.; Severac, F.; Gouyon, J.B.; Kuhn, P. Early Inflammatory Markers for the Di-agnosis of Late-Onset Sepsis in Neonates: The Nosodiag Study. Front. Pediatr. 2018, 13, 346. [Google Scholar] [CrossRef] [Green Version]
- Schindler, R.; Mancilla, J.; Endres, S.; Ghorbani, R.; Clark, S.C.; Dinarello, C.A. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990, 75, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Formosa, A.; Turgeon, P.; dos Santos, C.C. Role of miRNA dysregulation in sepsis. Mol. Med. 2022, 28, 99. [Google Scholar] [CrossRef] [PubMed]
- Jouza, M.; Bohosova, J.; Stanikova, A.; Pecl, J.; Slaby, O.; Jabandziev, P. MicroRNA as an Early Biomarker of Neonatal Sepsis. Front. Pediatr. 2022, 10, 854324. [Google Scholar] [CrossRef] [PubMed]
- Gude, S.S.; Peddi, N.C.; Vuppalapati, S.; Gopal, S.V.; Ramesh, H.M. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus 2022, 14, 23215. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Borderie, D.; Weiss, N.; Mallet-Coste, T.; Claessens, Y.-E. Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clin. Chim. Acta 2015, 450, 97–103. [Google Scholar] [CrossRef]
- Schulman, J.; Benitz, W.E.; Profit, J.; Lee, H.C.; Dueñas, G.; Bennett, M.V.; Jocson, M.A.; Schutzengel, R.; Gould, J.B. Newborn Antibiotic Exposures and Association with Proven Bloodstream Infection. Pediatrics 2019, 144, e20191105. [Google Scholar] [CrossRef]
- Parri, N.; Trippella, G.; Lisi, C.; De Martino, M.; Galli, L.; Chiappini, E. Accuracy of presepsin in neonatal sepsis: Systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2019, 17, 223–232. [Google Scholar] [CrossRef]
- Ergor, S.N.; Yalaz, M.; Koroglu, O.A.; Sozmen, E.; Akisu, M.; Kultursay, N. Reference ranges of presepsin (soluble CD14 subtype) in term and preterm neonates without infection, in relation to gestational and postnatal age, in the first 28 days of life. Clin. Biochem. 2020, 77, 7–13. [Google Scholar] [CrossRef]
- Pugni, L.; Pietrasanta, C.; Milani, S.; Vener, C.; Ronchi, A.; Falbo, M.; Arghittu, M.; Mosca, F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE 2015, 10, e0146020. [Google Scholar] [CrossRef] [Green Version]
- Poggi, C.; Bianconi, T.; Gozzini, E.; Generoso, M.; Dani, C. Presepsin for the Detection of Late-Onset Sepsis in Preterm Newborns. Pediatrics 2015, 135, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Mussap, M.; Puxeddu, E.; Puddu, M.; Ottonello, G.; Coghe, F.; Comite, P.; Cibecchini, F.; Fanos, V. Soluble CD14 subtype (sCD14-ST) presepsin in premature and full term critically ill newborns with sepsis and SIRS. Clin. Chim. Acta 2015, 451, 65–70. [Google Scholar] [CrossRef]
- Stojewska, M.; Behrendt, J.; Szymanska, A.; Pukas-Bochenk, A.; Stachurska, A.; Godula-Stuglik, U.; Mazur, B. Diagnostic Value of Presepsin (Scd14-St Subtype) Evaluation in the Detection of Severe Neonatal Infections. IJRSB 2015, 3, 110–116. [Google Scholar]
- Topcuoglu, S.; Arslanbuga, C.; Gursoy, T.; Aktas, A.; Karatekin, G.; Uluhan, R.; Ovali, F. Role of presepsin in the diagnosis of late-onset neonatal sepsis in preterm infants. J. Matern. Fetal Neonatal Med. 2015, 29, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Motalib, T.A.; Khalaf, F.A.; El Hendawy, G. Soluble CD14—Subtype (Prespsin) and Hepcidin as Diagnostic and Prognostic Markers in Early Onset Neonatal Sepsis. Egypt. J. Med. Microbiol. 2015, 24, 45–52. [Google Scholar] [CrossRef]
- Osman, A.S.; Awadallah, M.G.; Tabl, H.A.E.-M. Presepsin as a Novel Diagnostic Marker in Neonatal Septicemia. Egypt. J. Med. Microbiol. 2015, 24, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Chen, L.-P.; Zhang, L.-H.; Lai, F.-H.; Qiu, Q.-F.; Que, R.-L.; Xie, S.; Wu, D.-C. The clinical significance of sCD14-ST for blood biomarker in neonatal hematosepsis. Medicine 2017, 96, e6823. [Google Scholar] [CrossRef]
- Miyosawa, Y.; Akazawa, Y.; Kamiya, M.; Nakamura, C.; Takeuchi, Y.; Kusakari, M.; Nakamura, T. Presepsin as a predictor of positive blood culture in suspected neonatal sepsis. Pediatr. Int. 2018, 60, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Gad, G.I.; Shinkar, D.M.; El-Din, M.M.K.; Nagi, H.M. The Utility of Soluble CD14 Subtype in Early Diagnosis of Culture-Proven Early-Onset Neonatal Sepsis and Prediction of Outcome. Am. J. Perinatol. 2020, 37, 497–502. [Google Scholar] [CrossRef]
- Pietrasanta, C.; Ronchi, A.; Vener, C.; Poggi, C.; Ballerini, C.; Testa, L.; Colombo, R.M.; Spada, E.; Dani, C.; Mosca, F.; et al. Presepsin (Soluble CD14 Subtype) as an Early Marker of Neonatal Sepsis and Septic Shock: A Prospective Diagnostic Trial. Antibiotics 2021, 10, 580. [Google Scholar] [CrossRef]
- Pospisilova, I.; Brodska, H.L.; Bloomfield, M.; Borecka, K.; Janota, J. Evaluation of presepsin as a diagnostic tool in newborns with risk of early-onset neonatal sepsis. Front. Pediatr. 2023, 10, 1019825. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S. Clinical review: Role of triggering receptor expressed on myeloid cells-1 during sepsis. Crit. Care 2005, 9, 485–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchon, A.; Facchetti, F.; Weigand, M.A.; Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001, 410, 1103–1107. [Google Scholar] [CrossRef]
- Garofoli, F.; Borghesi, A.; Mazzucchelli, I.; Tzialla, C.; Di Comite, A.; Tinelli, C.; Manzoni, P.; Stronati, M. Preterm Newborns are Provided with Triggering Receptor Expressed on Myeloid Cells-1. Int. J. Immunopathol. Pharmacol. 2010, 23, 1297–1301. [Google Scholar] [CrossRef]
- Adly, A.A.; Ismail, E.A.; Andrawes, N.G.; El-Saadany, M.A. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. Cytokine 2014, 65, 184–191. [Google Scholar] [CrossRef]
- Stein, M.; Schachter-Davidov, A.; Babai, I.; Tasher, D.; Somekh, E. The accuracy of C-reactive protein, procalcitonin, and s-REM-1 in the prediction of serious bacterial infection in neonates. Clin. Pediatr. 2015, 54, 439–444. [Google Scholar] [CrossRef]
- Sarafidis, K.; Soubasi-Griva, V.; Piretzi, K.; Thomaidou, A.; Agakidou, E.; Taparkou, A.; Diamanti, E.; Drossou-Agakidou, V. Diagnostic utility of elevated serum soluble triggering receptor expressed on myeloid cells (sTREM)-1 in infected neonates. Intensive Care Med. 2010, 36, 864–868. [Google Scholar] [CrossRef]
- Lv, B.; Huang, J.; Yuan, H.; Yan, W.; Hu, G.; Wang, J. Tumor necrosis factor-α as a diagnostic marker for neonatal sepsis: A me-ta-analysis. Sci. World J. 2014, 2014, 471463. [Google Scholar] [CrossRef] [Green Version]
- Layseca-Espinosa, E.; Pérez-González, L.F.; Torres-Montes, A.; Baranda, L.; De La Fuente, H.; Rosenstein, Y.; González-Amaro, R. Expression of CD64 as a potential marker of neonatal sepsis. Pediatr. Allergy Immunol. 2002, 13, 319–327. [Google Scholar] [CrossRef]
- Ng, P.C.; Li, K.; Wong, R.P.; Fok, T.F. Neutrophil CD64 expression: A sensitive diagnostic marker for late-onset nosocomial infection in very low birth weight infants. Pediatr. Res. 2002, 51, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.; Li, G.; Chui, K.M.; Chu, W.C.W.; Li, K.; Wong, R.P.O.; Chik, K.W.; Wong, E.; Fok, T.F. Neutrophil CD64 is a sensitive diagnostic marker for early-onset neonatal infection. Pediatr. Res. 2004, 56, 796–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, V.; Wang, C.; Rinder, C.; Rinder, H. Hematologic Profile of Sepsis in Neonates: Neutrophil CD64 as a Diagnostic Marker. Pediatrics 2008, 121, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Elawady, S.; Botros, S.K.; Sorour, A.E.; Ghany, E.A.; Elbatran, G.; Ali, R. Neutrophil CD64 as a Diagnostic Marker of Sepsis in Neonates. J. Investig. Med. 2014, 62, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.; Dickinson, P.; Forster, T.; Craigon, M.; Ross, A.; Khondoker, M.R.; France, R.; Ivens, A.; Lynn, D.J.; Orme, J.; et al. Identification of a human neonatal im-mune-metabolic network associated with bacterial infection. Nat. Commun. 2014, 5, 4649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernada, M.; Serna, E.; Bauerl, C.; Collado, M.C.; Pérez-Martínez, G.; Vento, M. Genome-Wide Expression Profiles in Very Low Birth Weight Infants with Neonatal Sepsis. Pediatrics 2014, 133, e1203–e1211. [Google Scholar] [CrossRef] [Green Version]
- Fatmi, A.; Chabni, N.; Cernada, M.; Vento, M.; González-López, M.; Aribi, M.; Pallardó, F.V.; García-Giménez, J.L. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed. Pharmacother. 2022, 145, 112444. [Google Scholar] [CrossRef]
- Bushati, N.; Cohen, S.M. microRNA functions. Annu. Rev. Cell. Dev. Biol. 2007, 23, 175–205. [Google Scholar] [CrossRef]
- Antonakos, N.; Gilbert, C.; Théroude, C.; Schrijver, I.T.; Roger, T. Modes of action and diagnostic value of miRNAs in sepsis. Front. Immunol. 2022, 13, 951798. [Google Scholar] [CrossRef]
- Berkhout, D.J.C.; van Keulen, B.J.; Niemarkt, H.J.; Bessem, J.R.; de Boode, W.P.; Cossey, V.; Hoogenes, N.; Hulzebos, C.V.; Klaver, E.; de Boode, W.P.; et al. Late-onset Sepsis in Preterm Infants Can Be Detected Preclinically by Fecal Volatile Organic Compound Analysis: A Prospective, Multicenter Cohort Study. Clin. Infect. Dis. 2019, 68, 70–77. [Google Scholar] [CrossRef]
- Frerichs, N.M.; Hassani, S.E.M.E.; Deianova, N.; van Weissenbruch, M.M.; van Kaam, A.H.; Vijlbrief, D.C.; van Goudoever, J.B.; Hulzebos, C.V.; Kramer, B.W.; D’haens, E.J.; et al. Fecal Volatile Metabolomics Predict Gram-Negative Late-Onset Sepsis in Preterm Infants: A Nationwide Case-Control Study. Microorganisms 2023, 11, 572. [Google Scholar] [CrossRef] [PubMed]
Reference | Population | EOS or LOS | Cut-off Value | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
Sharma 1993 [45] | Full-term and preterm: Group A (10 proved sepsis group) vs. Group B (24 probable sepsis) vs. Group C (16 no sepsis) | EOS and LOS | 6 mg/L | 80% | 93.8% | ND | ND |
Ng 1997 [46] | Preterm 35 infected vs. 46 non-infected vs. 20 controls | LOS | 12 mg/L | 84% | 96% | 95% | 87% |
Benitz 1998 [47] | Full-term and preterm: Proven sepsis 20 vs. Probable sepsis 74 vs. No sepsis 908 | EOS | 1 mg/dL | 35% | 90% | 6.7% | 98.6% |
LOS | 61.5% | 68.9% | 43.8% | 82% | |||
Doellner 1998 [48] | Full-term and preterm 24 Group 1 (infection) vs. 18 Group 2 (probable infection) vs. 31 Group 3 (mixed group) vs. 94 Group 4 (negative sepsis) vs. 70 Group 5 (control) | EOS and LOS | 10 mg/L | 96% | 74% | 49% | 99% |
Enguix 2001 [49] | Mixed population: 20 septic neonates vs. 26 controls | LOS | 23 mg/L | 95.8% | 83.6% | 80.2% | 96.7% |
Manucha 2002 [50] | Full-term and preterm: 21 proved sepsis vs. 129 probable sepsis vs. 40 no sepsis | EOS | 6 mg/L | 76% | 79% | 37% | 96% |
Blommendahl 2002 [51] | Full term and preterm 219 | ND | 1 mg/L | 58% | 84% | 24% | 94% |
Guibourdenche 2002 [53] | Full term and preterm: 88 non-infected; 21 infected; 10 unclassified | EOS | 7.5 mg/L | 68% | 80% | 81% | 72% |
Chiesa 2003 [17] | 134 consecutives critically ill newborns: 19 cases and 115 controls | EOS | At birth 4 mg/L | 73% | 83% | ND | ND |
At 24 h 10 mg/L | 91% | 87% | |||||
At 48 h 10 mg/L | 91% | 84% | |||||
Santana Reyes 2003 [53] | Full-term and preterm: Group 1 (20 infected) vs. Group 2 (20 noninfected) vs. Group 3 (20 control) | EOS and LOS | ND | 80% | 92% | ND | ND |
Vazzalwar 2005 [54] | Preterm: 36 infected, 15 non-infected, 16 controls | LOS | 0.8 mg/dL | 72% | 93% | 96% | 58% |
Arnon 2005 [55] | Preterm 23 proven sepsis; 15 clinical sepsis; 78 controls | LOS | 10 mcg/mL | 32% | 97% | 86% | 74% |
Verboon-Maciolek 2006 [56] | Mixed population 111 patients | LOS | 14 mg/L | 65% | 52% | 63% | 54% |
Turner 2006 [57] | 33 preterm infants | LOS | 10 mg/L | 74% | 39% | 46% | 68% |
20 mg/L | 47% | 89% | 75% | 70% | |||
30 mg/L | 41% | 96% | 87% | 69% | |||
50 mg/L | 31% | 98% | 91% | 67% | |||
Resch 2007 [58] | 16 proven sepsis, 25 clinical sepsis, 8 uncertain, 27 non-infected | EOS | 2.5 mg/L | 69% | 96% | 96% | 67% |
8 mg/L | 49% | 100% | 100% | 58% | |||
Arnon 2007 [59] | Full-term 23 cases vs. 71 controls | EOS | 7 mg/L | 30% | 98% | 78% | 83% |
Ucar 2008 [60] | Full term and preterm: 36 cases vs. 36 controls | LOS | 0.8 mg/dL | Day 0: 97.2% | 100% | ND | ND |
Day 4: 100% | 100% | ||||||
Day 8: 100% | 100% | ||||||
Fendler 2008 [61] | 78 preterm newborns | LOS | 0.22 mg/dL | 85% | 88.9% | 97.1% | 57.1% |
Schrama 2008 [62] | Full-term and preterm: Documented sepsis (24) vs. Suspected sepsis (77) vs. Control (55) | EOS and LOS (Sepsis vs. control) | 10 mg/L | 92% | 99% | ND ND | |
EOS and LOS (Sepsis vs. suspected infection and control) | 92% | 85% | |||||
EOS and LOS (Sepsis and suspected infection vs. control) | 80% | 67% | |||||
Boo 2008 [63] | Full term and preterm: 87, 18 with confirmed sepsis | EOS and LOS | ND | 55.6% | 89.9% | ND | ND |
Sherwin 2008 [64] | Full-term and preterm Group 1 (culture positive) vs. Group 2 (culture-negative) | EOS and LOS | 38 pg/mL | 22% | 92% | 31% | 88% |
Jacquot 2009 [65] | Preterm: 30 cases vs. 43 controls | LOS | 10 mg/L | 58% | 86% | 74% | 75% |
Zaki 2009 [66] | Full-term and preterm: Group 1 (58 infected) vs. Group 2 (32 noninfected) vs. Group 3 (30 control) | EOS and LOS | 8 mg/L | 86% | 97% | 96% | 88% |
Çetinkaya 2009 [67] | Preterm: Group 1 (highly probable sepsis) vs. Group 2 (probable sepsis) vs. Group 3 (possible sepsis) vs. Group 4 (no sepsis) | EOS and LOS | 0.5 mg/dL | 72.3% | 100% | 100% | 54% |
Groselj-Grenc 2009 [68] | 17 Neonates with SIRS vs. 29 controls | LOS | 11 mg/L | 59% | 100% | 100% | 89% |
Rego 2010 [69] | 144 preterms presenting respiratory distress: 44 infected, 100 uninfected | EOS | 0.6 mg/dL | 76% | 70% | 52% | 87% |
Celik 2010 [70] | Full-term and preterm: Group 1 (170 clinical and proven sepsis) vs. Group 2 (62 noninfected) | EOS and LOS | 5.82 mg/L | 71% | 97% | 99% | 49% |
Edgar 2010 [71] | Full-term and preterm 74 Infected; 118 Non-infected; 27 Controls | EOS | 0.6 mg/L | 61.5% | 82.3% | 36.3% | 92.8% |
LOS | 0.4 mg/L | 71.2% | 55.6% | 71.2% | 55.6% | ||
Kumar 2010 [72] | Full-term and preterm 83 Proven sepsis vs. 94 probable sepsis | EOS and LOS | 5 mg/dL | 95.2% | 85.3% | 80.6% | 96.5% |
98.9% | 83.3% | 80.9% | 99.1% | ||||
Hotoura 2011 [73] | Full-term Group 1 (20 suspected infection) vs. Group 2 (25 sepsis) vs. Group 3 (50 infection-free control subjects) | EOS and LOS | 10 mg/L | 64% | 78% | 60% | 81% |
Campolat 2011 [74] | 74 preterm infants with history of pPROM: 32 infected, 42 uninfected | EOS | 0.72 mg/dL | 56% | 58% | ND | ND |
Altunhan 2011 [75] | Full term and preterm: Group 1: 171 suspected sepsis vs. Group 2: 89 control group | EOS | At birth 5 mg/L | 44.5% | 59.4% | 45.6% | 64.2% |
At 24 h of life 12 mg/L | 76.4% | 78.9% | 79.7% | 81.6% | |||
Naher 2011 [76] | Full-term and preterm Group 1 (highly probable sepsis); Group 2 (probable sepsis); Group 3 (possible sepsis); Group 4 (no sepsis) | EOS and LOS | 6 mg/L | 55% | 100% | 100% | 35.7% |
Cekmez 2011 [77] | Full term or near term (>34 wks): 62 cases vs. 43 controls | LOS | 0.82 mg/dL | 82% | 79% | ND | ND |
Bohnhorst 2012 [78] | Preterm Proven infection (58) vs. Unproven infection (112) | LOS | 10 mg/L | 69% | 84% | 69% | 84% |
Adib 2012 [79] | Full term and preterm: 20 confirmed sepsis vs. 49 clinical sepsis vs. 18 controls | EOS and LOS | 12 mg/L | 45% | 95% | 30% | 30% |
Choo 2012 [80] | Full-term and preterm Group 1 (11 documented sepsis): Group 2 (12 clinical sepsis): Group 3 (14 control) | EOS and LOS | 10 mg/L | 9% | 83% | 33% | 50% |
Adollahi 2012 [81] | Full term and preterm: 30 proven EOS; 19 clinical EOS; 16 negative infectious status; 30 uncertain infectious status | EOS | 2.5 mg/L | 69% | 96% | 96% | 67% |
8 mg/L | 49% | 100% | 100% | 58% | |||
Ertuğrul 2013 [82] | Premature | LOS | ND | 58.3% | 80% | 77.8% | 61.5% |
Park 2014 [83] | Full term and preterm: 18 confirmed sepsis, 56 suspected sepsis, 81 mild infection, 114 controls. | ND | 6 mg/L | 100% | 78.1% | 24.7% | 100% |
10 mg/L | 100% | 85.7% | 33.3% | 100% | |||
Steinberger 2014 [16] | Preterm infants with risk factors for EOS: 30 infected, 188 uninfected | EOS | 0.55 mg/L | 56.3% | 93.5% | 56.3% | 93.5% |
8.00 mg/L | 12.5% | 99.1% | 66.7% | 88.4% | |||
Hisamuddin 2015 [84] | Full-term and preterm Group 1 (43 confirmed sepsis); Group 2 (104 no sepsis) | EOS and LOS | 5 mg/dL | 76.92% | 53.49% | 80% | 48.94% |
Decembrino 2015 [85] | Full-term and preterm Group 1 (8 sepsis); Group2 (33 suspected sepsis) | EOS and LOS | 6 mg/L | 50% | 66.7% | ND | ND |
Kipfmueller 2015 [86] | Preterm 7 confirmed sepsis; 10 clinical sepsis; 8 indeterminate | LOS | 10 mg/L | 43% | 83% | ND | ND |
Pynn 2015 [87] | Full-term and preterm 37 culture positive sepsis vs. 102 negative evaluations | LOS | 10 mg/L | 82% | 66% | 50% | 90% |
Al-Zaharani 2015 [88] | Full-term and preterm: 34 proven EOS, 37 suspected EOS, 29 no EOS | EOS | 2.5 mg/L | 91.1% | 72.4% | 94.2% | 77.7% |
Çelik 2015 [89] | Full-term and preterm: 40 proven sepsis, 76 clinical sepsis, 111 control | EOS and LOS | 0.16 mg/dL | 75% | 76.3% | 50.8% | 91.9% |
Abdel Mohsen 2015 [90] | Full-term and preterm: 35 cases vs. 35 controls | EOS | 12 mg/L | 72.9% | 100% | 93.2% | 69.7% |
Yang 2016 [91] | Full term and preterm: 60 cases and 60 controls | LOS | 4.07 mg/L | 38.6% | 95.1% | 89.4% | 59.1% |
Ganesan 2016 [92] | Full-term and preterm Group 1 (40 suspected cases); Group 2 (40 control) | EOS and LOS | 13.49 mg/L | 80% | 65.7% | 25% | 95.83% |
Sabry 2016 [93] | Mixed, term and preterm: 80 cases vs. 40 controls | EOS and LOS | 2.65 mg/L | 82.5% | 77.5% | 88% | 68.9% |
Tabl 2016 [94] | Full-term: 22 cases, 28 non-infectious SIRS, 20 healthy controls | EOS and LOS | ND | 81.8% | 64.6% | 51.4% | 88.6% |
Ozdemir 2016 [95] | Full-term: 29 EOS vs. 40 controls | EOS | 6.35 mg/L | 83% | 75% | 97% | 75% |
Abd Elmouttaleb 2016 [96] | Gestational age 36–40 wks: 50 cases vs. 30 controls | EOS | 6 mg/dL | 51.6% | 70.7% | 40.5% | 78.2% |
Ahmed 2017 [97] | Full term and preterm 135 newborns | EOS and LOS | 5 mg/dL | 98.03% | 91% | 97% | 93.7% |
He 2017 [98] | Preterm (>34 wks) and term infants with suspected EOS: 68 infected, 83 uninfected | EOS | 3 mg/L | 67.65% | 66.27% | 62.16% | 71.43% |
Chen 2017 [99] | Mixed, term and preterm: 96 EOS vs. 44 Non-infective SIRS vs. 53 healthy controls | EOS | 9.9 mg/L | 77.1% | 88.6% | ND | ND |
Montaldo 2017 [100] | Preterm (<34 wks gestational age): 32 cases vs. 38 controls | EOS | 4.3 mg/L | 42% | 82% | 82% | 45% |
Beltempo 2018 [101] | 416 VLBW | EOS | 10 mg/L | 49% | 76% | 43% | 79% |
Utkarshni 2018 [102] | Mixed population, full term and preterm (50) | LOS | 6 mg/L | 66.6% | 73.1% | 35.2% | ND |
Rashwan 2019 [103] | Full-term and preterm Group 1 (102 proven sepsis); Group 2 (66 probable sepsis) | EOS and LOS | 6 mg/dL | 79.4% | 93.3% | 96.4% | 66.7% |
Kumar 2019 [104] | Mixed, term and preterm: 41 cases vs. 41 controls | EOS | 3.2 mg/dL | 75% | 97.5% | 91.6% | 82.6% |
LOS | 88.2% | ||||||
Khan 2019 [105] | Full-term and preterm 269 EOS 116 LOS | EOS | 5 mg/dL | 17.2% | 58.3% | 72.3% | 9.8% |
Wu 2019 [106] | Full-term and preterm Sepsis (195) vs. Control (100) | EOS and LOS | 47.33 mg/L | 71% | 75.38% | ND | ND |
Ahmed 2019 [107] | Mixed, term and preterm (birth weight more than 1500 gr): 30 cases vs. 30 controls | EOS | 1.5 mg/dL | 66.7% | 73.8% | 52.2% | 83.8% |
Stoicescu 2019 [108] | Mixed, term and preterm: 37 cases vs. 49 controls | EOS and LOS | All patients: 0.45 mg/dL | 73.5% | 68.4% | 69.4% | 74.3% |
EOS: 0.45 mg/dL | 70.4% | 66.7% | 63.3% | 75% | |||
LOS: 0.65 mg/dL | 75% | 88.9% | 60% | 94% | |||
Değirmencioğlu 2019 [109] | Preterm (≤32 wks of GA): 26 cases vs. 29 controls | LOS | 3.9 mg/L | 81.5% | 72.2% | 73.6% | 81.4% |
El-Madbouly 2019 [110] | Full-term: 30 cases vs. 30 controls | EOS and LOS | 6 mg/L | 85.2% | 39.0% | 67.6% | 64.0% |
Khater 2020 [111] | Mixed, term and preterm: 40 proved sepsis vs. 50 suspected sepsis vs. 30 controls | EOS and LOS | 9 mg/mL | 72% | 61% | 29% | 82% |
Hashem 2020 [112] | Mixed, term and preterm: 133 cases vs. 102 controls | EOS and LOS | 6 mg/L | 71.0% | 94.1% | 93.9% | 71.6% |
Morad 2020 [113] | Full term and preterm: 50 neonates with clinically suspected sepsis (31 positive culture) | EOS and LOS | 10 mg/dL | 89.5% | 66.7% | 92.5% | 60% |
Yang 2020 [114] | 152 preterm (>34 wks) and term infants a risk for EOS: 76 infected, 76 uninfected | EOS | 3.5 mg/L | 73.7% | 57.9% | 63.3% | 69.4% |
Tang 2022 [115] | Full term and preterm 169 | EOS and LOS | 15 mg/L | 75% | 84% | 14% | 99% |
Reference | Population | EOS or LOS | Cut-off Value | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
Enguix 2001 [49] | Mixed population: 20 septic neonates vs. 26 controls | LOS | 6.1 ng/mL | 98.6% | 88.9% | 89.5% | 98.5% |
Blommendahl 2002 [51] | Full term and preterm 219 | ND | 1 mg/mL | 77% | 62% | 16% | 97% |
Guibourdenche 2002 [53] | Full term and preterm: 88 non-infected; 21 infected; 10 unclassified | EOS | 2.5 mg/L | 87% | 90% | 86% | 93% |
Chiesa 2003 [17] | 134 consecutives critically ill inborns: 19 cases and 115 controls | EOS | At birth 1 μg/L | 82% | 95% | ND | ND |
At 24 h 100 μg/L | 100% | 96% | |||||
At 48 h 50 μg/L | 91% | 100% | |||||
Vazzalwar 2005 [54] | Preterm: 36 infected, 15 non-infected, 16 controls | LOS | 0.5 ng/mL | 94% | 36% | 45% | 92% |
1.0 ng/mL | 78% | 64% | 54% | 84% | |||
Verboon-Maciolek 2006 [56] | Mixed population 111 patients | LOS | 0.5 mcg/L | 69% | 82% | 83% | 68% |
Turner 2006 [57] | 33 preterm infants | LOS | 0.5 ng/mL | 74% | 54% | 53% | 78% |
1 ng/mL | 48% | 88% | 73% | 73% | |||
2.3 ng/mL | 48% | 97% | 91% | 74% | |||
Resch 2007 [58] | 16 proven sepsis, 25 clinical sepsis, 8 uncertain, 27 non-infected | EOS | 6 ng/mL | 77% | 91% | 93% | 72% |
2 ng/mL | 83% | 61% | 76% | 70% | |||
14 ng/mL | 63% | 100% | 92% | 64% | |||
López Sastre 2007 [135] | Full term and preterm: 31 confirmed vertical sepsis vs. 38 vertical clinical sepsis vs. 79 non-infectious disease vs. 169 asymptomatic | EOS | 0.15 ng/mL, at birth | 91.2% | 91.8% | 28.% | 76.2% |
1.2 ng/mL, 12–24 h of life | 90.2% | 43% | 39% | 91.5% | |||
0.75 ng/mL, 26–48 h of life | 91.8% | 51.4% | 59.9% | 91.2% | |||
Sherwin 2008 [64] | Mixed population: 130 culture-negative vs. 34 culture-positive | EOS and LOS | 98 ng/mL | 7% | 99% | 50% | 86% |
LOS | 1.3 ng/mL | 43% | 88% | 75% | 65% | ||
Fendler 2008 [61] | 78 preterm newborns | LOS | 0.99 ng/mL | 97.5% | 88.9% | 97.5% | 88.9% |
Ucar 2008 [52,60] | Full term and preterm: 36 cases vs. 36 controls | LOS | 0.8 ng/mL | Day 0: 86.1% | 97.2% | ND | ND |
Day 4: 83.3% | 86.1% | ||||||
Day 8: 69.4% | 97.2% | ||||||
Boo 2008 [65] | Full term and preterm: 87, 18 with confirmed sepsis | EOS and LOS | 2 ng/mL | 88.9% | 65.2% | ND | ND |
Çetinkaya 2009 [67] | Preterm infants: 108 group 1 (high probable sepsis), 5 group 2 (probable sepsis), 10 group 3 (possible sepsis), 40 group 4 (no sepsis, control group). | EOS and LOS | 0.5 mg/dL | 74.8% | 100% | 100% | 56.3% |
Groselj-Grenc 2009 [68] | 17 neonates with SIRS vs. 29 controls | LOS | 2.28 μg/L | 82% | 48% | 33% | 90% |
Canpolat 2011 [74] | 74 preterm infants with history of pPROM: 32 infected, 42 uninfected | EOS | 1.74 ng/mL | 76% | 85% | ND | ND |
Cekmez 2011 [77] | Full term or near term (>34 wks): 62 cases vs. 43 controls | LOS | 2.8 ng/mL | 86% | 81% | ND | ND |
Altunhan 2011 [75] | Full term and preterm: Group 1: 171 suspected sepsis Group 2: 89 control group | EOS | At birth 0.59 ng/mL | 48.7% | 68.6% | 48.7% | 68.5% |
At 24 h of life 5.38 ng/mL | 83.3% | 88.6% | 83.3% | 88.5% | |||
Naher 2011 [76] | Full term and preterm: 10 highly probable sepsis, 11 probable sepsis, 19 possible sepsis, 10 no sepsis | ND | 0.5 ng/mL | 65% | 90% | 96.3% | 39.1% |
Bohnhorst 2012 [78] | Full term and preterm: 58 proven infected, 112 unproven | LOS | 0.7 ng/mL | 98.3% | 65.2% | 58.8% | 98.6% |
Abdollahi 2012 [81] | Full term and preterm: 30- proven EOS -19 clinical EOS -16 negative infectious status -30 uncertain infectious status | EOS | At 12–24 h ≥1.7 ng/mL | 76.6% | 78.2% | 93% | 72% |
At 36–48 h ≥4.7 ng/mL | 72% | 80.4% | 76% | 70% | |||
Adib 2012 [79] | Full term and preterm: 20 confirmed sepsis vs. 49 clinical sepsis vs. 18 controls | EOS and LOS | 1.1 ng/ml | 70% | 80% | 80% | 75% |
Auriti 2012 [130] | Preterm: 697 controls vs. 65 infected | LOS | 0.5 ng/mL | 88% | 54% | ND | ND |
1 ng/mL | 77% | 69% | |||||
2.4 ng/mL | 60% | 80% | |||||
Ertuğrul 2013 [82] | Premature infants | LOS | ND | 91.7% | 75% | 81.5% | 88.2% |
Steinberger 2014 [16] | Preterm infants with risk factors for EOS: 30 infected, 188 uninfected | EOS | 0.235 mcg/L | 78.6% | 86.3% | 46.8% | 96.3% |
Park 2014 [83] | Full term and preterm: 18 confirmed sepsis, 56 suspected sepsis, 81 mild infection, 114 controls | ND | 0.5 mg/L | 88.9% | 58.2% | 13.2% | 98.6% |
1 mg/L | 72.2% | 69.3% | 14.4% | 97.2% | |||
Al-Zaharani 2015 [88] | Full-term and preterm: 34 proven EOS, 37 suspected EOS, 29 no EOS | EOS | 1.7 ng/mL | 72.5% | 90% | 93.5% | 71% |
Çelik 2015 [89] | Full-term and preterm: 40 proven sepsis, 76 clinical sepsis, 111 control | EOS and LOS | 0.44 ng/dL | 75% | 86% | 60.4% | 89.3% |
AbdelMohsen 2015 [90] | Full-term and preterm: 35 cases vs. 35 controls | EOS | 1.1 pg/mL | 80% | 85.7% | 84.8% | 81.1% |
Yang 2016 [94] | Full term and preterm: 60 cases and 60 controls | LOS | 0.156 μg/L | 61.4% | 95.1% | 93.1% | 69.6% |
Ozdemir 2016 [95] | Full-term: 29 EOS vs. 40 controls | EOS | 2.25 ng/mL | 67% | 67% | 84% | 59% |
Abd Elmouttaleb 2016 [96] | Gestational age 36–40 wks: 50 cases vs. 30 controls | EOS | 2 ng/mL | 76.3% | 78.2% | 65.9% | 89.3% |
He 2017 [98] | Preterm (>34 wks) and term infants with suspected EOS: 68 infected, 83 uninfected | EOS | differ between different intervals during the first 72 h | 86.8% | 57.8% | 62.8% | 84.2% |
Montaldo 2017 [100] | Preterm (<34 wks gestational age): 32 cases vs. 38 controls | EOS | 0.9 ng/mL | 50% | 65% | 47% | 53% |
Chen 2017 [99] | Mixed, term and preterm: 96 EOS vs. 44 Non-infective SIRS vs. 53 healthy controls | EOS | 3.35 ng/mL | 85.4% | 86.4% | ND | ND |
Kumar 2019 [104] | Mixed, term and preterm: 41 cases vs. 41 controls | EOS and LOS | 0.2 ng/mL | 97.6% | 95.1% | 90.2% | 97.4% |
Rashwan 2019 [103] | Full-term: 66 probable sepsis vs. 102 proven sepsis (47 EOS, 55 LOS) | EOS and LOS | 389 pg/mL | 97% | 100% | 100% | 93.7% |
Ahmed 2019 [107] | Mixed, term and preterm (birth weight more than 1500 gr): 30 cases vs. 30 controls | EOS | 2.3 ng/mL | 72.2% | 80.9% | 61.9% | 87.2% |
Frerot 2019 [131] | Preterm: 45 cases vs. 131 controls | EOS | 0.7 μg/L | 69% | 70% | ND | ND |
Stoicescu 2019 [108] | Mixed, term and preterm: 37 cases vs. 49 controls | EOS and LOS | All patients: 0.51 ng/mL | 56.4% | 42.6% | 88% | 83.3% |
EOS: 0.51 ng/mL | 54.8% | 40.9% | 85% | 90% | |||
LOS: 0.76 ng/mL | 71.5% | 95.7% | 85.7% | 91.7% | |||
Wu 2019 [106] | Full-term and preterm 195 cases vs. 100 controls | EOS and LOS | 20.14 μg/L | 71% | 75.38% | ND | ND |
Iskandar 2019 [132] | Mixed, term and preterm: 35 cases vs. 16 controls | EOS and LOS | ND | 68.9% | 62.5% | 80% | 47.6% |
Morad 2020 [113] | Full term and preterm: 50 neonates with clinically suspected sepsis (31 positive cultures) | EOS and LOS | 0.5 ng/mL | 97.6% | 89% | 97.6% | 88.9% |
Khater 2020 [111] | Mixed, term and preterm: 40 proved sepsis vs. 50 suspected sepsis vs. 30 controls | EOS and LOS | 5.6 ng/mL | 90% | 69% | 55% | 95% |
Yang 2020 [114] | 152 preterm (>34 wks) and term infants at risk for EOS: 76 infected, 76 uninfected | EOS | based on concentrations detected at up to 72 h after birth | 72.4% | 71.1% | 56.9% | 72.2% |
Stocker 2021 [133] | Neonates born after 34 wks: 1678 (553 no sepsis, 952 uncertain, 147 probable, 26 proven) | EOS | 2.8 ng/L | 100% | ND | ND | ND |
Habib 2021 [134] | Full term and preterm: 171 suspected sepsis (86 confirmed by positive cultures) | EOS and LOS | 0.5 ng/mL | 97.7% | 70.6% | 77.1% | 96.8% |
Tang 2022 [115] | Full term and preterm 169 | EOS and LOS | 27 μg/L | 75% | 95% | 33% | 99% |
Reference | Population | EOS or LOS | Cut-off Value | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
Messer 1996 [157] | Mixed population, preterm and full-term: 71 infected, 217 uninfected | EOS | 100 pg/mL | 83.3% | 90.3% | ND | ND |
Lehrnbecher 1996 [158] | Mixed population, preterm and full-term: 13 infected, 33 uninfected | EOS | 150 pg/mL | 69% | 91% | ND | ND |
Smulian 1997 [159] | 23 preterm and term infants with suspected EOS: 8 infected, 15 uninfected | EOS | 7 pg/mL | 88.5% | 66.6% | 58.8% | 91.0% |
Panero 1997 [160] | 60 NICU preterm and term infants: 13 infected, 47 uninfected | EOS | 200 pg/mL | 38% | 70% | 26% | 80% |
Berner 1998 [161] | Preterm and term infants: 16 infected, 43 uninfected, 35 healthy controls | EOS and LOS | 100 pg/mL | 87% | 93% | 76% | 97% |
Smulian 1999 [162] | Preterm infants: 14 infected, 14 uninfected | EOS | 25 pg/mL | 92.9% | 92.9% | 92.9% | 92.9% |
Silveira and Procianoy 1999 [163] | Newborns with suspected sepsis: 66 infected, 51 uninfected | EOS and LOS | 32 pg/mL | 90% | 43% | 67.4% | 78.6% |
Kashlan 2000 [164] | Very preterm infants (<32 wks GA): 21 infected, 22 uninfected | EOS | 100 pg/mL | 80% | 90% | 89% | 83 |
Døllner 2001 [165] | Mixed population, preterm and full-term: 52 infected vs. 33 uninfected | EOS | 33.0 pg/mL | 84% | 70% | ND | ND |
Krueger 2001 [166] | Mixed population, preterm and full-term: 40 infected vs. 37 uninfected | EOS | 80 pg/mL | 96% | 94% | ND | ND |
Santana 2001 [167] | Mixed population, preterm and full-term: 10 infected, 11 uninfected, 10 healthy controls | EOS | 100.8 pg/mL | 50% | 87% | 31% | 66% |
Martin 2001 [168] | Preterm and term infants with suspected sepsis: 20 infected, 12 uninfected | EOS | 30 pg/mL | 63% | 71% | ND | ND |
Hatzidaki 2005 [169] | 58 preterm neonates Born to mothers with pPROM: 20 infected, 38 uninfected | EOS | 108.5 pg/mL | 95% | 100% | 100 | 97.4% |
55 pg/mL | 90% | 97.4% | 94.7 | 94.9% | |||
Gharehbaghi 2008 [170] | Preterm infants born to mothers with PROM: 17 infected, 18 uninfected | EOS | 20 pg/mL | 46% | 85% | 88% | 39% |
Bender 2008 [171] | Preterm and term infants: 29 infected, 94 uninfected | EOS | 250 pg/mL | 59% | 94% | 76% | 88% |
Labenne 2011 [172] | Preterm infants with a suspected diagnosis of EOS: 31 infected, 182 uninfected | EOS | 300 pg/mL | 87.1% | 82% | ND | 97.3% |
Cernada 2011 [173] | Preterm and term infants with risk factors for EOS: 10 infected, 118 uninfected | EOS | 255.87 pg/mL | 90% | 87.4% | 37.5% | 99% |
Cobo 2013 [174] | Preterm infants born to mothers with pPROM: 12 infected, 164 uninfected | EOS | 38 pg/mL | 83% | 82% | 30% | 98.1% |
Hofer 2013 [175] | Preterm infants at risk of bacterial infection: 32 cases vs. 144 controls | EOS | 11.1 pg/mL | 815 | 75% | ND | ND |
Cetin 2014 [176] | Preterm infants born to mothers with pPROM: 10 cases vs. 30 controls | ND | 11 pg/mL | 90% | 63.3% | 45% | 95% |
Ebenebe 2019 [177] | Preterm infants (birth weight < 2000 g): 67 cases vs. 115 controls | EOS | 40 pg/mL | 75% | 72.8% | 14% | 98% |
Reference | Population | EOS or LOS | Cut-off Value | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
Poggi 2015 [192] | Preterm (≤32 wks of GA): 19 LOS vs. 21 controls | LOS | 885 ng/L | 94% | 100% | 100% | 95% |
Mussap 2015 [193] | Mixed, term and preterm: group A (25 bacterial sepsis), group B (15 SIRS, with no localizing source of bacterial infection), group C (25 non-infected) | EOS and LOS | 548 ng/L | 100% | 81.2% | ND | ND |
600 ng/L | 97.5% | 100% | |||||
Stojewska 2015 [194] | Mixed, term and preterm: 41 septics, 37 with severe local infections without bacteremia, 16 without infections, but with clinical symptoms suggesting infection and perinatal risk factors and 30 control | EOS and LOS | 1066 pg/mL | 63.4% | 89.2% | ND | ND |
Topcuoglu 2015 [195] | Preterm (≤32 wks of GA): 42 LOS vs. 40 controls | LOS | 800.5 pg/mL | 67% | 100% | 100% | 74% |
Abdel Motalib 2015 [196] | Mixed, term and preterm: 28 cases vs. 34 controls | EOS | 672 pg/mL | 97% | 98% | 96% | 92% |
Osman 2015 [197] | Full term neonate: 40 cases vs. 15 controls | EOS and LOS | 875 pg/mL | 95.7% | 87.5% | ND | ND |
Xiao 2017 [198] | Mixed, term and preterm: 42 hematosepsis vs. 54 nonhematosepsis vs. 44 non-infectious vs. 53 healthy controls | EOS and LOS | 304.5 ng/mL | 95.2% | 84.9% | ND | ND |
Miyosawa 2018 [199] | Preterm: 13 cases vs. 18 preterm controls vs. 35 term controls | EOS | 795 pg/mL | 85% | 89% | 85% | 89% |
Gad 2020 [200] | Full-term: 31 cases vs. 20 controls | EOS | 480 ng/L | 96.8% | 95% | 96.8% | 95% |
1400 ng/L | 100% | 88.5% | 55.6% | 94.7% | |||
Pietrasanta 2021 [201] | Mixed, term and preterm: 58 “infection” vs. 77 septic vs. 24 septic shock | EOS | Overall: 987.5 pg/mL | 72% | 87% | 57% | 93% |
Infection: 687.5 pg/mL | 81% | 62% | 15% | 98% | |||
Sepsis: 1013 pg/mL | 84% | 92% | 45% | 98% | |||
Septic shock: 971.5 pg/mL | 92% | 86% | 18% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscarino, G.; Migliorino, R.; Carbone, G.; Davino, G.; Dell’Orto, V.G.; Perrone, S.; Principi, N.; Esposito, S. Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going. Antibiotics 2023, 12, 1233. https://doi.org/10.3390/antibiotics12081233
Boscarino G, Migliorino R, Carbone G, Davino G, Dell’Orto VG, Perrone S, Principi N, Esposito S. Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going. Antibiotics. 2023; 12(8):1233. https://doi.org/10.3390/antibiotics12081233
Chicago/Turabian StyleBoscarino, Giovanni, Rossana Migliorino, Giulia Carbone, Giusy Davino, Valentina Giovanna Dell’Orto, Serafina Perrone, Nicola Principi, and Susanna Esposito. 2023. "Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going" Antibiotics 12, no. 8: 1233. https://doi.org/10.3390/antibiotics12081233
APA StyleBoscarino, G., Migliorino, R., Carbone, G., Davino, G., Dell’Orto, V. G., Perrone, S., Principi, N., & Esposito, S. (2023). Biomarkers of Neonatal Sepsis: Where We Are and Where We Are Going. Antibiotics, 12(8), 1233. https://doi.org/10.3390/antibiotics12081233